
A Model-Based Framework for Simplified Collaboration of

Legal and Software Experts in Data Protection Assessments

Nicolas Boltz 1, Leonie Sterz 2, Christopher Gerking «, Oliver Raabe »

Abstract: The protection of personal data has become an increasingly important issue. Legal norms
focused on data protection, such as the EU General Data Protection Regulation (GDPR), provide
legally binding requirements for systems that process personal data. Article 25 of the GDPR refers
to the obligation to Data Protection by Design and Default. This can be achieved by conducting
legal assessments of the system in the early stages of development and implementing data protection
concepts where necessary. This ties in with Article «5, which refers to an obligation to conduct legal
assessments before the actual processing of data.

To aid in conducting continuous legal assessments during the design time of software systems,
we propose a model-based collaboration framework. This framework not only aids in providing
consistent views of the software system for legal experts and software architects but also simplifies
communication between both parties. We discuss the overall goals and benefits of such a framework
and go into detail about the processes that interact as part of the framework. We also try to align legal
concepts with the processes and describe the continuous iterative development using the collaboration
framework.

Keywords: data protection by design; legal assessment; GDPR; software architecture; metamodel;

design time

1 Motivation

Due to the increasing digital transformation of everyday life, the protection of personal

data has become a more and more important issue for society. Legal norms such as the EU

General Data Protection Regulation (GDPR) are being increasingly enforced and penalties

for non-compliance are high. Also, Article 25 of the GDPR refers to the obligation to

Data Protection by Design (DPbD) and Default, i.e. the implementation of data protection

concepts during the design time of the system.

1 Karlsruhe Institute of Technology, Institute of Information Security and Dependability (KASTEL), Dependability

of Software-intensive Systems Group (DSiS), nicolas.boltz@kit.edu
2 Karlsruhe Institute of Technology, Institute of Information Security and Dependability (KASTEL), Information

Law for Technical Systems and Legal Informatics Group (ITR), leonie.sterz@kit.edu
« Karlsruhe Institute of Technology, Institute of Information Security and Dependability (KASTEL), Dependability

of Software-intensive Systems Group (DSiS), christopher.gerking@kit.edu
» Karlsruhe Institute of Technology, Institut für Informations- und Wirtschaftsrecht (IIWR), Information Law for

Technical Systems and Legal Informatics Group (ITR), raabe@kit.edu

cba doi:10.18420/inf2022_44

D. Demmler, D. Krupka, H. Federrath. (Hrsg.): INFORMATIK 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 521

mailto:nicolas.boltz@kit.edu
mailto:leonie.sterz@kit.edu
mailto:christopher.gerking@kit.edu
mailto:raabe@kit.edu
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2022_44

One way to achieve DPbD is to offer concepts during the design time of a system, that aid

in the process of designing a system focused on preserving data privacy. During design

time, software architecture models are created, which represent the structure and context

of the system under development (SUD). Using only software architecture models, it is

already possible to derive quality attributes of the future system such as confidentiality

[Se22] (besides other attributes like performance or reliability [Re16]). Through an iterative

development process, quality issues can be found by analyzing the architecture models, and

later resolved by fixing or optimizing the system’s architecture. As the cost of fixing an

issue increases drastically the later it is fixed [BMU75], in the best case issues should be

fixed during design time. Consequently, data protection issues should also be addressed

during the design of the system. Furthermore, besides the obvious privacy problems for

the individual, which may arise from the improper processing of personal data, issues with

data protection potentially entail high penalties and loss of reputation for the organizations

handling the data.

While there already exist approaches for privacy and data protection engineering during

design time [Ah18; Bi16; Si19] and the definition of context-specific legal requirements

[Gr20; MCP21; To21], the interdisciplinary communication and collaboration between

legal and technical domains is often overlooked. However, this subject, in particular, has the

potential to be critical, as both professions are highly specialized in their field, and in-depth

knowledge about the other profession can not be assumed. Even more critical is the fact

that similar-sounding terms regarding privacy and data protection might refer to disparate

underlying understandings or concepts. During the collaboration, e.g. while conducting

a legal assessment of a software system, these similarities, which constitute the basis of

the conversation, create the need to first define a uniform terminology to avoid potential

misunderstandings. Even if a uniform terminology can once be successfully established, new

communication problems are likely to emerge in case of legal change. If the legal situation

or its interpretation change over time, these changes must be communicated to the technical

personnel, so that they can be reflected in the design of the SUD. A failure to communicate

such changes quickly and correctly can not only delay the rollout of systems. If unnoticed,

it may even lead to the rollout of non-compliant systems involving the aforementioned

financial penalties or cost-intensive product recalls.

We propose a collaboration framework, where direct communication between legal experts

and technical personnel is simplified. The framework aims to aid in DPbD and the

development of legally compliant systems. Software architects plan a software system,

creating a software architecture model in the process. This software architecture model

represents a technical view of the system. Information about the software system, required

by the legal experts, is provided by another specialized view that is created by transferring,

translating, and summarizing information from a software architecture model. This view

omits technical information not relevant for a legal assessment and visualizes the system

in a way that is more catered toward the legal domain. Furthermore, legal experts use this

view to perform a subsumption, identifying a system-specific set of rules, which cover more

522

complex legal norms. This set of rules is translated to technical analysis queries, that are

used to analyze the actual software architecture model. If violations of data protection law

are found using the translated rules, the software architecture model can be adjusted as

consequence. Each view of the system is model-based and relationships between models are

based on transformations or manual processes. As the iteration of the framework ends in

the potential adjustment of the planned software system, the resulting software architecture

model can feed into a new iteration. This allows for the continuous development of the

software architecture and conducting of legal assessments at the same time.

The remainder of this paper is structured as followsȷ Section 2 gives an overview of the

foundations regarding the topic of software architecture modeling and data protection legal

assessments. Section « describes the problems we aim to address and the goals we aim to

achieve with the proposed framework. In Section » we describe the proposed collaboration

framework in detail. In Section 5 concepts from legal methodology are mapped to the

corresponding framework element. Section 6 describes the continuous development and

assessment process. Section 7 presents related work and Section 8 concludes the paper.

2 Foundations

In this section, we give a brief overview of the main concepts that make up our proposed

collaboration framework. In Subsection 2.1 we describe two established approaches to

modelling and analyzing software architecture. Subsection 2.2 provides an overview of

what a legal assessment is and the different guidelines and methodologies that exist.

2.1 Modelling and Analyzing Software Architecture

There are multiple approaches to describe and analyze software architecture. We focus on

Data Flow Diagrams (DFDs) as a lightweight data-centric representation of a software

system and the Palladio Component Model (PCM) [Re16] as a detailed representation.

DFDs based on the notion of DeMarco [De79] are unidirectional graphs representing the

flow and processing of data in a system. Graph nodes are either Actors, Processes, or Stores.

Edges that connect nodes are called data flows and describe a data transmission between the

connected nodes. Actors are the source and sink nodes, which start or terminate a sequence

of data flows. Process nodes transform incoming data and pass it on as outgoing data. Store

nodes hold or emit data. The approach of Seifermann et al. [Se22] extends the DFD notion

and provides a way to analyze DFDs for illegal or unwanted data flows. Queries that describe

what kind of data flows are unwanted are defined in a domain-specific language (DSL)

[Ha21].

Palladio is a tool-supported software architecture simulation approach, that is used to

predict an architecture’s quality of software properties [BKR09]. The PCM is a model of

523

component-based software architectures. The basic PCM is made up of several metamodels,

each representing a different architectural view of a system [Re16]. The approach of

Seifermann et al. [Se22] also provides a way to analyze an extended variant of the PCM

using the same DSL as described above.

2.2 Legal Assessments

During a legal assessment, the facts relevant for the legal assessment5 are examined for their

legal conformity. Usually, such an assessment refers to an aspect of the law or a specific

area of the facts. Our framework has a focus on data protection law. Therefore, our legal

assessment concentrates on substantive lawfulness according to Art. 6 GDPR as well as the

principles relating to the processing of personal data such as data minimization and purpose

limitation (Art. 5 GDPR) and security of processing (Art. «2 GDPR). Article «5 requires

that data protection impact assessments should be conducted where the type of processing

of personal data results in a high risk to, or if there is a possible change in the risk of the

privacy of the natural person. Instead of only focusing on the impact on high-risk areas, our

assessment is a more general kind and considers the whole system.

3 Goals

In this section, we describe the problems we aim to address and the goals we aim to achieve

with our framework.

The most prominent problem, which we have already touched on in Section 1, is the

knowledge gap between legal experts and software architects or engineers. In the legal

domain, for example, anonymization is measured using objective factors, such as cost and

time for re-identification [GD16, Rec. 26]. However, in the technical domain, anonymization

is often measured using concepts from theoretical computer science and mathematical

definitions, like k-Anonymity [Sw02]. By providing our framework, we aim to reduce

and simplify direct communication that is necessary while conducting a legal assessment,

which in turn reduces the potential for misunderstandings. Further, the predefined models

and automatic transformations reduce the need to define a uniform terminology, making

collaboration more effective and simple.

Another problem that arises due to our view-based approach is maintaining consistency

between the views. The software architecture model represents the SUD and is subject to

constant changes and development. A view of the SUD catered towards the legal domain,

could simply be derived from the software architecture model once at a certain point during

development. However, since changes of the software architecture can occur frequently, the

legal view might be outdated shortly after. A legal assessment that is based on an outdated

5 Translated from German legal term ”Sachverhalt”

524

view might come to false conclusions, which do not correspond to the actual SUD. Even

in later phases, the legal view of the system must always be consistent with the software

architecture, so that the change to the system can be assessed. Our proposed framework

achieves this through the automatic transformation from software architecture model to

legal view.

The other way is more complex, as the legal view is used to conduct a legal assessment

and identify legal consequences. These consequences can entail requirements and potential

changes, that legal experts can not sensibly incorporate into the system. However, our

framework provides the legal experts with a way to formulate the legal requirements, that

allows for automated translation into technical analysis queries. These queries in turn can be

used to automatically analyse the software architecture model for compliance with the legal

requirements. This way, our proposed framework allows the views of the system to evolve at

the same pace and enables the development of software architecture and conducting legal

assessments in parallel.

Wright et al. [WFR1«] describe, that the assessments of the privacy/data protection should

be a process that begins at the earliest possible stages of system development and continue

even after deployment. Our proposed framework aims at providing such a process, by

enabling continuous legal assessment of the system. If the software architecture model

is kept consistent with the actual runtime system, our proposed framework can also be

applied in subsequent phases of system development, keeping an already running system

compliant with data protection law. Through continuous assessments, changes in the system

can be addressed more quickly. This is supported by the fact that an already existing

assessment conclusion, in the form of formulated legal requirements, might only need minor

adjustments and the technical analysis process of the software architecture can be performed

automatically. Changes in the interpretation of data protection law, due to new legal norms

or court rulings, can be addressed similarly.

4 Framework Description

As briefly described in Section 1 and Section «, the proposed framework aims to simplify

communication between legal experts and software architects and in turn aid in DPbD and

the development of legally compliant systems. As shown in Figure 1, each view of the

system is model-based and consists of a structural model representing the SUD and a rule

model representing legal rules that are either derived from or applied to the corresponding

structural model.

On the technical side, the structural model is a software architecture model, as described

in Subsection 2.1. As the software architecture model informs how the SUD is eventually

implemented, it undergoes constant changes during planning and development. Information

about the software system, required by the legal experts, is provided by the structural model

of the legal view. This structural model called Legal Assessment Facts Model is part of our

525

proposed approach. It contains the information necessary for legal assessments of the system.

A model is created by transforming relevant information from the software architecture

model and shifting the focus in a way that is more intuitive for legal experts. Legal experts

enrich the resulting Legal Assessment Facts Model with law-specific elements that cannot

be derived from the software architecture model or modelled in the software architecture

model. Based on the enriched model, properties of the system that are for example defined

in the GDPR, such as applicability according to Article 2, purpose limitation according to

Article 5(1)c or lawfulness of processing according to Article 6(1), can already be checked

automatically. With these checks, elements that do not fulfill these can be identified. Based

on the identified elements, legal experts can either implement legal measures, such as

adapting consent forms, contracts, or purpose definitions, to establish the properties, or

inform the technical side to initiate changes in the software architecture model. Using the

Legal Assessment Facts Model, the legal experts conduct further legal assessment and

identify additional legal consequences, which apply to the system. These legal consequences

can require the system to have specific properties or, make active changes to the system.

The changes are often not trivial to implement correctly, which is why they cannot simply

be implemented by legal experts in the Legal Assessment Facts Model and transformed

back to the software architecture model. Instead, the legal experts manually derive a Legal

Norm Rules Model. This model represents the rule model of the legal view. Based on the

identified legal consequences, the legal experts derive legal requirement rules, which are

translated into technical analysis queries. The queries can subsequently be used to check the

software architecture model for compliance with the legal requirements.

Structural

 Rule

Technical ViewLegal View

System
Architecture Model

Legal Assessment
Facts Model

Legal Norm Rules
Model

Analysis Query
Language

Model
Transformation Manual

Fig. 1ȷ Models and relationships, categorized by type of information and domain.

5 Legal Methodology

To better align the overall technical process described in Section » with the legal domain,

we describe the legal concepts that are part of the process. Figure 2 shows the framework

with annotated legal concepts. As the software architecture model describes how the SUD

is eventually implemented, it represents the matter of fact6. Based on the matter of fact,

6 Translated from German legal term ”Tatsache”

526

the facts relevant for the legal assessment7, need to be captured. As we aim to aid in

conducting legal assessments of software systems, the transformation step between software

architecture model and Legal Assessment Facts Model captures the facts which are relevant

for a data protection legal assessment. The structure of the Legal Assessment Facts Model is

influenced by the information necessary for legal assessments, but also by data protection

legal norms in general.

The manual step in which the Legal Norm Rules Model is created starts with the identification

of the relevant legal norms by the legal expert. The laws contain various legal consequences8

and the respective prerequisites, which are called definitional elements of a rule9. If all

definitional elements of a rule are met, the corresponding legal consequence applies. The

legal expert uses the Legal Assessment Facts Model to check whether the definitional

elements are met. This step is called subsumption in the narrower sense10 in continental

European law [Ra12]. The interpretation of a law, for example on the basis of court

decisions, can also play a role here. Depending on whether or not all relevant facts are

fulfilled, it can be determined whether the legal consequence under consideration applies.

This is also called subsumption in the broader sense11. The legal expert transfers the results

of his examination into logical and technically readable rules. These result in the Legal

Norm Rules Model.

System Architecture
Model

Legal Assesment
Facts Model

Legal Norm Rules
Model

Analysis Query
Language Model

Legal construct

Analysis

Facts relevant for
legal assessment

Legal interpretation

Legal norm

Legal consequence

Definitional elements

Subsumption in
the broader sense

(If the legal situation is clear)

Model
Transformation Manual Optional

Matter of fact

Subsumption in the
narrower sense

Fig. 2ȷ Concepts of legal methodology, assigned to the corresponding framework elements.

6 Continuous Assessment Process

The process starts as a technical software architecture modeling activity. A software architect

plans a software system, creating a software architecture model which represents the SUD.

7 Translated from German legal term ”Sachverhalt”

8 Translated from German legal term ”Rechtsfolge”

9 Translated from German legal term ”Tatbestandsmerkmal”

10 Translated from German legal term ”Subsumtion im engeren Sinne”

11 Translated from German legal term ”Subsumtion im weiteren Sinne”

527

Using a transformation algorithm, information that is relevant for legal assessments is

extracted from the software architecture model and a Legal Assessment Facts Model is

created. A legal expert uses the Legal Assessment Facts Model to perform a subsumption in

the narrower sense (see Subsection 2.2). As described in Section », a Legal Norm Rules

Model is derived which is custom to the SUD, as represented in the Legal Assessment

Facts Model. In the following activity, the Legal Norm Rules Model is translated to a

technical Analysis Query Language Model. During this process, trance links from the first

transformation to the analysis Legal Assessment Facts Model are used to link rules to actual

elements of the software architecture model. Using the analysis process of Seifermann

et al. [Se22] described in Subsection 2.1, the software architecture model is analyzed with

the queries from the resulting Analysis Query Language Model to determine if the SUD

meets all data protection requirements. Any found data protection requirements that are

not met, represent an architectural element or design decision in the software architecture

model, that is not compliant with data protection law and requires adjustment. How the

software architecture needs to be adjusted is either evident from the requirement or needs to

be determined by the software architect.

After the initial iteration, the proposed process is made up of two concurrent loopsȷ The

first loop, shown on the right side of Figure «, only contains technical activities. Once

a Legal Norm Rules Model has been created by a legal expert, this loop can be iterated

independently from any legal cooperation. The software architect can continue to adjust

and further plan the software architecture model, analyzing the system’s legal conformity

using the most current Legal Norm Rules Model available. With each iteration, it can be

assured that at least a subset of data protection requirements that are not met by the software

architecture can be identified. Rules that reference a software architecture element, that has

been removed or substantially modified, can be ignored by the analysis. Data protection

requirements that are not met, can then be mitigated by making adjustments to the software

architecture and starting a new iteration of this loop.

The second loop, on the left side of Figure «, primarily contains legal activities. Similar to

the initial iteration of the process, the now newly adjusted software architecture model is

transformed to an updated Legal Assessment Facts Model. Based on the updated model, a

legal assessment is conducted and the Legal Norm Rules Model is updated as a result. The

updated Legal Norm Rules Model is then translated to a technical Analysis Query Language

Model, which is used to automatically analyze the software architecture model to find data

protection requirements that are not met. If the software architecture is changed, either as a

result of a previously not met data protection requirement or as part of the development of

the system, a new iteration of this loop is started.

The main benefit of our proposed approach is that both loops can be iterated independently

from each other. This allows for the continuous development of the software architecture

and conducting of legal assessments at the same time. As each loop ends in the adjustment

of the planned software system, the results of a loop feed into the next iteration.

528

As can be seen in Figure «, the communication activities that connect technical and

legal activities are all based on automated transformations, removing the need for direct

interaction. Only if there are very relevant legal consequences, which are obvious and that

need immediate attention, direct interaction is necessary.

Legal Activity Technical Activity

Software architect
plans software system

Transformation to
underlying facts

model

Legal Assesment Facts
Model Instance(s)

Analysis of assesment
facts model

(Subsumption in the
narrower sense)

Creating legal norm
rules in reference to

assesment facts model

There exists a relevant legal consequence
evident from the assesment facts model instance

Translation of legal
norm rules

Analysis
(Subsumtion in the

broader sense)

Legal Norm Rules
Model Instance

Analysis Rule
Model Instance

Rule violations found

Adjusting the planned
software system

System Architecture
Model Instance

Direct communication
between lawyer and

architect

System Architecture
Model Instance

Model Instance Communication StepNormal Process Step

Fig. «ȷ Activity diagram of the continuous assessment and development process.

7 Related Work

In this section, we discuss other approaches that are related to our proposed framework.

Furthermore, as some elements of our described approach still need to be implemented,

parts of related work also constitute a base for future work.

In the years since the GDPR was published, there have been a variety of model-based

approaches to legal compliance and interdisciplinary cooperation. Torre et al. [To21] define

a visual representation of the GDPR, as a way to provide a communication bridge between IT

and legal experts. They define a generic GDPR model and invariants expressed in the Object

Constraint Language (OCL) that can be used for automated GDPR compliance checking.

Further, they describe how the generic model can be specialized depending on the context of

the application. However, the specialized model is not derived from a system representation

using a formal transformation but rather created by manually changing variation points of

the GDPR model. Consequently, changes in the system require manual adjustment of the

specialized model. Additionally, changes in the interpretation of law require direct changes

529

of OCL constraints or the addition of variation points, which might be challenging for legal

experts. Sion et al. [Si19] propose an architectural view for DPbD. The view is based on a

model, that is derived from definitions of the GDPR. They describe how a transformation

could keep the view consistent with a design time model so that there is no discrepancy

between view and the actual system. While their approach covers similar aspects as the

structural part of our proposed collaboration framework, the process which involves legal

experts utilizing the DPbD view and feeding information back into the design time model is

not explored. Ahmadian et al. [Ah18] propose a methodology to support data protection

impact assessments by performing model-based privacy analyses during design time. They

analyze the design of a system and where necessary suggest privacy controls to improve the

design. The privacy requirements are defined by annotating a UML diagram with elements

of a privacy-focused UML profile. However, the privacy UML profile extension does not

directly reference requirements defined by the GDPR. Further, as only a technical UML

view of the system is defined, there exists no tailored view for legal experts to work with.

The previously described approaches focus on representing and extending a model in a way

that it can be either manually or automatically assessed. In correspondence to our described

Legal Norm Rules Model, there also exist approaches that focus on the definition of specific

legal requirements. Grifo et al. [Gr20] define a domain-specific visual modeling language,

which provides for a visual symbolic representation for legal statements. It aims to support

legal experts in identifying legal requirements and to assist in the visual representation of

case scenarios. Merigoux et al. [MCP21] define the programming language CATALA, which

is designed to allow legal experts to translate law into a formal form, that can be further

translated into an executable implementation. This approach could be used to represent the

Legal Norm Rules Model, as it allows for the definition of legal requirements and already

provides a translation, which could be leveraged to analyse the SUD.

8 Conclusion and Future Work

In this paper, we present a collaboration framework for continuous legal assessments of

software systems during design time. Our proposed framework aims to aid in DPbD and the

development of legally compliant systems.

The framework is made up of two viewsȷ A technical view, aimed at the technical domain

and a legal view aimed at the legal domain. Each view is made up of two models. One

represents the structure of the SUD the other a set of rules for compliance with data

protection law. The relationships between models of different views are based on automated

transformations. Software architects plan a software system, creating a software architecture

model. Information about the software system, required by the legal experts, is provided by

transferring information from the software architecture model to a Legal Assessment Facts

Model. The Legal Assessment Facts Model omits technical information not relevant for a

legal assessment. Legal experts enrich the resulting Legal Assessment Facts Model with

law-specific elements that cannot be derived from the software architecture model. They

530

use the Legal Assessment Facts Model to apply the law and transform their results into a

formal form, creating a Legal Norm Rules Model in the process. The Legal Norm Rules

Model is translated to a technical Analysis Query Language Model, which is used to analyze

the actual software architecture model.

We define the problems we aim to solve and describe the continuous process, that allows

for simultaneous software development and legal assessments. Our framework combines

technical and legal methodology and workflows, while at the same time reducing and

simplifying the required direct communication between both domains. Through the iterative

nature and automated transformations that are part of the proposed process, both views of

the SUD are kept consistent with each other. The continuous assessment process not only

aligns with the requirements of law but also allows for quicker reactions to changes in the

system or law respectively.

In future work, we plan to further implement parts of our proposed framework. Using related

work and interdisciplinary collaboration we aim to define a concrete Legal Assessment

Facts Model and Legal Norm Rules Model suited for our described purpose. Further, we

plan on evaluating the technical aspects of our proposed framework with a case-study-based

evaluation and the applicability and effectiveness with a user study. As this work is part of

mobility-focused projects, in a first effort we aim to create a case study for evaluation which

is thematically located in the area of connected cars and vehicle to X communication.

Acknowledgments

This publication is partially based on the research project SofDCar (19S21002), which is

funded by the German Federal Ministry for Economic Affairs and Climate Action. This

work was also supported by funding from the topic Engineering Secure Systems of the

Helmholtz Association (HGF) and by KASTEL Security Research Labs (»6.2«.0«).

References

[Ah18] Ahmadian, A. S.; Strüber, D.; Riediger, V.; Jürjens, J.ȷ Supporting privacy

impact assessment by model-based privacy analysis. Inȷ Proceedings of the

««rd Annual ACM Symposium on Applied Computing. Pp. 1»67–1»7», 2018.

[Bi16] Bieker, F.; Friedewald, M.; Hansen, M.; Obersteller, H.; Rost, M.ȷ A process for

data protection impact assessment under the european general data protection

regulation. Inȷ Annual Privacy Forum. Springer, pp. 21–«7, 2016.

[BKR09] Becker, S.; Koziolek, H.; Reussner, R.ȷ The Palladio component model for

model-driven performance prediction. Journal of Systems and Software 82/1,

pp. «–22, 2009.

531

[BMU75] Boehm, B. W.; Mcclean, R. K.; Urfrig, D.ȷ Some experience with automated

aids to the design of large-scale reliable software. Transactions on Software

Engineering/1, pp. 125–1««, 1975.

[De79] DeMarco, T.ȷ Structure analysis and system specification. Inȷ Pioneers and

Their Contributions to Software Engineering. Springer, pp. 255–288, 1979.

[GD16] GDPR - The European Parliament and the Council of the European Unionȷ EU

General Data Protection Regulation (GDPR), Apr. 27, 2016, urlȷ https://eur-

lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679.

[Gr20] Grifo, C.; Teixeira, M. D. G. D. S.; Almeida, J. P. A.; Gailly, F.; Guizzardi, G.ȷ

LawVȷ Towards an ontology-based visual modeling language in the legal

domain. Inȷ ONTOBRAS 2020. Vol. 2728, pp. 75–88, 2020.

[Ha21] Hahner, S.; Seifermann, S.; Heinrich, R.; Walter, M.; Bureš, T.; Hnětynka, P.ȷ

Modeling data flow constraints for design-time confidentiality analyses. Inȷ

International Conference on Software Architecture Companion (ICSA-C).

IEEE, pp. 15–21, 2021.

[MCP21] Merigoux, D.; Chataing, N.; Protzenko, J.ȷ Catalaȷ a programming language

for the law. Proceedings of the ACM on Programming Languages 5/ICFP,

pp. 1–29, 2021.

[Ra12] Raabe, O.; Wacker, R.; Oberle, D.; Baumann, C.; Funk, C.ȷ Subsumtion im

engeren Sinne. Inȷ Recht ex machinaȷ Formalisierung des Rechts im Internet der

Dienste. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 26«–27», 2012.

[Re16] Reussner, R. H.; Becker, S.; Happe, J.; Heinrich, R.; Koziolek, A.; Koziolek, H.;

Kramer, M.; Krogmann, K.ȷ Modeling and Simulating Software Architectures –

The Palladio Approach. MIT Press, 2016.

[Se22] Seifermann, S.; Heinrich, R.; Werle, D.; Reussner, R.ȷ Detecting violations of

access control and information flow policies in data flow diagrams. Journal of

Systems and Software 18»/, p. 1111«8, 2022.

[Si19] Sion, L.; Dewitte, P.; Van Landuyt, D.; Wuyts, K.; Emanuilov, I.; Valcke, P.;

Joosen, W.ȷ An architectural view for data protection by design. Inȷ International

Conference on Software Architecture (ICSA). IEEE, pp. 11–20, 2019.

[Sw02] Sweeney, L.ȷ k-Anonymityȷ A model for protecting privacy. International Journal

on Uncertainty, Fuzziness and Knowledge-based Systems 10/5, pp. 557–570,

2002.

[To21] Torre, D.; Alferez, M.; Soltana, G.; Sabetzadeh, M.; Briand, L.ȷ Modeling data

protection and privacyȷ application and experience with GDPR. Software and

Systems Modeling 20/6, pp. 2071–2087, 2021.

[WFR1«] Wright, D.; Finn, R.; Rodrigues, R.ȷ A comparative analysis of privacy impact

assessment in six countries. Journal of Contemporary European Research 9/1,

201«.

532

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

