R. Reussner, A. Koziolek, R. Heinrich (Hrsg.): INFORMATIK 2020,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2021 979

Requirements and Mechanisms for Smart Home Updates

Peter Zdankin! Oskar Carl? Marian Waltereit? Viktor Matkovic? Torben Weis®

Abstract: The interconnection of sensors and actuators of smart home devices creates dependencies
that allow for ubiquitous services. These devices can be subject to transformative changes through
software updates that might lead to unintended consequences. Users have no tools to predict the
negative consequences caused by updating their smart home. In this paper, we address this problem
and propose mechanisms that enable organized update planning in a smart home. We compare
self-description standard approaches that allow reasoning about resulting functionality before updates
are installed. Updating devices to their latest versions is not necessarily the best way to update smart
homes, therefore we discuss multi-objective optimization in the update process. Finally, outsourcing
functionality to external providers might reduce the complexity of certain tasks, but can also pose
threats if the wrong tasks are offloaded.

Keywords: Smart Home; Longevity; Self-Description; Update Configuration; Edge Computing

1 Introduction

A smart home is composed of multiples devices from various vendors. Each vendor is
producing software updates on his own, which leaves it to the user to select the best
set of updates. Vendors cannot always consider all possible setups, and therefore faults
can occur when a device is updated. Furthermore, downgrading software versions is not
always possible, which means that a single unfortunate update can permanently impact the
functionality of a smart home. Currently, users have no tools to master the update problem
without risking damage to the system. Thus, it is important to investigate the update process
and to propose solutions to compute the optimal update configuration automatically. In
Section 3 we discuss how self-description of devices and services can principally solve
the update problem. Then we discuss possible definitions of optimality of such a solution
in Section 4. Finally, in Section 5 we compare solutions to the update problem relying on
centralized services in the cloud with solutions that work locally in the smart home and
discuss their impacts on ease of use and autonomy.

! University of Duisburg-Essen, Distributed Systems Group, Duisburg, Germany, peter.zdankin @uni-due.de

2 University of Duisburg-Essen, Distributed Systems Group, Duisburg, Germany, oskar.carl @uni-due.de

3 University of Duisburg-Essen, Distributed Systems Group, Duisburg, Germany, marian.waltereit@uni-due.de
4 University of Duisburg-Essen, Distributed Systems Group, Duisburg, Germany, viktor.matkovic @uni-due.de
5 University of Duisburg-Essen, Distributed Systems Group, Duisburg, Germany, torben.weis @uni-due.de

©@@®@® doi:10.18420/inf2020_91


mailto:peter.zdankin@uni-due.de
mailto:oskar.carl@uni-due.de
mailto:marian.waltereit@uni-due.de
mailto:viktor.matkovic@uni-due.de
mailto:torben.weis@uni-due.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2020_91

980 Peter Zdankin et al.

2 System Model

The architecture of smart home systems may vary considerably between different implemen-
tations. Some systems are designed and deployed during the construction of a house and
permanently deployed e.g. via bus systems in walls. While this is an interesting option, most
homes require expensive renovation to become smart this way. An alternative to this is the
usage of modular subsystems, for example, standalone lighting or heating systems, which
can be bought individually and may offer their own separate platform, or integrate into bigger
smart home platforms such as Amazon Alexa, Google Home, Samsung SmartThings or
HomeKit. The benefit of modular smart home systems is a lower entry price for consumers,
as they might start off with light bulbs or thermometers that can be controlled through
already available smartphones or affordable hubs. In this paper, we focus on the latter, as
the distributed and heterogeneous nature of these systems is more likely to break at some
point during its lifetime, in comparison to a permanent solution installed during house
construction. A smart home configuration can be described through the following system
model:

A smart home has a set of devices that are connected through a platform. Each device has
a certain software version and a set of available updates. Each software version has a set
of available predefined services. Devices can use services of other devices which creates
dependencies. An update configuration is one of the finite states of the nondeterministic
finite automaton NF A that can be constructed by using the configurations as states and
connecting them using individual updates as transitions.

During the lifetime of devices in a smart home, security issues or new features might require
new software, which might alter the functionality of a device through for example a modified
public API. These alterations might be intended, as part of a necessary change, or accidental
because certain side effects were not considered. In any way, if such an update is installed,
it will likely break an existing dependency. Currently, users cannot predict the changes
that will be imposed on a smart home if a subset of its devices is updated simultaneously.
Naive approaches that only consider individual updates for each update step, miss the broad
picture because dependency problems can manifest after a certain set of devices have been
updated already and rolling them back to previous versions may not always be possible.

3 Self-Description of Smart Home Devices

To enable interoperability, devices can describe their services to other devices, as was
proposed in an architecture by Barbas et al. [Vel2]. Devices must be able to list all
their currently available services, either through self-awareness or information included
in the updates. By comparing the currently available services with the available services
of an update, the differences can be computed. That way a system can predict possible
faults in dependencies before they occur. However, comparing service definitions cannot
capture unintended incompatibilities due to programming errors. Furthermore, most service



Smart Home Update Requirements 981

definitions are only syntactic, e.g. via an API definition, but they do not specify behaviour.
Thus, an update might cause a change of behaviour without a change of its service definition.
Two widely used approaches for service definition are descriptive or prescriptive standards.

3.1 Descriptive vs Prescriptive

A standard for service definitions that only regulates how a device can describe itself is
a descriptive standard, because it allows vendors to describe their devices in their own
terms. A recently finalized descriptive standard is the Web Of Things [Ka20; Ko20]. If
devices need to communicate across different descriptive standards, a translation must be
considered. However, McCool et al. have stated security concerns about purely descriptive
approaches, such as scanning for door locks with known physical weaknesses [MR18].

A prescriptive standard does not only regulate the how but also the what of self-description.
These standards prescribe how devices and services should be defined and vendors can use
these terms for unambiguity. By using the same terms to define services, translation is not
required anymore. A prescriptive standard defines all possible devices and all their services
they could implement. However, a device can implement a subset of these services only.
This restriction has benefits as well because it ensures compatibility across device vendors.
Widely used examples are the smart home standards of Amazon, Apple, and Samsung®.

3.2 Descriptive Standards Only

In a descriptive standard, each vendor can create its own namespace and definition for a
certain type of device. This open approach is flexible and allows vendors to act quickly and
independently. It also allows vendors to reinvent service definitions, as they are incentivized
to invent proprietary definitions in order to support new features. This can lead to multiple
definitions of the same device type, thus creating redundancy as no incentive is given to
find an agreement between vendors. As multiple definitions can coexist, communicating
devices might need to translate between the definitions. Alternatively, a middleware could be
introduced to translate between incompatible but equivalent descriptions. Over time, device
vendors could update their own definitions in ways that impair interoperability, even to the
point of defective device functionality. Therefore, we assume that descriptive standards
alone are not suited for the evolving smart home ecosystem.

6 Amazon Alexa Skill API Documentation: https://developer.amazon.com/de/docs/smarthome/understand-
the-smart-home-skill-api.html (accessed May 6, 2020),
Samsung SmartThings: https://smartthings.developer.samsung.com (accessed May 6, 2020),
Apple HomeKit Accessory Protocol Specification: https://developer.apple.com/support/homekit-
accessory-protocol/ (accessed May 6, 2020)


https://developer.amazon.com/de/docs/smarthome/understand-the-smart-home-skill-api.html
https://developer.amazon.com/de/docs/smarthome/understand-the-smart-home-skill-api.html
https://smartthings.developer.samsung.com
https://developer.apple.com/support/homekit-accessory-protocol/
https://developer.apple.com/support/homekit-accessory-protocol/

982 Peter Zdankin et al.

3.3 One Prescriptive Standard

In a single prescriptive standard, each device type and service would be defined free of
redundancy. While this allows for optimal interoperability, many practical problems require
consideration. First of all, a regulatory body needs to be decided on to define this standard.
This might cause long delays in the process of reaching consensus between the stakeholders,
given the current interest in smart home applications.

If only devices that are defined in this standard can function in such a smart home, innovative
new products that are not yet defined must also first pass the committee before being able
to operate in a smart home. This does not just create obstacles for new products, it also
enables competitors in the market to start production of these devices while they are being
standardized. Small vendors that invent new smart home products might have problems to
compete against bigger ones, due to the time loss introduced by the certification process.
Due to this, we assume that a single prescriptive standard is too restrictive since the domain
is evolving rapidly.

3.4 Hybrid Standards

Based on the above conclusions, we propose a hybrid solution between descriptive and
prescriptive standards. Smart home devices are usually connected to a single platform and
not part of multiple platforms simultaneously. Hence, a prescriptive standard per platform
could have the desired flexibility, because platform vendors can innovate independently.
To improve interoperability, this can be combined with a descriptive standard between
all platforms. All devices — regardless of their respective vendors and platforms — would
self-describe using that descriptive standard but adhere to the rules of the prescriptive
standard given by the respective platform vendor. This way, each platform maintains optimal
interoperability via prescriptive definitions. Since all prescriptive definitions are instances
of a single descriptive language, it is still possible to translate between multiple platforms as
discussed above. Furthermore, it is more likely that multiple prescriptive standards converge
(at least partially), since they use the same descriptive language. Thus, they only have to
agree on terms, but not on the syntax used to define services and devices.

4 Optimality of Update Configurations

When smart home systems are updated, the objective of current systems is to install the
latest software on all devices, regardless of dependencies or other objectives. While this is
one possible approach, there exist others such as dependency robustness or flexibility of the
smart home system. These different goals are much harder to achieve because additional
constraints must be upheld. Single-objective optimization might be able to yield acceptable



Smart Home Update Requirements 983

results to some degree. Users might want to hold onto their existing automations, which in
some cases could be damaged by the latest software policy.

If the goal is only to ensure that no functionality is broken, the solution is to simply pick the
latest versions that do not remove any functionality currently in use. However, as soon as an
update removes functionality, the problem is expanded to multiple objectives: It requires
weighting between the benefits provided by the latest software version and the convenience
of keeping all functionality unchanged. Determining an optimal solution becomes even
more complicated when new functionality is introduced at the cost of another one. Zitzler et
al. have compared evolutionary algorithms as a means to search for possible solutions while
considering conflicting optimization goals [ZT99]. Solving multiple-objective optimization
is a subject that has been explored for a long time, and a large number of possible solutions
have been found [MAQ04; ZT99]. In this problem space the aim is not perfect optimization,
which is commonly impossible, but for Pareto optimality. It is an approximation in which
multiple configurations might be considered equal. This requires a choice between these
solutions to be made, which can be implemented in the form of user choice between policies
like feature stability and security. Equivalent results according to optimality can be presented
to the user, who is then required to choose a posteriori [BrO8].

However, the devices available in a smart home are usually also constrained in terms of
performance or power. This can render such approaches unviable in the smart home context.
To amend this situation, the user choice should be made a priori [MAO4].

Self-description of services allows considering dependencies in a smart home analytically
to find optimal update configurations for new objectives before the updates are installed. As
it is possible to know which changes will happen once a certain update configuration is
chosen, configurations that disrupt dependencies can be discarded. Static analysis over the
available services and possible dependencies can be enhanced through a dynamic approach
that tracks which services are actually used in a smart home. This way, services that are
actually used can be considered during the update process, while services that are not used
can be completely ignored in the search for an optimal configuration.

S Autonomy of Smart Homes

User management, device communication, update planning, and automated tasks of a smart
home might not occur locally but on remote servers. If the autonomy of a smart home is
constrained by outsourcing functionality to external providers, the smart home depends on
the availability of these providers. This availability cannot be guaranteed for the lifetime
of smart homes. Despite this, it represents a common mode of operation for smart home
systems currently in use, such as in the solutions of Amazon or Samsung.

External services (located in the cloud) can offer resources to solve computationally
intensive tasks, manage authentication and other security-critical necessities, and offer a



984 Peter Zdankin et al.

gateway for remote access. These benefits provide a large incentive to waive autonomy
in a smart home and assume that external services and internet connection are always
available. An external service can even use approaches like testing updates of devices
against their specification to reason about the correct functionality. It might also perform
updates on specific configurations under laboratory settings. Nevertheless, if smart homes
target lifetimes of at least 10 years and multiple vendors are involved, it becomes likely that
some external services are shut down. Possible threats against the longevity of smart homes
exist and have happened before [Zd20a; Zd20b].

5.1 Remote Update Planning

Giving away autonomy can be dangerous if update planning is performed remotely. To find
an optimal update configuration, a smart home system must transmit information about all
devices in the smart home, their installed software, and used dependencies to the remote
service. Transferring information about usage habits in the form of dependencies and usage
patterns is privacy-invasive. Specifics on the software installed on devices can disclose
vulnerabilities currently open for exploitation at a location. By abusing the knowledge of
vulnerable software on smart devices, access to various parts of the smart home could
be gained and used to invade the privacy of users or even risk the security of the entire
local network. Remote update planning can also pose additional dangers, as devices can be
advised to update to a vulnerable software version, which might open up an attack vector.
Waiving autonomy in a smart home must be considered carefully, as the impact depends on
the task performed remotely.

5.2 Local Update Planning

Autonomy in a smart home requires local resources to solve problems that would otherwise
be resolved with the help of a centralized external service. Smart home platforms like
OpenHAB? strive to be autonomous, at the cost of much higher complexity. The higher
complexity is a burden for non-technical users who feel overwhelmed by the amount of
work necessary to configure and maintain a completely autonomous system.

To find the optimal update configuration autonomously, a suitable device must be available
in the smart home. We will refer to this as the central device. This device needs to find
out which other devices are part of the smart home, how they are connected, and which
dependencies exist. Furthermore, the central device should monitor which functionality
is actually being used in the smart home installation. Thus, the central device must query
devices in the network or it must query local hubs, at least one for each platform in use.
The practical problem of this approach is that some platforms provide no API to query this

7 OpenHAB Documentation: https://www.openhab.org/docs/ (accessed May 6, 2020)


https://www.openhab.org/docs/

Smart Home Update Requirements 985

information. While it is usually possible to enumerate all devices connected to a hub, it
is often not possible to query which functionality is being used, or how these devices are
connected among each other.

As smart home devices are created by numerous vendors using various platforms, a single
database for available updates does not exist in general. The central device must therefore
either query all device vendors for updates, or it must rely on the user to make updates
available locally. Automatically querying device vendors implies that an external service is
being used again. This implies that the smart home is leaking information about the devices
deployed and the software versions installed to a wide range of device vendors. From a
privacy perspective, this might be even more questionable than transmitting this information
to a platform vendor like Apple, Amazon or Google, because these are at least known to
the user, while users are usually not able to judge the trustworthiness of an oversea device
manufacturer.

Once the central device has information about all possible updates including the self-
description for all updates, it can compute which services are added or removed if a specific
update is installed. Through optimality criteria, many of these update configurations can
be discarded and the most advantageous configurations can be obtained. As stated before,
multiple optimal configurations might exist. In the worst case, the number of possible
options is O (2") where n is the number of updates because this is the count of all possible
subsets of updates. Obviously, it is not reasonable to present these options to the user.

Therefore, we propose a policy selection like latest version, conservative, or feature set
to capture the intent of the user. This policy can be used to further filter the set of Pareto
optimal configurations. Finally, the central device performs an update path that is Pareto
optimal and this complies best to the chosen policy. Further research is required to actually
develop and evaluate such a system to gain insight into the feasibility of this approach.

6 Conclusion

We analyzed the update problem for smart homes. The currently dominant approach is
potentially dangerous, as not enough measures are taken to prevent harmful updates from
being installed in a live system. Furthermore, the update process can potentially leak critical
information, which violates privacy and can pose security risks for the entire network,
because it might disclose attack vectors. We have shown that service definitions are required
for the update planning and discussed descriptive and prescreptive approaches and their
practicality. While autonomy is a desireable property for smart homes, local update planning
is more complex than update planning that relies on cloud-based services of platform
vendors. Finally, we discussed what optimality means for update planning and concluded
that optimality alone is not sufficient to select an update path, since multiple optimal
configurations can exist. We proposed policies to capture the user intent and to finally select
one optimal update path.



986 Peter Zdankin et al.

Optimality criteria are not exclusive to smart homes. Dependency management of software
projects can encounter similar issues. Hence, research in one of these domains might benefit
both. As devices become more powerful, it might be possible to pull services running in the
cloud into the home network and to deploy them in containers. Thus, smart homes could
use external services for convenience, but lack no features if the cloud becomes unavailable
or the user does not want to use external services.

References

[Br08]

[Ka20]

[Ko20]

[MAO4]

[MRI18]

[Vel2]

[Zd20a]

[Z2d20b]

[ZT99]

Branke, J.; Miettinen, K.; Deb, K.; Sowiski, R.: Multiobjective Optimization,
Vol. 5252 of Lecture Notes in Computer Science. Multiobjective Optimization
5252/, pp. 1-8, 2008.

Kaebisch, S.; Kamiya, T.; McCool, M.; Charpenay, V.; Kovatsch, M.: Web
of Things (WoT) Thing Description, first Edition of a Recommendation,
https://www.w3.org/TR/wot-thing-description/, W3C, Apr. 2020.

Kovatsch, M.; Matsukura, R.; Lagally, M.; Kawaguchi, T.; Toumura, K.; Kaji-
moto, K.: Web of Things (WoT') Architecture, first Edition of a Recommendation,
https://www.w3.org/TR/wot-architecture/, W3C, Apr. 2020.

Marler, R. T.; Arora, J. S.: Survey of multi-objective optimization methods for
engineering. Structural and multidisciplinary optimization 26/6, pp. 369-395,
2004.

Mccool, M.; Reshetova, E.: Distributed Security Risks and Opportunities in the
W3C Web of Things. In. Jan. 2018.

Vega-Barbas, M.; Casado-Mansilla, D.; Valero, M. A.; Lopez-de-Ipifia, D.;
Bravo, J.; Flérez, F.: Smart Spaces and Smart Objects Interoperability Architecture
(S30iA). In: 2012 Sixth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing. Pp. 725-730, 2012.

Zdankin, P.: Longevity of Smart Homes. In: PerCom PhD Forum 2020: 18th
Annual IEEE International Conference on Pervasive Computing and Communi-
cations PhD Forum (PerCom PhD Forum 2020). Austin, USA, Mar. 2020.

Zdankin, P.; Waltereit, M.; Matkovic, V.; Weis, T.: Towards Longevity of Smart
Home Systems. In: PerloT 2020: 4th International Workshop on Mobile and
Pervasive Internet of Things (PerloT 2020). Austin, USA, Mar. 2020.

Zitzler, E.; Thiele, L.: Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach. IEEE Transactions on Evolutionary
Computation 3/4, pp. 257-271, 1999.



