Towards an XML-based Framework for
Web Usage Mining

Kai Honsel, Bernd Schneider
Information Systems I
University of Hohenheim
70593 Stuttgart, Germany
{kh,bs}@wil.uni-hohenheim.de

Abstract: Current systems for Web Usage Mining (WUM) offer graphical
and interactive ways of using the implemented methods, but do not support
individual multilevel or complex analyses. Based on those systems it is
neither possible to perform flexible nor regular automated evaluations based
on predefined evaluation schemes for offering WUM as a service. We
present an extensible framework for WUM, which describes a unified WUM
process and hence supports the application of any existing WUM method.
The core of our framework is a XML language called Web Usage Mining
Markup Language (WUMML) that provides a vocabulary for representing
and querying WUM data. WUMML uses XML standards like XPath or
XQuery and supports the specification of new commands for previously not
integrated WUM methods. By using WUM software that implements the
WUM framework, a company is able to perform WUM analysis efficiently
and is — in combination with the technical expertise — capable to
professionally offer WUM as service.

1 Introduction

With the ongoing evolution of e-commerce an increasing number of people use the
internet to get information, for education or entertainment purposes, and to
purchase products and services. This also leads to an increasing number of
companies using web sites for commercial purposes, e.g. representing themselves
or offering their products and services to meet the demands of customers who visit
their website. Competition requires analysis of the user's behaviour and evaluation
of the web sites as well as the underlying processes in order to achieve a high
service quality and provide better services via the web.

These analyses are carried out in the research area of Web Usage Mining (WUM)
[CMS97, HMWO02]. WUM aims at finding out insights about practices, interests
and expectations of users respective customers by examining their behaviour on
web sites to align the company’s web site with their needs. The Web Usage Mining
process formally structures these analyses. During the process data sources like
web server log files are processed and so called Web Usage Mining methods are
applied. The WUM methods are often based on descriptive statistics or Data
Mining methods adapted to the data structures and specifics of the web.

41

For applying WUM practically, a set of software tools for automated or semi-
automated analysis of the so-called web server log files is currently available on
the market. These tools use more or less simple statistic methods to provide basic
information about the use of the web site like the number of web pages accessed by
users, the time spent on the web site etc. Most of the time these tools use only the
web logs but no further information and are thus insufficient for an analysis
including the whole underlying process. The tools are mostly equipped with a
graphical user interface appropriate for end-users and employ an interactive way of
using the build-in methods.

For more complex analysis special web usage mining methods are derived from
data mining. These methods have to be applied on web logs in combination with
additional data sources like transactional or billing data from other computer
systems in order to achieve appropriate results. Software tools supporting those
evaluations mostly implement only a single method and are designed for research
purposes which results for example in a scarcer user interface like a command line
interface. Furthermore, their usage needs expertise for preparing the input data and
interpreting the results. This leads to a restricted number of users.

Even if those tools support more convenient user interfaces their usage still needs
knowledge available only from experts or highly sophisticated users. For high-
grade applications the tools have to be offered together with this expertise as a
“complete service”. To enable economical and attractive projects the tools have to
support a powerful and flexible set of methods for complex analysis of web usage.
They have to be capable of using a wide range of data sources and formats;
analysis processes should be storable for periodical, automated and reproducible
use.

These requirements lead to a Web Usage Mining framework able to combine
different data sources and formats for a homogenous access from analysis methods
that are as well covered with a unified access layer. Both, data sources and analysis
methods will be accessed using a XML-based language called Web Usage Mining
Markup Language.

Starting with a short look on the Web Usage Mining process in section 2 we will
present our Web Usage Mining Framework in section 3 and give an example of an
analysis in section 4. Section 5 finishes with a conclusion and outlook on further
work.

2 Web Usage Mining process

The Web Usage Mining process [CMS97, HMWO02] can be divided into two
phases: collecting and pre-processing data sources to form an integrated database
on the one hand and the analysis phase itself on the other hand (see figure 1).

During the first step — data acquisition — data from different sources is collected,
e.g. log files from web and application servers, customer data or billing data. Each
data source is piped through a data pre-processing to remove nonessential data, add

42

Additional Web Logs
Information

Data Acquisition

Data
Pre-processing

User and Session
Identification

Database
Query Web Usage Mining
Language Query Language
Data

w Integrated Integration (@

Database
4
Data Selection
and Transformation
\
>
¢ 2
a 4 2 2
HIBRIERIE:
& 2 8 = .
= 9] @ =4 Pattern Discovery
g g z >
=l o B 2
= = '*ﬁ C<_‘
I8 @,
&
) OLAP Queries Visualisation Pattern Analysis D,
Web Controlling
Personalisation Application

Website Optimisation
and Re-engineering

Figure 1: The Web Usage Mining process [cf. CMS02, HMW02]

specific indexes etc. In addition, web log files undergo a user and session
1dentification in order to arrange the log files with their strictly time oriented order
to a form where the action of users can be seen more easily.

After having pre-processed the relevant data an integrated database is formed that
contains all data required for the analysis afterwards.

Analyses start with data selection and transformation to exclude actually unwanted
data, make conversions to more efficient representations, or apply e.g. group
functions. WUM methods are then carried out to perform pattern discovery and

43

pattern analysis where interesting but yet unknown relationships can be discovered
or specific key data is derived. Whereas the pre-processing phase is passed only
once, the analysis phase may be applied several times to achieve comprehensive
results.

We developed a framework for performing WUM called WUM framework that
structures and enables the application of WUM methods by means of a WUM
language. As depicted in figure 1 this language is designed to control the whole
WUM process whereas a database query language can only address the integrated
WUM database. Our WUM framework takes into account that neither the
development of WUM methods nor the variety of data sources for WUM is
completed yet.

3 Web Usage Mining framework

Our WUM framework has been developed starting with an abstraction from the
data sources involved in the WUM process: e.g. web or application log files, web
site graphs, as well as additional information like customer or billing data, product
catalogues and product group hierarchies. To form a flexible, extensible and easy-
to-use database, all data as well as the querying results are represented in XML.
We designed an XML language called Web Usage Mining Markup Language
(WUMML, pronounce: WUM-M-L) that is capable of representing and processing
these data. WUMML provides simple as well as several complex data structures
like rules, sets, sequences, graph, or hierarchies to represent the query inputs from
the database and the query results.

In the next step during development approaches for querying and manipulating
these data sources and structures — like SQL, XQuery, XSL, or XPath — have been
researched and integrated into WUMML. While using those concepts language
terms for the depiction of all steps of the WUM process within WUMML were
defined. They allow to control the WUM process and to execute WUM analysis
methods. Due to this WUMML acts like an interface connecting the WUM data
and the WUM methods. Since XML as the basic language supports a modular
design WUMML inherits this capability and supports the extension with new
language terms and the integration of other XML languages.

In the following sections we present an overview of the main building blocks of
our WUM framework. The basis is formed by an abstract data model that enables
the depiction of any WUM relevant data as XML structure. Based on this model
we provide the WUMML in order to represent, process and analyse the examined
data structures. An interface to WUM software tools is used to process WUMML
terms. The functionality needed to answer a WUMML query is provided by the
WUM tool in form of modules (see figure 2).

The design of our WUM framework follows the principles of classical 3-tier
architectures: the data layer (see section 3.1) forms the basis for the functional
layer (in our WUM framework called processing layer, see section 3.3) and the

44

language * WUMML query
layer P ——

processing WUM tool
layer ’_D

functional modules

dala

layer integrated
database

Figure 2: WUM framework

presentation layer (in our WUM framework called language layer, see section 3.2)
as shown in figure 2.

3.1 Data layer

Modelling of the data layer is necessary for surveying the properties of the WUM
data structures and taking them into account during further development. The
resulting data model characterises the data layer adequately in order to define a
language for processing the WUM data structures based on this data model. The
model should demand as few requirements as possible for the data layer in order to
keep the prerequisites for using the language on a low level. In order to develop a
complete data model the WUM data sources and the data structures used by WUM
methods have to be analysed. Since the integration of the existing WUM methods
into our WUM framework is not completed yet, we will thus concentrate on the
WUM data sources that have already been taken into account in our data model.

Due to their availability the most popular data sources for WUM are Web Server
Logs. Enhancements build upon these logs include the Aggregated Log [SF98] or
the Log Markup Language (LOGML) [PUKO1]. Both are more efficient formats in
respect to data processing than Web Server Logs. However, data from Web Server
Logs allow no characterisation of cause of user’s behaviour and thus have to be
costly pre-processed for WUM. To avoid this one has to use other techniques of
data collection. One of these is Application Server Logging in which the required
data is individually generated at the application layer [KoO1]. Due to a better data

45

quality this technique is to be preferred for high quality WUM, however, compared
to classical log formats the individuality of Application Server Logging yields to a
multitude of formats.

Besides collection and representation of web usage data it is important to consider
the other data sources that are incorporated into the WUM process. Often
background knowledge (like the web site structure) or additional information (i.e.
production and sales data) are integrated into the data basis for enlarging the
analysis or enhancing the quality of the results. Such secondary data also has to be
considered by the data model of WUM data. Even though the variation of
secondary data is extremely great, its format usually is homogenous, because it is
almost exclusively stored in (relational) databases and thus can be represented in
relations.

The challenges of modelling the WUM data layer consist of developing a data
model that represents any existing type of WUM data. The data model has to
describe the structure of the considered data elements, but neither their typifying
nor the operations that can be performed on it. Our aim is to characterise the data
units syntactically for the purpose of processing them and not to restrict their range
semantically. In the following the data structures so far covered by our data model
are informally described.

An attribute characterises an entity concerning a specific property and consists of
an attribute name and an attribute value. An attribute forms the smallest data
structure to which any other data structure refers. The relationship to other data
structures is circular, because an attribute can use any other data structure in its
attribute value. With this mechanism any data structure might be created.

An element evolves from combination of several attributes. This data structure is
used to encapsulate multiple attributes, which in conjunction characterise the same
data unit. Whereas an attribute specifies one single property of a data unit, such a
data unit itself is represented by an element.

Rules are used to describe correlations; they consist of condition and consequence.
The consequence states what applies or occurs when the condition becomes true.
Both parts of a rule are formed by a data structure of the type element.

With the term sef we denote the disordered collection of data units of similar type.
Instances of the data structure element are used to form sets. Because elements can
be designed individually by nesting the other data structures, the design of sets is
not restricted by constraints and arbitrary complex structures can be constructed.

A variation of a set is a sequence that contains data units of type element, too, but
they are ordered like a linear linked list. Thus a sequence can be understood as an
ordered set. An enlargement of a sequence is constituted by the Aierarchy. Their
elements may not only be linear but also hierarchical related to each other.

The greatest abstraction of sets, sequences and hierarchies is portrayed by a graph.
It consists of data units of similar type, which are denoted as nodes and
characterised with attributes. A relationship between two nodes is specified by

46

means of edges. Any number of directed edges between the nodes is permitted,
even though leading to unconnected or cyclic graphs.

With the data structures mentioned beforehand, one is able to depict data suitable
for processing it during WUM. The XML representation of these data structures
used in our WUM framework is shown in figure 3. For readability we use a
simplified notation as fusion of schema description and document instance. It can
be read as XML instance document without contents supplemented with a
complete enumeration of all XML elements and attributes allowed in the particular
context. Parentheses, Boolean operators and wildcards known from DTDs are used
to describe frequencies and conditions. Square brackets are used to refer to an
XML element defined somewhere else. The <meta> elements are needed for
information about a data structure instance itself.

<attribute name=?>

([rulel
[set]
[sequence] <element>
[hierarchyl] [attribute] *
[graphl]
#PCDATA
)?
<rule>
<body>
[element] * <Seti .
<head> le imeﬁtl
<meta>?
poclement] > [attribute] *

[attribute] *

<sequence> <hierarchy>

([element] <element>*
(<link> [attribute] *

[attribute] * (<link>
[element] [attribute] *

) * [element]

)?) *
<meta>? <meta>?

[attribute] *

[attribute] *

<graph>
<node id=>*
[attribute] *

<link fromid= toid= directed={true, false}?>*

[attribute] *
<meta>?
[attribute] *

Figure 3: WUM data structures

3.2 Language layer

Central component of our WUM framework is a language called Web Usage
Mining Markup Language (WUMML), which enables performing the WUM
process. WUMML is a declarative language, which serves to manage WUM
analysis by i.e. calling WUM methods to be performed and expressing properties
of the results by defining constraints. This is to be done with so called WUMML
queries. A WUMML query consists of one or more interrelated statements; the
term query denotes a set of statements that are executed together as a whole.
Statement refers to every complete command of the language, which can be
executed autonomously. A statement can be broken down in units, these are the
smallest entities of the WUMML vocabulary, which may depend on other language
units and are not executable separately.

The vocabulary of WUMML is divided into four areas: (i) statements to structure
WUMML queries, (ii) statements for basic data management and data pre-
processing, (iii) statements for mapping of WUM methods as well as (iv)
statements for defining functional modules. As shown in figure 4, the specification
of WUMML is based on XML, which means that WUMML is designed as a XML
language. The language units of WUMML are specified with XML Schema.
Besides XML Schema for defining the WUMML schema other XML standards are
used with WUMML like XLink for linking of documents, XPath for addressing of
elements, XSLT for transformation of documents, XQuery for querying data and
XSL-FO for visual representation of XML documents. Because there are various
XML languages for a number of applications, a solid basis of related languages is

query structuring data management

CELE) . XLink
representation

WUMML schema

functional modules WUM methods

Figure 4: Language design of WUMML

48

available, that may be integrated into or combined with WUMML. For example
SVG may be used for generation of graphical illustrations.

The definition of statements for mapping WUM methods into WUMML already
has taken into account insights and constructs of languages for the particular WUM
method such as SQL MINE RULE [MPC96, Me03] or MINT [SF98]. WUMML,
for example, adopts SQL MINE RULE’s concept of groups and clusters in
association analysis as well as the way of defining constraints in sequence analysis
used in MINT. Usually languages used by specific WUM methods are proprietary,
whereas WUMML consistently integrates them into a uniform XML language.
Due to the plurality of WUM methods their integration into the WUMML
vocabulary is not yet completed, but this can easily be done with the
implementation of the existing research results. We will neglect this aspect for the
moment and concentrate on the function of specific WUMML statements.

For structuring WUMML queries two statements are available: <session> is to be
used as the XML root element for encapsulating WUMML queries. The term
session refers in substance and time to a connected interaction between WUM tool
and user. During a session several statements are executed; besides administrative
operations a session incorporates primarily performing tasks that are addressed by
WUM. WUM (task refers to the application of a WUM method against a defined
data basis for solving a considered question. In WUMML this is done with <task>.
With <task> any implemented WUM method may be executed. So far we have
designed statements for the mapping of association and sequence analysis. Figure 5
shows the grammar of the WUMML statements <session>and <task>.

<s?ssTgn; 1 <task name=? dataname= resultname=?>
[s:v:] <descr?pt?on>?
[transformation] ([associationrules]
[query] <c1ustgr§>]
[preprocessing] <classification>
[visualization] <paths>
[task] [sequences]

) *)?

Figure 5: WUMML statements <session>and <task>

<query dataname= resultname=?
language={sql,xquery}
xlink:href=? xlink:type="simple"?
>
<description>?
#PCDATA?

Figure 6: WUMML statement <query>

49

The data to be worked with has to be included into <session> with the <data>
statement. For representing the WUM data in WUMML several XML elements
exist for the data structures mentioned in the previous section. By the usage of
<data>, instances of these data structures are generated. The application of a WUM
method with <zask> requires that a valid instance of the data structure —which is
needed by the particular method — exists. The method result is again an instance of
one of the defined data structures. Other statements for data management are
<save> for saving instances of data structures, <query> for examining them and
<visualization> for generating graphical representations of a data instance.
<preprocessing> and <transformation> are available for manipulating data
instances. While <preprocessing> is used to perform the known techniques (like
user and session identification or path completion) for the preparation of data from
Web Server Logs, <transformation> enables arbitrary manipulation of any data
instance, provided that the result is complaint with the defined WUM data
structures.

We will not discuss the mentioned statements in detail as this would go beyond the
scope of this article. Only a short view on the <guery> statement may exemplarily
show the integration of other XML standards within WUMML (see figure 6). With
<query> it is possible to declare a SQL or XQuery statement. Alternatively one
may give a file that contains such a query by the use of the XLink attribute Aref
This query is then evaluated by the WUMML interpreter against the data structure
denoted in the XML attribute dafaname. The result may be used for further
processing like visualisation and is referenced by the name declared with the XML
attribute resu/tname.

As mentioned before the development of statements for the mapping of WUM
methods is not finished yet. To take advantage of an individual mechanism for
integration of new WUM methods, so called functional modules may be used.
They are defined by the <module> statement with so called module definitions and
will be explained in the next section.

3.3 Processing layer

A WUMML query is processed by a WUM software tool (see figure 2). Each
statement contained in the query, i.e. for execution of WUM tasks or for pre-
processing data, has an (if necessary empty) input and output and is abstractly
called finction. This is a notion for every command that the WUM tool in
connection with WUUML provides to the user. The implementation of a function
itself is called algorithmr, several algorithms may exist for the same function and
may be automatically or manually chosen depending on the demands.

The functional range of the WUM tool is variable and is affected by the existing
functional modules. A functional module works like an add-in that provides
conclusive functionality. Every module addresses exactly one function and
contains at least one algorithm; the WUM tool may have several functional

50

modules respectively algorithms that implement the same WUM method. In this
manner the functionality of WUM tools can be flexibly configured.

The functional modules respectively the provided functions and algorithms are
defined in so called module definitions, which form a documentation of the
functional range of the WUM tool. Simultaneously the module definitions declare
a schema of the associated WUMML statement, which is necessary for using the
functionality of the module. The schema is needed to decide whether a considered
WUMML query correctly calls for an existing WUM method.

If a functional module merely provides new algorithms for existing functions of the
WUM tool or the implementation of a method already integrated in WUMML, the
schema will be omitted because its information is already available via existing
module definitions. Thus a function module may either contain another
implementation of an already specified method without providing a schema of the
corresponding WUMML statement, or the module has to provide a new method
including its implementation and the schema of the corresponding WUMML
statement.

Finally, a module definition states, to which extent an instance of a WUM data
structure is transferred into a new instance of another (possibly empty) data
structure by application of the function specified in the module. For this purpose
the valid input and output data structures of the function und thus WUM method
are defined.

In contrast to the data or language layer the realisation of the processing layer uses
existing solutions in the form of WUM tools, which have to be equipped with the
extensions mentioned before and have to be integrated into the WUM framework.
In the field of WUM there already exist software products or research prototypes
that may play this role, if their functionality is adapted according to the
requirements of the WUM framework.

51

4 Example of a WUMML statement

In the following we give an example of using WUMML for sequence analysis [cf.
SF98]. We want to examine which pages users visited after having visited a
specific web page. The necessary WUMML query is depicted in figure 8. It is
presumed that the data source forms a data structure of type sef whose elements are
described by the attributes sessionid, date and url (see figure 7). It is supposed that
we obtained session identifiers by the use of proactive logging techniques and that
the data source is already pre-processed. Thus using <preprocessing> for data
cleaning and path completion is not necessary.

The <sequences> statement for performing a sequence analysis asks for connected
sequences without wildcards, since we want to reconstruct exactly the path
followed by the user. <identification> specifies which data objects form the items
of the sequence analysis (single page views) and by means of which criteria they
can be distinguished (selec?) and chronologically ordered (timestamp). <grouping>
declares which items belong to the same sequence.

52

<?xml version="1.0" encoding="ISO-8859-1"?>
<set>
<element>
<attribute name="sessionid">48l</attribute>
<attribute name ate">2005-25-04 14:10:05</attribute>

<attribute name="url">http://www.uni-hohenheim.de</attribute>
</element>

</set>

Figure 7: Sample input for sequence analysis

<?xml version="1.0" encoding="ISO-8859-1"?>

<session xmlns="http://www.wil.uni-hohenheim.de/2005/WUMML"
xmlns:xlink="http://www.w3.0rg/1999/xlink"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wil.uni-hohenheim.de/2005/WUMML wumml.xsd">

<data name="sessions" language="wumml" xlink:href="input.xml"/>

<task data-name="sessions" result-nam sequences">
<sequences type="connected" output="sequences">

<constraints>
<constraint type="template" condition="a * b"/>
<constraint type="selection" condition="$b.$support / $a.$support > 0.1"/>
<constraint type="selection"

condition="$a//attribute [name='url'] = 'http://www.uni-hohenheim.de'"/>

<constraint type="projection" condition="attribute[name='url']"/>

</constraints>

<identification itemset="/set/element” timestamp="attribute[@name='date']"
select="attribute [@name='url']"/>
<grouping select="attribute[@name="'session-id']"/>
</sequences>
</task>

<visualization data-name="sequences" language="wumml" output="text"/>
</session>

Figure 8: Sample WUMML query for sequence analysis

<set>
<element>
<attribute>
<sequence>
<element>
<attribute name="url">http://www.uni-hohenheim.de</attribute>
</element>
<link/>
<element>
<attribute name="url">
http://www.uni-hohenheim.de/studium/index.htm</attribute>
</element>
<link/>
<element>
<attribute name="url">
http://www.uni-hohenheim.de/studium/hinweise vvz.htm</attribute>
</element>
</sequence>
</attribute>
</element>

</set>

Figure 9: Output of WUMML query for sequence analysis

53

Conditions for generating sequences are defined with <constraints>. According to
our question the first constraint expresses the pattern, that applies to a web page a,
whose visit results in a view of page b after an arbitrary number of unconsidered
page views. Corresponding to the confidence in association analysis the second
constraint determines the conditional probability for a page view of b given a. We
are only interested in sequences for which the probability of visiting page b after
page a is higher than 10 percent. The third <constraint> element constricts page
views that can be bound to a. The last constraint with type projection limits the
extent of the output. It specifies that the output should only contain the ur/ attribute
of the page views.

An excerpt of a possible result of the query is displayed in figure 9.

5 Conclusion and future work

The introduced WUM framework forms a consistent and comprehensive method
for a structured execution of WUM. It is an integrative, open and thus extensible
technique that is capable of integrating any WUM method and data source.

The core is formed by the Web Usage Mining Markup Language (WUMML),
which enables formulating WUM analysis as queries. WUMML constitutes a new
interface between users and WUM software tools and plays a similar role like SQL
for database management systems. WUMML allows definition and repeated
execution of arbitrary complex analysis schemes. The language is realised
completely in XML and uses common XML standards to enable easy processing
and integration into existing WUM software.

WUMML supports flexible formulation of queries for answering the considered
questions and offers the user to satisfy his or her specific information demand
individually and systematically. Up to now comparable query languages existed
only rudimentary for selected WUM methods in delimited applications.

Further work is necessary for practical realisation of the framework by means of
developing a WUMML interpreter, which may be integrated into existing WUM
software tools. We are looking for a mining tool with adequate functionality to
adapt it to the requirements of our WUM framework and to develop a first software
prototype that fully implements this WUM framework.

To offer WUM as a service a WUM software tool with comprehensive
functionality has to be used, but such a tool might not be available. For
professional purposes it is not sufficient to use several tools during one WUM
analysis, even though the WUM framework and WUMML would support it. To
overcome the problem of insufficient functionality of single WUM tools the
functional modules characterised in our WUM framework could be realised as web
services. In this way, a WUM tool dynamically obtains the functionality to process
a WUMML query from the web.

54

References

[CMS97] Cooley, R.; Mobasher, B.; Srivastava, J.: Web Mining: Information and Pattern
Discovery on the World Wide Web. In: Proceedings of the 9th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), Newport Beach, USA, November
1997; pp. 558-567.

[HMWO2] Hippner, H.; Merzenich, M.; Wilde, K.D.: Grundlagen des Web Mining —
Prozess, Methoden und praktischer Einsatz. In (Hippner, H.; Merzenich, M.; Wilde, K.D.
Eds.): Handbuch Web Mining im Marketing. Konzepte, Systeme, Fallstudien.
Braunschweig, Wiesbaden, 2002; pp. 3-31.

[KoO1] Kohavi, R.: Mining E-Commerce Data: The Good, the Bad, and the Ugly. In:
Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), San Francisco, USA, August 2001; pp. 8-13.

[MPC96] Meo, R.; Psaila, G.; Ceri, S.: A New SQL-like Operator for Mining Association
Rules. In: Proceedings of the 22th International Conference on Very Large Data Bases
(VLDB), Bombay, India, September 1996; pp. 122-133.

[Me03] Meo, R.: Optimization of a Language for Data Mining. In: Proceedings of the
2003 ACM Symposium on Applied Computing, Melbourne, USA, March 2003; pp. 437-
444,

[PUKO1] Punin, J.R.; Krishnamoorthy, M.S.; Zaki, M.J.: LOGML: Log Markup Language
for Web Usage Mining. In: WEBKDD 2001: Mining Web Log Data Across All Customers
Touch Points, Third International Workshop, San Francisco, USA, August 2001; pp. 88-
112.

[SF98] Spiliopoulou, M.; Faulstich, L.C.. WUM: A Web Utilization Miner. In:
International Workshop on the Web and Databases (WebDB), Valencia, Spain, March 1998;
pp- 184-203.

55

