
The legacy ECU software problem - approach and research challenges

Thomas Heinz, Jörn Schneider
Robert Bosch GmbH, Stuttgart

{thomas.heinz2, joern.schneider}@de.bosch.com

Abstract: While life cycles of electronic components tend to become ever shorter,
automotive suppliers need to keep up ECU supply for up to 30 years. This causes high
storage costs or requires redesigning legacy ECUs in a way that obsolete components
are replaced by newer ones. These redesigns may cause tremendous software redevel-
opment efforts, e.g. to guarantee correct real-time behaviour. This paper presents a
both academically and industrially challenging approach inspired by the legacy ECU
software problem, namely static binary translation, which aims at automatic retarget-
ing of real-time software. Eventually, the approach has the potential to significantly cut
the redevelopment costs and facilitate the interchangeability of electronic components.

1 The legacy ECU software problem

Automotive ECUs are typically supported over a period of 10 to 30 years. This time-
frame exceeds the life cycles of many of its electronic components (e.g. microcontrollers)
by far. To enable production of ECUs in the original configuration beyond the point of
discontinuation of its electronic components, these components need to be stockpiled in
advance. However, it is very hard to come up with a tight estimate of the actual number
of ECUs needed within the entire product lifetime. Hence, it can be necessary to redesign
the ECU hardware such that obsolete components are replaced by up-to-date ones with
similar functionality. This usually makes it necessary to port the software as well.

Porting and testing for correct functionality and real-time behaviour is tedious, very costly
and comes with the significant risk of introducing errors. This inspires a both academically
and industrially challenging approach, namely automatic software retargeting which is
discussed in the next section.

2 Automatic retargeting of embedded real-time software

The legacy software problem is not specific to ECU software but is prevalent in virtually
any real-time and non-real-time software field. A successful approach for non-real-time
and soft real-time software is emulation, i.e. representing the original programming en-
vironment (e.g. instruction set architecture, device registers, application binary interface)
on the target machine and instruction-wise interpreting the original machine code. Ideally,
emulation is a black box approach in the sense that it does not require any knowledge about
the legacy code. It is highly flexible but inherently inefficient which can be compensated
by translating software such that it can be natively executed on the target machine. An es-

98



tablished method that builds upon this idea is binary translation, a compilation technique
that transforms machine code for one architecture into machine code for another architec-
ture while retaining its functional behaviour. Binary translation can be performed either
at runtime (dynamic) [CLU02] or offline (static) [CvERL01]. The former takes advan-
tage of runtime information which enables efficient code generation and simplifies some
problems of the static approach, e.g. control flow analysis in the presence of branches
whose target address depends on runtime data (indirect branches/calls). However, a ma-
jor issue that renders dynamic binary translation unsuitable for legacy ECU software (or
more general software involving hard real-time constraints) is its unpredictable temporal
behaviour. This is because the translator is invoked at unpredictable times at runtime and
the temporal behaviour of the translated code (= runtime data) cannot be predicted stati-
cally. In particular, the dynamic translator is not amenable to existing real-time scheduling
methods because its invocation cannot be postponed (highest priority) and its minimum
interarrival time cannot be reasonably bounded. A major advantage of the static approach
is its amenability to program analysis as the target code is available offline.

A solution to automatic retargeting of embedded real-time software must ensure preser-
vation of functional and temporal behaviour of the original software. The following
sections discuss the suitability of static binary translation (SBT) with respect to these
requirements and present promising approaches and open challenges.

3 Static binary translation - a functional point of view

Legacy ECU software is composed of application software and basic software (OS,
drivers). Apart from the standardized operating system (OSEK), ECU software is propri-
etary and contains a considerable amount of architecture dependent low level code. Hence,
SBT must address the entire instruction set architecture and computational resources (e.g.
registers, CPU flags, memory, I/O ports, interrupts) of the source machine. Moreover, the
functional behaviour of the devices on the source machine (e.g. SPI, CAN, ADC, timer)
must be mapped onto appropriate target devices.

Figure 1 illustrates common transformation steps to translate the source binary into a func-
tionally equivalent target binary. In a first step, the binary is disassembled into code and
data sections. At this point, code sections may still be intermixed with data (e.g. switch
table, constants). The subsequent control and data flow analysis separates code and data
and builds a control flow graph (CFG). To enable architecture independent SBT and op-
timizations, the source CFG is mapped to an intermediate CFG based on an architecture
independent intermediate language. Finally, the code generator turns the intermediate CFG
into a target specific CFG on which optimizations tailored to the target architecture can be
applied. To obtain the target binary, two simple steps need to be performed, namely trans-
lating the target specific CFG into target assembly and finally into machine code. Note
that it is possible to transform debugging information associated with the source binary
such that the translated binary can be related to the original source code.

SBT faces a number of challenges some of which can be reduced to theoretically undecid-

99



Figure 1: Common SBT transformation steps.

able problems. Among are:

• control flow analysis in the presence of indirect branches/calls
• efficient code generation
• data translation to enable native data access (alignment, data representation)
• separation of intermixed code and data
• handling of machine dependent issues (e.g delayed branches)
• distinguishing memory mapped I/O instructions from regular memory accesses
• instruction atomicity in the presence of hardware interrupts (a single source instruc-

tion may correspond to a sequence of target instructions)
• retargetability of the translator

Theoretically undecidable problems are approached by various program analysis tech-
niques which compute safe approximations of runtime information (e.g. interval analysis
of register values). Where not automatically deducible, the user has to provide the relevant
information, e.g. in terms of source code annotations which are treated by the compiler.
Particularly, these analyses are essential for efficient code generation. Note that SBT is not
capable of handling self-modifying code. However, this is not a problem for automotive
software and presumably neither for hard real-time software in general.

Recent advances in control flow analysis (CFA) [The02] and the success of static timing
analysis tools, which face the same problem, show that CFA is reasonably mastered to be
successfully applied to real world ECU software.

4 Temporal proximity

When replacing an ECU by its redesigned version, it is of crucial importance that the
observable behaviour at its interfaces to sensors, actuators and the car network remains
essentially unchanged. This includes the temporal behaviour in particular.

Before one can come up with methods to preserve the temporal behaviour, it is necessary
to determine the level of accuracy as a criterion for precision of the preservation. Here,
four levels of accuracy are distinguished.

100



Cycle accuracy: The functional behaviour of each source machine clock cycle is pre-
cisely reflected on the target machine. This is required for development of real-time
systems in absence of the target hardware. Instead a cycle accurate system simu-
lator is used. Real-time capability cannot be achieved using a fully software-based
approach.

Instruction accuracy: The start or end of execution of each source instruction and its
corresponding sequence of target instructions is synchronous on source and target
machine. This level of accuracy is still too high. Moreover, to achieve real-time
capability, the target machine must be vastly superior to the source machine.

Basic block accuracy: The scope is extended from a single instruction to a basic block.
This accuracy level might already be too imprecise, e.g. in case a basic block con-
tains an I/O instruction whose execution point in time is crucial to the correct be-
haviour of the software.

Synchronization point (SP) accuracy: SP accuracy is motivated by the observation
that certain instruction sequences can be executed arbitrarily fast without affecting
the correctness of the temporal behaviour, e.g. arithmetic computations involving
only local variables. Hence, instruction accuracy is not demanded for each pro-
gram point but only for certain critical program points, e.g. an I/O instruction, a
system instruction or a store operation to a shared memory location. A naive way
to safely approximate the set of SPs for a program is to divide the instruction set
into potentially critical and non-critical instructions and to mark each program point
containing a potentially critical instruction as SP. The number of SPs can be reduced
by program analysis or user information.

Given a safe approximation of the SPs, SP accuracy is precise enough to capture the tem-
poral behaviour of the original software that is to be preserved. It remains to devise a
synchronization method that is real-time capable. Traditional approaches implement a
dynamic delay mechanism that keeps track of the execution time on the source machine
[Cog95]. The delay ensures that after the execution of an SP on the target machine, the
system is idle until the execution of the respective instruction would have been finished on
the source machine. This is efficient for simple architectures where the execution time of
each instruction is constant but does not scale for machines with pipelines or caches as the
execution time of an instruction depends on the execution history and thus all execution
time affecting entities would have to be simulated on the target machine up to an extent.

As a solution, we propose an offline method to compute a set of delay constants
{dp

c1
, . . . , dp

cn
} for each program point p where each constant is associated with a con-

text ci. A context allows to distinguish several control flows that may lead to the execution
of the associated program point (see [The02] for details). The synchronization code that
is executed at runtime mainly consists of determining in which context ci the program
point p is currently executed and waiting the precomputed constant time dp

ci
. The problem

of computing the delay constants is cast into an optimization problem whose objective is
to minimize the maximum temporal displacement of all program points. Intuitively, the
temporal displacement of a program point p is the maximum time that the execution on the
target machine is ahead or behind the execution on the source machine for p. Moreover,
the temporal displacement is a metric for the quality of the achieved SP accuracy.

101



The precise description of the optimization problem is beyond the scope of this paper.
The basic idea is motivated by the integer linear program (ILP) used to compute an upper
bound of the worst case execution time of real-time tasks [Wil05]. Essentially, the ILP
constraints are used to describe a safe approximation of the temporal displacement for
each program point, i.e. an upper bound of the actual temporal displacement. For this, an
inner approximation of the execution time of each program point on the source machine
is computed by measurements whereas on the target machine, an outer approximation is
computed based on abstract interpretation. Note that an inner approximation [si, ti] of an
execution time interval [s, t] satisfies [si, ti] ⊆ [s, t] and an outer approximation [so, to] of
[s, t] satisfies [so, to] ⊇ [s, t]. The approach is currently being implemented and refined as
part of the Ph.D. thesis of the primary author.

Clearly, this approach does not guarantee perfect SP accuracy but it provides a guaranteed
bound of the temporal displacement for each program point and thus quantifies the degree
of temporal proximity between the execution of the original and the translated code.

5 Conclusion

The legacy ECU software problem motivates a number of challenging theoretical and prac-
tical problems. The approach presented in this paper seems very promising. However, as
the temporal behaviour of the original software cannot be precisely reflected on the tar-
get machine, the deviation with respect to the temporal behaviour which can be tolerated
must be quantified such that it is possible to decide whether correct real-time behaviour is
achieved for the given temporal displacement. Note that a quantification of the tolerance
cannot be deduced from the code but requires system knowledge, e.g. about the physical
tolerance of the system.

Last not least, it remains to show that SBT is real-time capable for a reasonable pair of
source and target CPU/microcontroller and thus prove its practicability. For this, it is
essential to devise a method to safely and tightly approximate the necessary SPs.

References

[CLU02] Cristina Cifuentes, Brian T. Lewis, and David Ung. Walkabout - A Retargetable Dy-
namic Binary Translation Framework. Technical report, Sun microsystems, 2002.

[Cog95] Bryce Howard Cogswell. Timing insensitive binary-to-binary translation. PhD thesis,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, April 1995.

[CvERL01] Christina Cifuentes, Mike van Emmerik, Norman Ramsey, and Brian Lewis. The
University of Queensland Binary Translator (UQBT) Framework. The University of
Queensland, Sun Microsystems, Inc, 2001.

[The02] Henrik Theiling. Control Flow Graphs For Real-Time Systems Analysis. PhD thesis,
Universität des Saarlandes, 2002.

[Wil05] Reinhard Wilhelm. Determining Bounds on Execution Times. In R. Zurawski, editor,
Handbook on Embedded Systems, pages 14–1,14–23. CRC Press, 2005.

102


