
Specmate: Automated Creation of Test Cases from

Acceptance Criteria

Jannik Fischbach1, Andreas Vogelsang2, Dominik Spies3, Andreas Wehrle4, Maximilian

Junker5, Dietmar Freudenstein6

Abstract: We summarize the paper Specmate: Automated Creation of Test Cases from Acceptance
Criteria [Fi20b], which was presented at the 2020 edition of the IEEE International Conference on
Software Testing, Verification and Validation (ICST).

Keywords: test case creation; natural language processing; model-based testing; user stories; agile

software development

1 Introduction

User stories are an established instrument for the notation of system requirements in agile

software projects. A user story is fulfilled if all specified acceptance criteria (AC) are

satisfied. This requires testing the defined AC by creating, executing, and maintaining both

positive and negative test cases (Acceptance Testing). Test case design is a very laborious

activity that easily accounts for 40-70 % of the total effort in the testing process: First,

the right input-output combinations need to be determined to comprehensively test the

requirement, which is not trivial, especially for complex system requirements [Fi20a].

Secondly, the number of test cases should be kept to a minimum to avoid unnecessary testing

efforts. Furthermore, the creation of test cases has to be mostly done manually since there is

a lack of tool support. Existing approaches support the test case generation from formal and

semi-formal requirements, but are not suitable for informal requirement descriptions based

on unrestricted natural language. Unrestricted natural language, however, is the dominant

way of formulating AC, as we found in the analysis of 961 user stories from two projects

together with our industry partner Allianz Deutschland. We address this research gap and

present Specmate as an approach to reduce the manual effort of deriving test cases from

AC by applying Natural Language Processing (NLP).

1 Qualicen GmbH, Munich, Germany, jannik.fischbach@qualicen.de
2 University of Cologne, Germany, vogelsang@cs.uni-koeln.de
3 Qualicen GmbH, Munich, Germany, dominik.spies@qualicen.de
4 Qualicen GmbH, Munich, Germany, andreas.wehrle@qualicen.de
5 Qualicen GmbH, Munich, Germany, maximilian.junker@qualicen.de
6 Allianz Deutschland AG, Munich, Germany, dietmar.freudenstein@allianz.de

cba doi:10.18420/SE2021_07

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 37

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_07
mailto:jannik.fischbach@qualicen.de
mailto:vogelsang@cs.uni-koeln.de
mailto:dominik.spies@qualicen.de
mailto:andreas.wehrle@qualicen.de
mailto:maximilian.junker@qualicen.de
mailto:dietmar.freudenstein@allianz.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_07


2 Our Approach

We argue that a valuable automated solution for generating test cases from user stories and

their AC can only be created by understanding both their content and form. For this purpose,

we analyze 961 user stories provided by our industrial partner to determine requirements

for the automated approach. Based on these requirements, we design an approach based

on NLP to generate corresponding test cases automatically. We follow the idea of Model-

Based-Testing and introduce an intermediate layer between the user stories and the final test

cases. We extract the AC from the user stories and transfer each into a test model. Since we

found in our case study that the expected system behavior is usually described in the form

of cause and effect relationships (e.g. In the case of <cause>, the system shall <effect>),

we use Cause-Effect-Graphs (CEG) as test models. In order to transfer the AC into a CEG,

the relevant causes and effects must be identified within the AC. For this purpose we apply

Dependency Parsing and first convert each AC into a dependency tree. Subsequently, we

traverse the dependency tree and generate the CEG. Finally, we derive the minimum number

of test cases from the CEG by applying the Basic Path Sensitization Technique.

3 Our Results

Our case study demonstrates that not every user story provides functional information

to generate test cases. Depending on the project, user stories are increasingly used as a

means of communication. In contrast, about 31.1 % to 50.1 % of the observed user stories

describe the functionality by AC. We hypothesize that there is a high automation potential

in test case derivation from these functional user stories. In this context, a major challenge

arises in processing the informal nature of the AC, which is the dominant type of notation.

Despite the use of unstructured language, the majority of AC are characterized by recurring

patterns, of which cause-effect-relationships have the broadest application. We evaluated

Specmate based on 604 test cases that have been manually derived from 72 user stories by

test designers from our industry partner. Our experiments underline the practical benefits

of Specmate. 56 % of the manually created test cases could be generated automatically

and missing negative test cases are added. The missing 44 % stems from required domain

knowledge and poor data quality within the AC. We hypothesize that a full automation of

the test creation from AC can hardly be achieved. Our approach should therefore be seen as

a supplement to the existing manual process.

Bibliography

[Fi20a] Fischbach, J.; Femmer, H.; Mendez, D.; Fucci, D.; Vogelsang, A.: What Makes Agile Test
Artifacts Useful? An Activity-Based Quality Model from a Practitioners’ Perspective. In:
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM). 2020.

[Fi20b] Fischbach, J.; Vogelsang, A.; Spies, D.; Wehrle, A.; Junker, M.; Freudenstein, D.: SPECMATE:
Automated Creation of Test Cases from Acceptance Criteria. In: IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). 2020.

38 Jannik Fischbach, Andreas Vogelsang, Dominik Spies, Andreas Wehrle, Maximilian

Junker, Dietmar Freudenstein


