
The Projected TAR and its

Application to Conformance Checking

Johannes Prescher1, Matthias Weidlich2, Jan Mendling1

1Institute for Information Business, Wirtschaftsuniversität Wien, Austria

[johannes.prescher|jan.mendling]@wu.ac.at
2Technion - Israel Institute of Technology, Haifa, Israel

weidlich@tx.technion.ac.il

Abstract: Relational semantics of business process models have seen an uptake in
various fields of application. As a prominent example, the Transition Adjacency
Relation (TAR) has been used, for instance, to conduct conformance checking and
similarity assessment. TAR is defined over the complete set of transitions of a Petri net
and induces order dependencies between pairs of them. In this paper, we consider TAR
in a more general setting, in which the order dependencies shall be derived only for a
subset of projected transitions. We show how to derive this projected variant of TAR
from the reachability graph of a reduced Petri net. We elaborate the projected TAR for
conformance checking in a case from industry.

1 Introduction

Business process models capture activities of a business process and the way their execution

is coordinated to achieve a certain goal [Wes07]. Process models are an important means for

process improvement and process conformance. In fact, the analysis of business processes

is often traced back to an analysis of process models. Conclusions drawn for process

models then allow for more effective process support.

Recently, relational semantics of process models have seen a particular uptake for answering

analysis questions. For instance, behavioural relations have been the basis for checking

conformance between a process model and a process log [WPD+11], to assess the similarity

of process models [ZWW+10], or to manage process model variants [SWMW12]. Most

relational semantics capture order dependencies for pairs of actions, or transitions in

Petri net terms. Such order may be grounded on direct successorship of transitions, as

proposed by the Transition Adjacency Relation (TAR) [ZWW+10], also referred to as a

footprint [vdA11]. TAR captures direct successorship based on all transitions. Once a

business process is captured, however, only a subset of the transitions of a model may have

actual business semantics, i.e., represent activities of the business process. Other transitions

may be considered to be silent steps, needed purely for syntactically reasons. Still, these

transitions affect the order dependencies between transitions that have business semantics.

As a consequence, any analysis, conformance analysis in the setting of this paper, that is

151

based on the standard notion of TAR is biased by the influence of these silent transitions.

In this paper, we provide a solution to this problem by presenting a projection of TAR.

Given a set of transitions of a Petri net system, it lifts the order dependencies of TAR to

these transitions, neglecting transitions that are not part of the projection. Our contribution

is threefold. First, we define the novel variant of TAR, called projected TAR (pTAR). Second,

we show how it is derived by exploiting the state space of a Petri net once existing reduction

rules have been applied. As such, we provide the basis for using TAR-based techniques in

a broader context. Third, we present an experimental evaluation based on an industry case.

The remainder of the paper is structured as follows. Section 2 illustrates the problem of

applying TAR defined over all transitions with an example and Section 3 gives formal

preliminaries. In Section 4, we define the projected TAR and elaborate on its derivation.

We present experimental results on applying the projected TAR to conformance checking

in Section 5. We review related work in Section 6, before Section 7 concludes the paper.

2 Background

Business process models are typically defined using conceptual modelling languages such

as BPMN or EPCs. These languages tend to be well accepted by business professionals

due to their intuitive representation of process semantics. As a downside though these

languages are often not readily equipped with execution semantics. Therefore, formal

analysis is typically conducted using the theoretical concepts of Petri nets. One specific

instance of such analysis is conformance checking. This type of analysis is concerned with

the problem to both a) quantify the degree of execution conformance of an execution log

with the behaviour as defined by the process model and to b) point to those parts of the

model which are violated by the cases.

On a technical level, the application of Petri net concepts requires the mapping from,

for instance, BPMN as a conceptual model to a corresponding Petri net. In general,

this mapping can be performed for each BPMN construct in an automated way yielding

semantically equivalent Petri net components. In their work [DDO08], Dijkman et al.

define such a mapping for a subset of BPMN constructs. Although basic elements such as

activities can be easily mapped, more advanced constructs such as error subprocesses can

result in Petri net components of considerable complexity. Further, the mapping of many

BPMN constructs produces silent transitions which will not be observable in the execution

log of the process. As an an example, consider the AND-split of BPMN. It is typically

translated using a silent transition that produces tokens of each place representing the start

of the branches diverging from the AND-split. Such transitions on the Petri net level do not

have business semantics. More complicated components with silent transitions stem from,

for instance, exception handling in BPMN.

To illustrate this mapping, consider the BPMN process model shown in Figure 1. It

represents the way in which IT Service Management is performed at a center of an IT

service provider. The process starts with the creation of an issue. Subsequently, we observe

two parallel branches. The first path contains the customer extension which will be executed

152

Customer
extension
(CE)

Proposal to
close (PTC)

Close issue
(CLI)

Reject PTC

Create issue
(CRI)

Monitor
target dates

(MTD)

Resolution
plan (RP)

Issue details
(ID)

Risk
management

(RM)

Change
management

(CM)

Figure 1: BPMN model of the SIMP process

at least once, optionally multiple times. The second path contains several optional activities:

issue details may be updated, a resolution plan may be created, change management

activities may be executed, target dates may be monitored and risk management tasks may

be documented. After these optional activities, the parallel paths are synchronised and

a proposal to close the issue has to be filed. If the issue is resolved, it may be closed.

Otherwise, the proposal to close has to be rejected. In case of rejection, either a new

proposal to close has to be stated or the process starts again before the two parallel paths

are introduced (except the creation of an issue).

create
issue

customer
extension

issue
details

resolution
plan

change
manage

ment

monitor
target
dates

risk
manage

ment

proposal
to close

reject proposal
to close

close
issue

Figure 2: Petri net model of the SIMP process

Using the mapping rules defined in [DDO08], we can construct a Petri net that exactly

captures the behaviour represented in the BPMN model. The net is depicted in Figure 2. We

observe the following. First, each activity of the BPMN process is represented as a single

transition. Second, each gateway of the BPMN model is represented by a component of

silent transitions and places which represent its semantics. For instance, the exclusive-OR

gateway prior to issue details is represented by two silent transitions which either activate

the issue details path or the silent path. The transitions are silent, as they represent an

implicit decision which is, in case of BPMN, not modelled explicitly.

153

There is a problem if we aim at using the constructed Petri net for analysis that builds on the

Transition Adjacency Relation (TAR). TAR defines the set of ordered pairs of transitions

(t1, t2) that can be executed one after another. Two transitions are part of this relation if

there is an execution sequence of the process model, in which t1 is directly followed by

t2. If we would simply calculate the TAR relation for the Petri net depicted in Figure 2,

we would have to define unique identifiers for each of the silent transitions. The TAR

relation would then represent, among others, that resolution plan can be followed by a

silent transition, and that this same silent transition can lead to change management. This

is problematic in case we want to analyse execution logs, because the option to execute

resolution plan first and then directly next change management is not visible in the TAR

relation. Hence, it is not simply possible to neglect TAR relations that refer to silent

transitions. On the other hand, it is also not possible to derive new TAR relations in a

transitive way. The idea here would be to conclude on (t1, t3) in TAR if we observe (t1, t2)
and (t2, t3) in TAR. Such a derivation rule, however, requires assumptions on the absence

of behavioural anomalies and does not work for short loops and non-free-choice constructs.

Accordingly, we need a technique to derive the notion of a projected TAR (pTAR). The

calculation of the pTAR has to take into account that we are interested only in a particular

subset of transitions (projection set). We want to characterise the traces of the Petri net as if

occurrences of transitions that are not in the projection set would have been deleted.

3 Preliminaries

We first clarify notions and notations for Petri net systems. Second, we present the existing

definition of the Transition Adjacency Relation (TAR).

3.1 Petri Net Systems

Petri nets, in particular classes such as workflow nets [vdA98], are often used to capture

process models. We mentioned earlier that many process description languages, such as

BPMN and EPCs, may be at least partly be transformed to Petri net systems, cf. [LVD09].

Definition 1 (Net). A net is a tuple N = (P, T, F) with P and T as finite disjoint sets of

places and transitions, and a flow relation F ⊆ (P × T) ∪ (T × P).

We write X = P ∪ T for all nodes. For x ∈ X , •x := {y ∈ X | (y, x) ∈ F} is the pre-set,

x• := {y ∈ X | (x, y) ∈ F} is the post-set, and •(x•) := {z ∈ X | y ∈ X ∧ (x, y) ∈
F ∧ (z, y) ∈ F}.

To define semantics, we need notations for sequences. A sequence over a set S of length

n ∈ N is a function σ : {1, . . . , n} → S. If σ(i) = si for i ∈ {1, . . . , n}, we write

σ = 〈s1, . . . , sn〉. The set of all finite sequences over S is denoted by S∗.

Let N = (P, T, F) be a net. M : P 3→ N is a marking of N , M denotes all markings of N .

154

M(p) returns the number of tokens in place p. For any transition t ∈ T and any marking

M ∈ M, t is enabled in M , denoted by (N,M)[t〉, iff ∀ p ∈ •t [M(p) ≥ 1]. Further, we

identify the flow relation F with its characteristic function on the set (P × T) ∪ (T × P).
Then, marking M ′ is reachable from M by firing of t, denoted by (N,M)[t〉(N,M ′), such

that M ′(p) = M(p)− F (p, t) + F (t, p), p ∈ P , i.e., one token is taken from each input

place of t and one token is added to each output place of t.

A sequence of transitions σ = 〈t1, . . . , tn〉, n ∈ N, is a firing sequence, iff there exist mark-

ings M0, . . . ,Mn ∈ M, such that for all i ∈ N, 1 ≤ i ≤ n it holds (N,Mi−1)[ti〉(N,Mi).
We say that σ is enabled in M0, denoted by (N,M0)[σ〉. For any two markings M,M ′ ∈ M,

M ′ is reachable from M in N , denoted by M ′ ∈ [N,M〉, if there exists a firing sequence σ
leading from M to M ′. Firing of σ in M is denoted by (N,M)[σ〉(N,M ′). A net system,

or system, is a pair S = (N,Mi), where N is a net and Mi is the initial marking of N .

3.2 Transition Adjacency Relation

The Transition Adjacency Relation captures behavioural characteristics of a net system by

means of an ordering relation defined over the Cartesian product of transitions [ZWW+10].

It captures direct succession of two transitions in some firing sequence of a Petri net system.

Definition 2 (TAR). Let S = (N,Mi) be a system with N = (P, T, F). The TAR

>⊆ T × T contains a pair (x, y), iff there exists a firing sequence σ with (N,Mi)[σ〉 such

that σ(i) = x and σ(i+ 1) = y for some 1 ≤ i.

Note that, by definition, TAR and the inverse relation >−1= {(x, y) | (y, x) ∈>} partition

the Cartesian product of transitions.

4 Conformance Checking with the Projected TAR

In this section, we present the notion of the projected TAR (pTAR). It captures behavioural

characteristics while projecting transitions that are given as a projection set. We first define

the pTAR. Then, we present a derivation algorithm which uses reduction rules and state

space search. Finally, we apply pTAR for conformance checking.

4.1 The Projected TAR

The projected TAR defines the set of transition pairs that follow each other directly in some

projected firing sequence of the net system.

Definition 3 (pTAR). Let S = (N,Mi) be a system with N = (P, T, F). Let T ′ ⊆ T be

a set of transitions called projection set. The projected TAR induced by T ′, >T ′⊆ T ′ × T ′

contains a pair (x, y), iff there exists a firing sequence σ with (N,Mi)[σ〉, such that

155

σ(i) = x, σ(j) = y for some 1 ≤ i < j and σ(k) /∈ T ′ for all i < k < j.

Considering only the Cartesian product of transitions in the projection set, we see that pTAR

actually extends TAR. That is, for transitions in the projection set additional successorships

may be identified.

Property 1. For a system S = (N,Mi) with N = (P, T, F) and T ′ ⊆ T holds (>
∩ (T ′ × T ′)) ⊆ >T ′ .

The property follows directly from the definition of the relations. Every pair of transitions

in the projection set that is part of TAR is, by definition, also part of pTAR.

4.2 Derivation

We approach the derivation of pTAR in two stages. First, we reduce the original Petri net,

then we identify the pTAR using the state space techniques. Figure 3 illustrates the set of

reduction rules we consider. They were adapted in [vdADO+08] from the liveness and

boundedness preserving reduction rules by Murata [Mur89]. The rules eliminate transitions

that are not included in the projection set as follows.

t

t

y

y

x

y

x

y

t t t

t

(a) (b)

(d) (e)

(f)
x x

(g)

x

t

x

(c)

Figure 3: Illustration of reduction rules, t is not part of the projection set, as adapted in [vdADO+08].

Definition 4 (Reduction Rules). Let S = (N,Mi) be a system with N = (P, T, F). Let

T ′ ⊆ T be a projection set. For system S, a reduced system is derived by one of the

following rules:

(a) If there exists p ∈ P and t 7∈ T ′ such that p• = {t} and •t = {p}, then Sa = (Na,Mi)
with Na = (Pa, Ta, Fa) such that

◦ Pa = P \ {p},

◦ Ta = T \ {t},

◦ Fa = F ∪ {(n1, n2)|n1 ∈ •p∧n2 ∈ t•} \ {(n1, n2)|n1 ∈ {p, t} ∨n2 ∈ {p, t}}.

156

(b) If there exists p ∈ P , t 7∈ T ′ and y ∈ T such that •p = {t} and p• = {y}, then

Sb = (Nb,Mi) with Nb = (Pb, Tb, Fb) such that

◦ Pb = P \ {p},

◦ Tb = T \ {t},

◦ Fb = F ∪ {(n1, y)|n1 ∈ •t} \ {(n1, n2)|n1 ∈ {p, t} ∨ n2 ∈ {p, t}}.

(c) If there exists p ∈ P , t 7∈ T ′ and x ∈ T such that •p = {x},•t = {p} and p• = {t},

then Sc = (Nc,Mi) with Nc = (Pc, Tc, Fc) such that

◦ Pc = P \ {p},

◦ Tc = T \ {t},

◦ Fc = F ∪ {(x, n2)|n2 ∈ t•} \ {(n1, n2)|n1 ∈ {p, t} ∨ n2 ∈ {p, t}}.

(d) If there exists p1, p2 ∈ P such that •p1 = •p2 and p1• = p2•, then Sd = (Nd,Mi)
with Nd = (Pd, Td, Fd) such that

◦ Pd = P \ {p2},

◦ Td = T ,

◦ Fd = F \ {(n1, n2)|n1 = p2 ∨ n2 = p2}.

(e) If there exists t1, t2 7∈ T ′ such that •t1 = •t2 and t1• = t2•, then Se = (Ne,Mi) with

Ne = (Pe, Te, Fe) such that

◦ Pe = P ,

◦ Te = T \ {t2},

◦ Fe = F \ {(n1, n2)|n1 = t2 ∨ n2 = t2}.

(f) If there exists t 7∈ T ′ such that •t = t•, then Se = (Nf ,Mi) with Nf = (Pf , Tf , Ff)
such that

◦ Pf = P ,

◦ Tf = T \ {t},

◦ Ff = F \ {(n1, n2)|n1 = t ∨ n2 = t}.

(g) If there exists p ∈ P such that Mi > [i] and •p = p•, then Sg = (Ng,Mi) with

Nf = (Pg, Tg, Fg) such that

◦ Pg = P \ {p},

◦ Tg = T ,

◦ Fg = F \ {(n1, n2)|n1 = p ∨ n2 = p}.

Once the system is reduced according to these rules, we can calculate the projected TAR

based on the reachability graph as outlined in Algorithm 1.

The algorithm uses the auxiliary data structure TxM ⊆ T × M to keep track of which

transition t ∈ T led to a certain marking M ∈ M. Once such pair has been investigated

it is added to the structure vTxM ⊆ T ×M representing visited pairs. We initialise the

algorithm with all markings reachable from the initial marking by firing a single transition

(line 2). Then, all pairs of transitions and markings are evaluated (lines 3 to 19). A pair

is selected and the structures TxM and vTxM are updated (lines 4 to 6). Then, for

each transition that is enabled in the respective marking, we check whether it is part of

157

Algorithm 1: Derivation of projected TAR based on Reachability Graph

Input: S = (N,Mi), a net system with N = (P, T, F), T ′ ⊆ T , a projection set.

Output: >T ′ , the projected TAR of S induced by T ′.

1 >T ′ , TxM, vTxM ←− ∅;
2 foreach t ∈ T with (N,Mi)[t〉 do TxM ←− TxM ∪ {(t,M)} with (N,Mi)[t〉(N,M);
3 while TxM &= ∅ do

4 select (t,M) ∈ TxM ;

5 TxM ←− TxM \ {(t,M)};
6 vTxM ←− vTxM ∪ {(t,M)};
7 Te ←− {t ∈ T | (N,M)[t〉};
8 foreach te ∈ Te do

9 if te ∈ T ′ then

10 if t ∈ T ′ then >T ′ ←− >T ′ ∪ {(t, te)};
11 if (te,M

′) /∈ vTxM with (N,M)[te〉(N,M ′) then

12 TxM ←− TxM ∪ {(te,M ′)} with (N,M)[te〉(N,M ′);
13 end

14 end

15 else if (t,M ′) /∈ vTxM with (N,M)[te〉(N,M ′) then

16 TxM ←− TxM ∪ {(t,M ′)} with (N,M)[te〉(N,M ′);
17 end

18 end

19 end

the projection set (line 9). If so, the projected TAR relation may be updated (line 10)

and we proceed by adding new pairs of transitions and reachable markings to TxM for

investigation (line 12). If not, then we add the pair comprising the original and the marking

reached by firing the transition that is not part of the projection set to structure TxM
(line 16). Intuitively, this captures the fact that the marking may be reached by firing the

original transition and a sequence of silent transitions, i.e., transitions that are not in the

projection set. Further, whenever TxM is updated, we need to check whether a pair has

been processed already to ensure termination of the algorithm.

4.3 Checking pTAR Conformance

Having introduced the pTAR, we turn to its application for conformance checking. For a

transition t of a given net system, we define its conformance set and its violation set. The

projected TAR defines the set of permissible successors of a transition, providing the basis

for defining both these sets. Intuitively, the conformance set of t comprises all transitions

that are allowed to occur in some observable execution sequence. In contract, the violation

set contains the transitions that are not allowed to directly succeed t. Formally, we define:

Definition 5 (Conformance Set and Violation Set). Let S = (N,Mi) be a system with

N = (P, T, F). Let T ′ ⊆ T be a projection set and pTAR its projected TAR.

158

◦ The conformance set for t ∈ T is defined as conf (t, pTAR) = {x|(t, x) ∈ pTAR}.

◦ The violation set for t ∈ T is defined as viol(t, pTAR) = T ′ \ conf (t, pTAR).

Assume that we are given a net system S = (N,Mi), N = (P, T, F), such that the

projection set T ′ ⊆ T comprises all transitions that have a business meaning. Hence, those

transitions are expected to occur in the execution log that captures the observed behaviour

of the business process. Formally, such an observed execution sequence is a finite sequence

σ ∈ T ′∗ over the transitions in the projection set.

To detect deviations of σ from the behaviour as defined in S, we proceed as follows. For

the observed execution sequence σ = 〈t1, . . . , tn〉, let ti be a transition with 1 ≤ i < n.

Then, transition ti+1 succeeding ti in σ is either in the conformance set conf (ti, pTAR) or

in the violation set viol(ti, pTAR) of ti. The conformance according to pTAR is achieved

once all considered succeeding transitions are in the respective conformance sets.

Definition 6 (pTAR Conformance). Let S = (N,Mi) be a system with N = (P, T, F).
Let T ′ ⊆ T be a projection set and pTAR its projected TAR. An observed execution

sequence σ = 〈t1, . . . , tn〉 ∈ T ′∗ is valid according to pTAR conformance iff for all

1 ≤ i < n it holds that ti+1 ∈ conf (ti, pTAR).

Once an observed execution sequence is not valid according to pTAR conformance, all

non-empty violation sets of transitions of this sequence hint at the behavioural deviations.

5 Evaluation

In this section, we apply our conformance checking technique in an industry case. The data

of this case relates to a Security Incident Management Process (SIMP). The process model

and the corresponding execution sequences are taken from [WPDM10]. The process and

its execution log were captured on-site at an IT service providers centre during five years.

Overall, the study contains 852 cases of process execution for the SIMP process. First, we

will investigate the effect on the state space of applying reduction rules. Then, we present

the results of conformance analysis.

5.1 The Effect of Petri Net Reduction

The original Petri net shown in Figure 2 in Section 2 includes several silent transitions

that do not carry any business semantics, i.e., they do not represent business activities. We

reduce the net by considering all transitions that represent business activities as part of

the projection set and apply the presented reduction rules. While the original net contains

33 silent transitions, the resulting net is reduced and shows solely nine silent transitions.

Table 1 lists measures which allow for the comparison of both Petri nets. Altogether, the

size of the Petri net shrinks from 43 to 19 transitions, 38 to 14 places and 88 to 40 arcs.

Relatively speaking, the amount of the nets components decreases by more than 50%.

159

(a) (b)

Figure 4: Reachability graph (a) of original Petri net and (b) of reduced Petri net

The significance of this reduction relates to the state explosion problem of Petri nets with

concurrency [Val96]. As our projected TAR calculation relies on the reachability graph,

it is important to note that the number of transitions and states decreases by more than

85% (see Figure 5.1). This decrease leads to a smaller state space and a more efficient

calculation of conformance sets.

Table 1: Reduction of Petri nets complexity

Category Original Net Reduced Net

Petri net

— transitions 43 19

— places 38 14

— arcs 88 40

Transition System

— transitions 248 38

— states 121 18

5.2 Conformance Results

Turning to the conformance checking, we derive 68 distinct transition pairs representing

undesirable sequences according to the violation sets of the respective transitions. The

160

sequencing of these pairs was violated 1453 times in the overall amount of 852 different

cases of the SIMP process. Successorship according to TAR and pTAR does not only relate

to distinct transitions, but may relate a transition to itself. Nine out of the 68 pairs relate to

such self-relations, such that these transitions must not be a direct successor of themselves.

Within our study these nine pairs (13.2%) relate to 1205 violations (82.9%), whereas the

remaining 59 pairs (86.8%) relate to only 248 violations (17.1%).

Figure 5 illustrates the results. For each transition, we state the absolute amount of violations

(V) related to this transition, and its relative share with respect to all detected violations. In

general, a high amount of violations for a specific transition indicates that the execution

of this activity and its context is worth to be investigated in detail. Note that the point of

violation does not allow for any implications regarding the current state of the process.

A violation might stem from progressing with non permissible other transitions or from

forbidden multiple executions. For the later case, it is striking that the transition proposal

to close relates to 466 violations out of which 403 were forbidden multiple executions.

create
issue

customer
extension

issue
details

resolution
plan

change
manage

ment

monitor
target
dates

risk
manage

ment

proposal
to close

reject proposal
to close

close
issue

V: 79
(5.44%)

V: 2
(0.14%)

V: 15
(1.03%) V: 466

(32.07%)V: 14
(0.96%)

V: 182
(12.53%)

V: 370
(25.46%)

V: 245
(16.86%)

V: 40
(2.75%)

V: 40
(2.75%)

Figure 5: Reduced Petri net system of the SIMP

Altogether, we conclude that the projected TAR helps to discover activities that frequently

relate to violations.

5.3 Results in Comparison to Existing Techniques

Albeit reduced, the net system for our case as visualised in Figure 5 still contains a several

silent transitions. As such, application of the TAR to detect deviations between model and

observed execution sequences will be biased as discussed in Section 2.

However, a similar yet different approach to conformance checking based on behavioural

161

relations has been proposed in [WPD+11]. It relies on the notion of behavioural profiles

that do not capture direct successorship of transitions, but an indirect successorship. As

such, they define a base relation that captures whether a transitions is eventually followed

by another transition in some firing sequence of the net system, which avoids the problems

induced by silent transitions. On the downside, this comes at the cost of lost precision.

Relying on indirect successorship, e.g., means that transitions in cycles appear to be

unordered since they may follow each other eventually in either order.

Table 2 provides further insights in this aspect by comparing the violations detected using

the relations of the behavioural profile with the violations detected using pTAR. Here,

the relative values are based on the joint result of both approaches. The provided ratio is

supposed to visualise the effectiveness of the approaches.

Table 2: Detected violations for the case using different behavioural relations

Approach Pairs with Violations Violations Violations/Pairs

BP 19 (21.84%) 201 (12.15%) 10.58

projected TAR 68 (78.16%) 1453 (87.85%) 21.37∑
(BP + pTAR) 87 1654 19.01

According to Table 2 the technique presented in this paper is able to detect a significantly

higher amount of process violations. A detailed look at the data of the case reveals the

major reason for the observed deviations: 1205 out of 1453 violations are detected because

our technique checks forbidden repetition of single transitions. Behavioural profiles, in

turn, allow only for assessing whether a transition may occur only once or may be repeated.

However, they lack the ability to check whether it single transitions may be repeated directly,

without the occurrence of any other transition in between.

6 Related Work

The research presented in this paper is relates to the derivation of behavioural relations from

process models and to conformance checking. Several sets of relations have been defined

for capturing the behaviour of process models. The causality, conflict and concurrency

relation have been proposed for Petri net systems based on unfoldings [McM95, ERV02].

The α-relations originally defined for mining processes [vdAWM04] have been adapted

for process models, yielding the TAR [ZWW+10] that is the starting point for our work.

The behavioural profile and an efficient calculation for sound free-choice workflow nets is

presented in [WMW11], and extended with a causality relation in [WPMW11]. All these

relations can be calculated at varying degrees of complexity. Behavioural profiles can be

determined in cubic time for certain net classes. Here, we use a state space technique

to determine the projected TAR. Unfolding techniques might be applicable to improve

performance.

Several approaches have been defined for conformance checking. Rozinat and van der Aalst

162

introduce a fitness measure which builds on a state-based replay of execution sequences from

a log [RvdA08]. The concept of a violation set shares some characteristics of negative events

as discussed in [GDWM+11]. Earlier we mentioned that the relations of the behavioural

profile may also be used for conformance checking [WPD+11]. This approach has been

extended towards monitoring in [WZM+11]. We discussed that a downside of behavioural

profiles is that they represent a behavioural abstraction, which has major implications for

cyclic structures in particular. In contrast, our approach enables the monitoring of behaviour

while relying on behavioural relations to precisely capture any behavioural deviation.

7 Conclusion

In this paper, we have presented an approach for conformance checking based on the

projected TAR relation. Our contribution is the definition of the projected TAR and its

calculation based on efficient reduction rules and the state space. We applied the technique

for a service management process demonstrating its applicability. The advantage of our

novel technique is a combination of an efficient representation of behaviour in terms of the

projected TAR and higher precision in comparison to existing approaches.

In future research, we aim to improve the theoretical complexity of the calculation of the

projected TAR. Several concepts including the process structure tree [VVK09] and the

efficient calculation of the concurrency relation [Esp04] will be helpful to this end. We

also aim to conduct further industry evaluations in the service management domain. The

characteristics of this domain (process models available but not enforced, cases documented

in ticketing systems) are perfect to challenge conformance checking techniques.

References

[DDO08] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis of
business process models in BPMN. Inf. & Software Techn., 50(12):1281–1294, 2008.

[ERV02] Javier Esparza, Stefan Römer, and Walter Vogler. An Improvement of McMillan’s
Unfolding Algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

[Esp04] Javier Esparza. A Polynomial-Time Algorithm for Checking Consistency of Free-
Choice Signal Transition Graphs. Fundam. Inform., 62(2):197–220, 2004.

[GDWM+11] S. Goedertier, J. De Weerdt, D. Martens, J. Vanthienen, and B. Baesens. Process
discovery in event logs: An application in the telecom industry. Applied Soft Computing,
11(2):1697–1710, 2011.

[LVD09] Niels Lohmann, Eric Verbeek, and Remco M. Dijkman. Petri Net Transformations
for Business Processes - A Survey. T. Petri Nets and Other Models of Concurrency,
2:46–63, 2009.

[McM95] Kenneth L. McMillan. A Technique of State Space Search Based on Unfolding. Formal
Methods in System Design, 6(1):45–65, 1995.

163

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[RvdA08] Anne Rozinat and Wil M. P. van der Aalst. Conformance checking of processes based
on monitoring real behavior. Inf. Syst., 33(1):64–95, 2008.

[SWMW12] Sergey Smirnov, Matthias Weidlich, Jan Mendling, and Mathias Weske. Action patterns
in business process model repositories. Computers in Industry, 63(2):98–111, 2012.

[Val96] Antti Valmari. The State Explosion Problem. In Petri Nets, LNCS 1491, pages 429–528.
1996.

[vdA98] Wil M. P. van der Aalst. The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[vdA11] Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement
of Business Processes. Springer, 2011.

[vdADO+08] Wil M. P. van der Aalst, Marlon Dumas, Chun Ouyang, Anne Rozinat, and Eric
Verbeek. Conformance checking of service behavior. ACM Trans. Internet Techn., 8(3),
2008.

[vdAWM04] Wil M. P. van der Aalst, A.J.M.M. Weijters, and Laura Maruster. Workflow Min-
ing: Discovering Process Models from Event Logs. IEEE Trans. Knowl. Data Eng.,
16(9):1128–1142, 2004.

[VVK09] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process structure tree.
Data Knowl. Eng., 68(9):793–818, 2009.

[Wes07] Mathias Weske. Business Process Management: Concepts, Languages, Architectures.
Springer, 2007.

[WMW11] Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient Consistency Measure-
ment Based on Behavioral Profiles of Process Models. IEEE Trans. Software Eng.,
37(3):410–429, 2011.

[WPD+11] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan Mendling, and Math-
ias Weske. Process compliance analysis based on behavioural profiles. Inf. Syst.,
36(7):1009–1025, 2011.

[WPDM10] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, and Jan Mendling. Process
Compliance Measurement Based on Behavioural Profiles. In CAiSE, LNCS 6051,
pages 499–514. 2010.

[WPMW11] Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, and Mathias Weske. Causal
Behavioural Profiles - Efficient Computation, Applications, and Evaluation. Fundam.
Inform., 113(3-4):399–435, 2011.

[WZM+11] Matthias Weidlich, Holger Ziekow, Jan Mendling, Oliver Günther, Mathias Weske, and
Nirmit Desai. Event-Based Monitoring of Process Execution Violations. In BPM 2011,
LNCS 6896, pages 182–198. 2011.

[ZWW+10] Haiping Zha, Jianmin Wang, Lijie Wen, Chaokun Wang, and Jiaguang Sun. A workflow
net similarity measure based on transition adjacency relations. Computers in Industry,
61(5):463–471, 2010.

164

