Energy-aware mixed precision iterative refinement for
linear systems on GPU-accelerated multi-node HPC clusters

Martin Wlotzka!, Vincent Heuveline!

! Heidelberg University, Interdisciplinary Center for Scientific Computing (IWR)
Engineering Mathematics and Computing Lab (EMCL), Speyerer Str. 6, 69115 Heidelberg
martin.wlotzka@uni-heidelberg.de, vincent.heuveline @uni-heidelberg.de

Abstract: Modern high-performance computing systems are often built as a cluster of intercon-
nected compute nodes, where each node is built upon a hybrid hardware stack of multi-core pro-
cessors and many-core accelerators. To efficiently use such systems, numerical methods must em-
brace the different levels of parallelism from the coarse-grained distributed memory cluster level to
the fine-grained shared memory node level parallelism. Synchronization requirements of numerical
methods may diminish parallel performance and result in increased energy consumption. We investi-
gate block-asynchronous iteration methods in combination with mixed precision iterative refinement
to address this issue. We depict our implementation for multi-node distributed systems using MPI
with a hybrid node level parallelization for multi-core CPUs using OpenMP and multiple CUDA-
capable accelerators. Our numerical experiments are based on a linear system arising from the finite
element discretization of the Poisson equation. We present energy and runtime measurements for
a quad-CPU and dual-GPU test system. We achieve runtime and energy savings of up to 70% for
block-asynchronous GPU-accelerated iteration using mixed precision compared to CPU-only com-
putation. We also encounter configurations where the CPU-only computation is advantageous over
the GPU-accelerated method.

Keywords: energy-aware numerics, high-performance computing, mixed precision, asynchronous
iteration, graphics processing units

1 Introduction

Numerical simulations play a key role for scientific discovery, complementing theoreti-
cal analyses and experiments. The computational power of high-performance computing
(HPC) systems in terms of peak floating point operations per second (flops) has increased
currently above the petaflops level [ww15]. Seeking to further increase the computational
power towards the exascale level, the HPC community is facing the power wall. Simply
upscaling current technology would result in a prohibitive power demand in the order of
several hundred Megawatts for one exascale system. The issue of energy consumption has
therefore become a major issue in the HPC field [ww14].

Many HPC systems are built as a cluster of interconnected compute nodes. Each node
usually comprises one or more multi-core processors, and may additionally include many-
core accelerators. Thus, HPC clusters often represent a hybrid form of distributed memory
interconnected nodes with shared memory multi-core CPUs and possibly many-core de-
vices on the node level. Such systems offer different levels of parallelism. In order to

119

leverage the computational power, numerical methods must exploit the parallelism pro-
vided on the different levels. However, synchronization requirements may diminish the
parallel performance and result in increased energy consumption. Asynchronous iteration
methods allow to circumvent typical synchronization requirements of classical iteration
methods. To address the issues of synchronization and energy consumption, we investigate
the block-asynchronous variant in combination with mixed precision iterative refinement
for the solution of linear systems of equations.

Related work and paper contribution

The idea of “chaotic relaxation” was proposed by Rosenfeld [Ro69], who used “parallel
processor computing systems” to simulate the distribution of current in an electrical net-
work. Chazan and Miranker in 1969 [CM69] were the first to study this type of methods
on a rigorous theoretical basis. They established a characterization of the chaotic relax-
ation schemes for the solution of symmetric positive definite linear problems and gave
conditions for convergence, as well as examples for divergence. Meanwhile, the denom-
ination “asynchronous iteration” has been established in the literature. An overview of
asynchronous schemes and convergence theory can be found in [FS00]. Asynchronous it-
eration has successfully been used in the context of HPC, see e.g. [EFS05] and references
therein.

Earlier works reported in [Anl1b] and [Anl3] investigate convergence properties and
performance of block-asynchronous iteration on GPU-accelerated systems, both as plain
solver and in combination with mixed precision iterative refinement. However, these works
are restricted to single node, single host process configurations, and the host CPUs are not
taken into account for computations. We extend this setup to the case of distributed mem-
ory machines with several host processes running on the same node and sharing devices.
Additionally, we compare with asynchronous CPU-only methods which also benefit from
relaxed synchronization requirements. Finally, we perform actual energy measurements to
investigate the energy consumption of the methods.

Paper organization

This paper is structured in the following way: We outline the mathematical background in
Section 2. In Section 3, we describe the setup of our experiments. In particular, we present
the main features of our hybrid implementation using MPI [Me12] for distributed systems
and OpenMP [Op13] on the shared memory local level, as well as CUDA [NV 14a] for
graphics processing units (GPU). Section 4 is devoted to the discussion of the results, and
Section 5 concludes the work.

2 Mathematical background

In this work, we investigate the performance and energy consumption of asynchronous
iteration schemes in the context of mixed precision iterative refinement. In this section, we
introduce the mathematical background of the methods we use.

120

2.1 Mixed precision iterative refinement

The idea of iterative refinement for the solution of a system of linear equations comes
from Newton’s method for approximating the solution of f(x) = 0, where f is a smooth
function. Considering the special case of a linear function f(x) = b — Ax with a regular
matrix A € R"*" and a vector b € R", solving f(x) = 0 is equivalent to solving the linear
system Ax = b. For an approximate solution x¥, the residual is denoted r* = b — Ax* =
f(xk). Using Vf = —A leads to the following linear iterative refinement method

F=xpa ¥ (k=0,1,..).

In each iteration, the current approximation x* is improved by the correction ¢t = A=!/%,

which is the solution of the error correction equation Ack = X, If an exact correction could
be computed, the iterative refinement process would end after one iteration with the correct
result. However in practice, often only approximate error corrections & can be computed
by means of numerical solvers. Let g = r* — A¢* be the residual of the error correction
equation. After the correction, the updated solution x**!1 = x* + & yields the residual

A =p AT =p— AWK+ &) = —ad =4~

Thus, the accuracy of the error correction solver determines the accuracy of the solution
of the overall iterative refinement process.

Instead of solving the error correction equation in the working precision, one can transfer
the system to a lower precision. This approach amounts to the mixed precision iterative
refinement (MPIR) [Ba09], see Algorithm 1. For MPIR, we use an absolute stopping cri-
terion based on a given tolerance € > 0.

For computing the correction in step 6 of Algorithm 1, one may choose any appropriate
numerical solver. In this work, we focus on the asynchronous methods explained in the
next section.

Algorithm 1 Mixed precision iterative refinement (MPIR)

1: Typecast Al Ahigh,

2: Set initial solution xhigh, tolerance € > 0.

3: Compute residual r"igh = phigh _ ghigh chigh

4: while |/Mgh|| > ¢ do

5: Typecast oW «— phigh,

6: Solve AloWlow — plow 4pproximately.

7: Typecast cigh clow,

8: Correct xNigh yhigh | chigh

9: Compute residual FMigh = phigh _ ghigh yhigh
10: end while

2.2 Block-asynchronous iteration

The asynchronous iteration methods under investigation in this work can be derived from
the classical Jacobi relaxation method [An13]. The Jacobi method relies on an additive

121

splitting of the system matrix A = L+ D+ U into a lower triangular matrix L, a diagonal
matrix D and an upper triangular matrix U. Assuming D to be regular, the Jacobi iteration
reads [Mel1]

K —ptfp (L+U)xk}

(k=0,1,...),
=BxXf+d

where B = —D~!(L+U) is the iteration matrix and d = D~'b. A necessary and sufficient
condition for the convergence of the Jacobi iteration is p(B) < 1, where p(B) denotes the
spectral radius of B. In terms of the system matrix A, a sufficient condition is strict diagonal
dominance of A, or diagonal dominance and irreducibility [Sa00].
The parallelization of this method is straightforward. Each compute unit may compute a
part of the new iteration vector x**1. Note that for computing its part of the new iterate
x**1 any compute unit potentially uses components of the preceding iterate x* which
belong to other compute units. This requires a synchronization of the compute units after
each iteration to make sure that all needed values are updated from the last iteration.
The idea of asynchronous iteration is to overcome the synchronization requirements. On
the theoretical level, this is accomplished by introducing a shift function s and an update
function u in the iteration:

e {1 e i S
' x if i # u(k)

The shift function allows to use not only values from the last iteration, but also older
or newer values. The update function chooses one component at a time to be updated,
leaving the other components unchanged [Anl1a]. A sufficient condition for convergence
is uniform boundedness of s, and u must take each value in {1,...,n} infinitely often, and
p(|B]) < 1 [CM69].

A natural modification of the basic asynchronous scheme is the aggregation of components
into blocks [Ba99]. Let L be the number of blocks, and I; C {1,...,n} be the index set of
all components belonging to block / € {1,...,L}. The block-asynchronous iteration reads

. 1 k—s(k,j
el s k! :;{bifZaijx_,- sy a,,jx';] (k=0,1,...).
AT/ jelriti

This scheme is synchronized only with respect to the vector components within each block.
The block scheme implies a decomposition of the systems matrix A into diagonal and off-
diagonal parts

diag offdiag
D= (aii). , A= (aij)“ L A= (a,j)_ 4
i€l i,JEl i#] i€l j¢l

and a decomposition of the vectors x and b into local parts

local local non-local
x50 = (x,-)_ , by = (b,-)' , X = (xj) o
i€l i€l j¢11

Such block decomposition is sketched for A and x in Figure 1. The update step for any
block / then reads

- di ffdi -
x}ocal «— Dl 1 {b}ocal _Al 1agx}ocal —A? lagx}lon local})

122

71 : T
diag! offdiag local
I A1 H Al 1
offdiag i diag i offdiag local
I A PATT A Z
an - A1
A T

Fig. 1: Decomposition of the system matrix A and solution vector x into blocks.

Note that the actual block sizes in the decomposition depend on the number of compute
units, and on the load distribution among them. For balanced load distributions, the local
block sizes decrease with increasing number of compute units, while the non-local parts
grow.

The block-asynchronous scheme can be extended by performing multiple iterations on the
local block before updating the values in the non-local vector part. We denote the resulting
algorithm as async-(m) to indicate m local steps between non-local updates. Obviously,
each block can be mapped to one compute unit, resulting in Algorithm 2. We use async-
(m) with a relative stopping criterion based on a given tolerance 6 > 0.

Algorithm 2 async-(m)

1: Set initial solution x, tolerance & > 0.

2: Compute initial residual r® = r = b — Ax.
3: while ||| > §/°| do

4: for all blocks [= 1,...,L in parallel do

5 for k=1,....m do

6: x}ocal — D;l [b}ocal _ A;liag x}ocal _ A?ffdiag x?on»local}

7: end for

8 end for

9: Update x}“’“'k’cal with corresponding values from other blocks.

10: Compute residual r = b — Ax.
11: end while

3 Experimental setup

3.1 Linear problem

In our experiments, we use the linear system of equations arising from a finite element
discretization of the two-dimensional Poisson equation [EG04]. This equation can be used
to model the equilibrium heat distribution in a physical domain with given environmental

123

temperature and heat sources or sinks. The problem definition reads

“Au=f inQ,
u=g ondQp,
Vu-n=0 ondQn,

where Q € R is the physical domain, f represents any heat sources or sinks and g is the
environmental temperature given through the Dirichlet condition on the boundary part
dQp. Thermal insulation is modeled by the homogeneous Neumann boundary condition
on the boundary part dQy. For our experiments, we chose the domain Q to be the unit
square. Our finite element discretization with 262,144 mesh cells results in n = 263,169
unknowns and 2,362,369 non-zero elements for the system matrix A.

3.2 Implementation for GPU-accelerated multi-core shared and distributed mem-
ory HPC clusters

Our implementation spans three levels of parallelism. It supports multi-node distributed
memory systems where the nodes are connected by a network. Communication between
the nodes is done by data transfer over the network using MPI [Me12]. On the node level,
it supports both multi-core shared memory systems by means of OpenMP [Op13] as well
as CUDA-capable devices [NV 14a].

The implementation is integrated in the HiFlow? package [An12]. It uses the MPI-parallelized
matrix and vector data structures for input and for the MPI communication between nodes.
The matrix and the vectors are distributed among the MPI processes, thus defining the
block decomposition. The communication pattern is derived from the matrix structure and
avoids any unnecessary data transfer. Only vector components corresponding to non-zero
entries in the off-diagonal matrix parts of other MPI processes are transferred.

In Algorithm 2, the parallelism of the local block updates corresponding to steps 4-8 is
achieved by concurrency of the MPI processes. All computations of the error correction
solver are either executed on the host CPUs, or on the accelerator devices. Again, the CPU
implementation is parallelized with OpenMP on the node level, while the accelerator ver-
sion is implemented with CUDA. The update step 9 implies MPI communication and, if
the CUDA version is used, data transfer between host and devices.

network

MPI processes PIPIPIP
GPU

compute nodes

Fig. 2: Supported configurations of MPI process scheduling among compute nodes and GPU usage.

124

One or multiple MPI processes may be scheduled onto each node. Within each node, the
MPI processes can use multiple GPUs. The actual utilization may be configured depend-
ing on the number of MPI processes and on the number of available devices. If only one
MPI process is scheduled onto a node, this process may use all available devices on that
node, as sketched in the two left configurations in Figure 2. In case of multi-GPU usage
of a single MPI process, the matrix and vector blocks of this process are further split into
sub-blocks as depicted in Figure 3. However, if multiple MPI processes are scheduled onto
the same node, GPU utilization must be split such that each process uses only one of the
available devices, see the two right configurations in Figure 2. This limitation is imposed
by a constraint of the GPU architecture, which we briefly explain in the following.

Each host process establishes its own CUDA context, but there can only be one CUDA
context active at a time on the device. If several host processes access the GPU, a time-
sliced scheduler switches between contexts to serve them, which implies a serialization. To
efficiently use the same device by several host processes, the multi-process service (MPS)
[NV 14b] can be used. With MPS, host processes connect to the MPS server instead of di-
rectly accessing the device. The MPS server maps the different host CUDA contexts into
one context on the GPU. This avoids the context switching and enables to benefit from the
Hyper-Q feature of devices based on the Kepler architecture [NV 12]. With Hyper-Q, up to
32 independent CUDA streams may be executed concurrently on the GPU. The drawback
of MPS is that the MPS server can only manage one device such that any process can only
use one GPU. If multiple devices are available on the node, one MPS server instance is
needed for each device, and host processes need to connect to exactly one of them. A prac-
tical way to meet these technical requirements can be found in [WSC14]. For Algorithm 1,
all steps except the solution of the error correction equation in step 6 are implemented in
C++ for execution on CPUs. In addition to the MPI parallelization for distributed systems,
all local computations are parallelized with OpenMP to exploit multi-core shared memory
nodes. The error correction solver itself uses Algorithm 2 and can be executed either on
CPUs or on accelerators.

sub-block 1 [
block [
sub-block 2 [

Fig. 3: Sub-block decomposition in case of multi-GPU usage by a single MPI process.

125

3.3 Solver parameters

As the working precision, denoted high precision in the context of MPIR, we chose IEEE
754 double precision floating point format, and as low precision we chose IEEE 754 single
precision floating point format [In85]. We set an absolute tolerance of € = 10~° as stopping
criterion for the iterative refinement method in Algorithm 1. This absolute tolerance is
achievable in both double and single precision. For the error correction solver, we chose
a relative tolerance of § = 10~! in Algorithm 2. This resulted in several error correction
loops, each improving the high precision residual by the factor 10~

3.4 Hardware and measurement system

Our test system consisted of one compute node equipped with 4 x Intel Xeon E-4650, 512
GByte DDR3 main memory and 2 x Nvidia Tesla K40. We used GCC compiler version
4.8.2, OpenMPI version 1.6.5, CUDA version 6.5.12, and NVIDIA device driver version
340.65.

For power measurement, we used the ZES Zimmer Electronic Systems LMG450 external
power meter. Our test system comprises two power supply units, each connected with one
line to the external power source. The LMG450 has four independent measurement chan-
nels. We used one channel for each of the two input lines, and the other two channels were
left unused. We attached the power sensors of the LMG450 to the input lines between the
external power source and the power supply units of the compute node. Thus, we measured
the total power consumption of the whole node. We used the maximum possible sampling
rate of 20 Hz of the LMG450 power meter. The measurement was controlled using the
pmlib tool [Bal3]. We instrumented the solver code using the pmlib client API to mea-
sure exactly that portion of the overall program which constitutes the solution process.
This excluded all initialization overhead from the measurements. The pm1ib server ran on

power tracing server compute node
external
measurement power
data meter
v power
source : mainboard
. H wer
pmlib server: @ o\ SS ? CPU
collect measurement sensor u’;’i)ty accelerator
data memory
’ L | etc.
]
pmlib client:
start / stop measurement

send pmlib commands over network

Fig. 4: Measurement setup using an external power meter controlled by the pmlib tool.

126

a separate machine to avoid a perturbation of the system under investigation. The setup is
shown in Figure 4.

4 Results

Through empirical testing, we figured out a number of m = 20 local block updates to be a
reasonable choice for the linear system at hand. We carried out three series of tests:

1. MPIR async-(20) GPU
Mixed precision iterative refinement using block-asynchronous iteration as error
correction solver in single precision running on the GPUs.

2. dp IR async-(20) GPU
Iterative refinement using block-asynchronous iteration as error correction solver in
double precision running on the GPUs.

3. MPIR async-(20) CPU
Mixed precision iterative refinement using block-asynchronous iteration as error
correction solver in single precision running on the host CPUs.

We defined these test series to evaluate two effects. On the one hand, to evaluate the effect
of using single precision error correction in contrast to using double precision error cor-
rection. On the other hand, to evaluate the effect of using accelerators in contrast to using
only the host CPUs.

Figures 5 and 6 show plots of the performance related data of runtimes and total number
of iterations. The parallel configuration is denoted p X ¢, where p is the number of MPI
processes, and ¢ is the number of OpenMP threads per MPI process. We scheduled the
MPI processes to run on distinct CPUs when using p = 1,2,4, and to equally share CPUs
when using p = 8,16,32. The number of OpenMP threads was chosen to use all of the
eight cores of the CPU available for the corresponding MPI process.

The host-only test runs from MPIR async-(20) CPU showed a reduction of the runtime
for p ranging from 1 to 32. The fact that speedups were clearly inferior to the ideal linear
speedup can be explained by the increasing number of iterations and the increased com-
munication overhead. The phenomenon of increasing number of iterations for growing p

1,000.0 1,400,000
-* MPIR async-(20) CPU = MPIR async-(20) CPU
800.0 -+-dp IR async-(20) GPU 1,200,000 mdp IR async-(20) GPU
} = MPIR async-(20) GPU 1,000,000 ®MPIR async-(20) GPU

800,000
600,000

iterations

— 400,000

200.0"——— ——
200,000

time to solution [s]

1x8

0.0 0
1x8 2x8 4x8 8x4 16x 2 32x1 2x8 4x8 8x4 16x2 32x1
pxt pxt
Fig. 5: Time to solution plot. Fig. 6: Total number of iterations.

127

500,000.0 100.0
¥ MPIR async-(20) CPU B MPIR async-(20) GPU vs. dp IR async-(2) GPU
-+-dp IR async-(20) GPU 80.0

® MPIR async-(20) GPU vs. MPIR async-(2) CPU
60.0
40.0
‘ B |
00 [
1x8 2x8

4x8 8x4 16x2 32

400,000.0

-# MPIR async-(20) GPU

300,000.0

200,000.0

energy to solution [Ws]
energy savings [%]

100,000.0
-20.0

1x8 2x8 4x8 8x4 16x2 32x1 -40.0
pxt pxt
Fig. 7: Energy to solution plot. Fig. 8: Energy savings of MPIR async-(20).

was similar for all methods we tested. The reason is the decomposition of the matrix and
vectors into smaller blocks, causing the local vector parts to shrink and the non-local parts
to grow. Thus, the local block updates include more potentially outdated information from
the non-local vector parts, and an increased number of overall iterations is necessary to
compensate this effect.

In contrast, the methods using the GPUs showed a different behavior. The runtimes were
nearly constant for p = 2,4, 8, 16 with slightly larger runtimes for p = 1 and p = 32. The
GPU methods perform almost the whole computations on the GPUs. Only the double pre-
cision residual computation in step 9 of Algorithm 1 is performed on the host CPUs, but
this computational effort is negligible. Instead, the nearly constant runtime reflects the fact
that the sum of the problem sizes of all processes using the same GPU is constant, namely
half of the total problem size.

Using single precision error correction instead of double precision gave approximately
20% improvement in the runtimes. The pure floating point arithmetic is twice as fast in
single precision than in double precision, but our algorithms require data transfer between
host and devices and across MPI processes for each update of the non-local vector parts.
Although we used the fast transfer between devices and page-locked host memory, these
memory copy operations required a substantial portion of the overall runtime. The high
precision residual computation on the CPUs and the typecasts in case of mixed precision
were negligible in this context, since they were not performed every 20 iterations, but only
once for each error correction solving loop. Altogether, the runtimes of GPU methods were
advantageous over the CPU method for p = 1,2,4,8. For p = 16, dp IR async-(20) GPU
and MPIR async-(20) CPU had nearly equal runtime, while MPIR async-(20) GPU was
still faster. Finally, for p = 32 the CPU method outperformed the GPU methods.

As Figure 7 shows, the energy consumption of the methods strongly correlated to the run-
times. Figure 8 shows the energy savings of MPIR async-(20) GPU compared to dp IR
async-(20) GPU and MPIR async-(20) CPU. We calculated the percentages relative to the
latter two methods. Using mixed precision instead of only double precision in the GPU
methods gave savings of about 20% with slight variances for p = 1 and p = 16. However,
performing the computations on the GPUs instead of CPUs gave massive savings of ~71%
for p =1 and ~=53% for p = 2. We observed still remarkable savings of ~37% for p = 4,
while the benefit lay around 20% for p = 8, 16. Only in the case p = 32, the CPU method
consumed ~24% less energy than the GPU method. We calculated this last percentage
relative to MPIR async-(20) GPU.

128

5 Conclusion

We investigated block-asynchronous iteration methods for solving linear systems of equa-
tions with respect to performance and energy consumption. We introduced the mathe-
matical background of mixed precision iterative refinement and of block-asynchronous
iteration methods. We presented our implementation of these methods with support for
distributed memory systems be means of an MPI parallelization, as well as shared mem-
ory support using OpenMP, and support of CUDA-capable accelerator devices. We ran a
series of tests on a compute node equipped with four Intel Xeon E-4650 CPUs and two
Nvidia Tesla K40 GPUs. We varied the number of MPI processes and OpenMP threads
for the different test runs. All GPU tests used both devices. We designed the tests to assess
the effect of using mixed precision instead of plain double precision computations, and
to assess the effect of employing accelerator devices for the computations instead of only
using host CPUs. We measured performance in terms of runtime, and energy consumption
was measured with the help of an external high precision power meter.

We found that massive runtime and energy savings of more than 70% are possible on
GPU-accelerated systems compared to CPU-only platforms. However, the actual amount
of saved energy for a particular test run depends on the parallel configuration of MPI pro-
cesses and OpenMP threads. We also found that CPU-only computations may outperform
the GPU-accelerated methods if enough CPU resources are available. Also, we found that
using mixed precision instead of only double precision gives a benefit of roughly 20% for
runtime and energy consumption in the GPU tests. The frequent data transfer between host
and devices imposes a substantial overhead which diminishes the impact of the doubled
performance of the single precision floating point arithmetic.

Our results show that using accelerators for block-asynchronous iteration methods com-
bined with mixed precision can lead to tremendous benefits in terms of runtime and energy
consumption. The largest benefits can be expected for small host systems with only 16 or
even less cores. This fits many HPC systems where often not more than two CPUs are
available per node. On the other hand, large host systems or fat nodes” may provide su-
perior performance over the GPUs.

Acknowledgement

This work was supported by the European Commission as part of the collaborative project
“Exa2Green - Energy-Aware Sustainable Computing on Future Technology” (research grant
no. 318793).

References

[Anlla] Anzt, H.; Dongarra, J.; Gates, M.; Tomov, S.: Block-asynchronous multigrid smoothers
for GPU-accelerated systems. EMCL Prepr. Ser., 15, 2011.

[Anl1b] Anzt, H.; Dongarra, J.; Heuveline, V.; Luszczek, P.: GPU-Accelerated Asynchronous Er-
ror Correction for Mixed Precision Iterative Refinement. EMCL Prepr. Ser., 17, 2011.

129

[An12]

[An13]

[Ba99]

[Ba09]

[Bal3]

[CM69]
[EFSO05]

[EG04]
[FS00]

[In85]

[Mell]
[Mel2]

INV12]
[NV 14a]
[NV14b]
[Op13]
[Ro69]

[Sa00]

Anzt, H.; Wilhelm, F.; WeiB3, J.P.; Subramanian, C.; Schmidtobreick, M.; Schick, M.; Ron-
nas, S.; Ritterbusch, S.; Nestler, A.; Lukarski, D.; Ketelaer, E.; Heuveline, V.; Helfrich-
Schkarbanenko, A.; Hahn, T.; Gengenbach, T.; Baumann, M.; Augustin, W.; Wlotzka, M.:
HiFlow3: A Hardware-Aware Parallel Finite Element Package. pp. 139-151, 2012.

Anzt, H.; Tomov, S.; Dongarra, J.; Heuveline, V.: A block-asynchronous relaxation
method for graphics processing units. J. Parallel Distrib. Comput., 73:1613-1626, 2013.

Bai, Z.Z.; Migallon, V.; Penades, J.; Szyld, D.B.: Block and asynchronous two-stage meth-
ods for mildly nonlinear systems. Numerische Mathematik, 82:1-20, 1999.

Baboulin, M.; Buttari, A.; Dongarra, J.; Kurzak, J.; Langou, J.; Langou, J.; Luszczek, P.;
Tomov, S.: Accelerating scientific computations with mixed precision algorithms. Com-
puter Physics Communications, 180:2526-2533, 2009.

Barrachina, S.; Barreda, M.; Catalan, S.; Dolz, M.F.; Fabregat, G.; Mayo, R.; Quintana-
Orti, E.S.: An Integrated Framework for Power-Performance Analysis of Parallel Scien-
tific Workloads. In: ENERGY 2013: The Third Int. Conf. on Smart Grids, Green Com-
munications and IT Energy-aware Technologies. 2013.

Chazan, D.; Miranker, W.: Chaotic relaxation. Lin. Alg. Appl., 2:199-222, 1969.

El Baz, D.; Frommer, A.; Spiteri, P.: Asynchronous iterations with flexible communica-
tion: contracting operators. J. Comp. App. Math., 176:91-103, 2005.

Ern, A.; Guermond, J.-L.: Theory and Practive of Finite Elements. Springer, 2004.

Frommer, A.; Szyld, D.: On asynchronous iterations. J. Comp. Appl. Math., 123:201-216,
2000.

Institute of Electrical and Electronics Engineergs: , IEEE Standard for Binary Floating-
Point Arithmetic, 1985.

Meister, A.: Numerik linearer Gleichungssysteme. Vieweg+Teubner, 2011.

Message Passing Interface Forum: , MPI: A Message Passing Interface Standard, Version
3.0,2012.

NVIDIA Corporation: , Kepler GK110, 2012.

NVIDIA Corporation: , CUDA Toolkit Documentation v6.5, 2014.

NVIDIA Corporation: , Multi-Process Service, 2014.

OpenMP Architecture Review Board: , OpenMP Application Program Interface, 2013.

Rosenfeld, J.: A case study in programming for parallel processors. Commun. ACM,
12:645-655, 1969.

Saad, Y.: Iterative Methods for Sparse Linear Systems. 2 edition, 2000.

[WSC14] Wende, F.; Steinke, T.; Cordes, F.: Multi-threaded Kernel Offloading to GPGPU Using

[ww14]
[wwl5]

Hyper-Q on Kepler Architecture. ZIB Report, Konrad-Zuse-Zentrum fiir Information-
stechnik Berlin, 2014.

www.green500.org: , The Green500 List, November 2014.
www.top500.org: , TOP500, June 2015.

130

