The Monetary Value of Information: A Leakage-Resistant
Data Valuation

Stefan Barthel, Eike Schallehn
Institute of Technical and Business Information Systems,
Otto-von-Guericke-University Magdeburg, Germany,
{stefan.barthel, eike.schallehn}@ovgu.de

Abstract: The importance of information as a main asset of a company or
organization is widely acknowledged nowadays. The loss of or the unauthorized
access to sensitive information are critical and can possibly send a company
into bankruptcy. Furthermore, the risk of information larceny is most often
not caused by a direct attack of unauthorized outsiders, but by authorized
extractions by malicious or unaware insiders passing data to unauthorized
outsiders. Unfortunately, this problem cannot be solved by the typically
used role-based authentication. The detection of malicious accesses based
on typical access characteristics, which has inspired some research, is limited
in its potential. Therefore, we present a conceptual approach based on the
valuation of information, i.e., using a description of the actual worth of data
items within database systems. This allows to rate potential losses on the fly as
well as preventing valuable extractions done by insiders. In detail, we describe
a mechanism called leakage-resistant data valuation that calculates a monetary
value for every query and takes according action if the cumulated monetary
value exceeds a threshold (per query or per time span).

1 Introduction

In current, worldwide distributed information systems, sensitive data needs to be
stored securely and well protected to prevent malicious use [VBFT04]. One example
is the misuse of bank account information, which we will focus on to illustrate our
proposal. In the area of financial institutes, highly sensitive information are stored
compactly. Authorized users are querying sensitive data every day, while they enjoy
an enormous trust from the management. Other fields with highly sensitive data
include health care, law, government, industrial research, and military applications.
Because sensitive data are so valuable, several organizations, individuals, and even
governments are interested in data extracts, in some cases regardless whether they are
obtained with legal or illegal methods. For example, countries that assume tax evasion
by their inhabitants in countries with high bank secrecy, are interested in getting
additional evidence of tax evaders, because it can lead to millions of additional tax
income. Therefore, buying stolen data is feasible, even it is prohibited in the country
of origin. In the case of Germany, which bought several extracts of tax evaders in the
recent past, the stolen data was almost always sold on a CD, probably extracted and

131

copied by a member of staff or someone who has access to the system. This scenario
is generally referred to as the insider threat. It is generally accepted that the cost of
damages caused by insider threats exceeds those of outsider threats [HSRE10]. That
means, even if several security restrictions and authorization based access controls are
active, at least one person has the ability to access all the data — in most cases the
system administrator. Therefore, from our point of view, the conventional way of
access authorization has to be thoroughly rethought for sensitive data.

In this paper, we introduce our approach based on an actual monetary value of the
data any user is allowed to work with. We choose the mapping of monetary value
and information, because it is intuitively accessible when speaking about a certain
valuation of information. By specifying two thresholds and a monetary value for every
attribute, the system is enabled to easily react in two ways:

e alerting and logging, if single queries or cumulated accesses of one user exceed a
certain threshold, or

e truncating the result set, i.e., limiting the output of sensitive data, if a further
and more rigid threshold is exceeded.

For example, a bank clerk will be able to access personal and bank information of
individual customers, but as there is no need to extract many records at once or in
a short period of time, this can be restricted by our approach. Nevertheless, the
database management system will be able to backup data and have the ability to
read and write data according to fixed application purposes.

2 Preliminary Considerations

Security mechanisms for conventional databases are divided into three layers: physical
security, operating system security, and database management system security [BS05].
Because the database management system (DBMS) is the primary line of defense
in constraining access to the data stored in a database, we focus on access control
models of the DBMS. Established access control models can be grouped into three
classes: Discretionary Access Control (DAC), Mandatory Access Control (MAC), and
Role Based Access Control (RBAC) [SS94]. They are widely used, well investigated,
and have been proven to be useful, as long as the data is accessed using mechanisms
of the DBMS. Especially RBAC is an effective way to scale access control in large
systems [PGO6]. However, access control is useless if an attacker gains direct access
to the database or at least the hard disk drive. An intruder could mine a database
footprint on disk and simply copy the plain text. Encryption can solve those issues
and protect the data against unauthorized, physical reads and writes [BG09]. In
addition, encryption can solve the problem of data backup theft [SVEG10].

Nevertheless, access control as well as encryption are not restrictive and protective
enough to guarantee that sensitive data can not be queried if an insider or an outsider,

132

who gained access rights, extracts data. This threat is most often caused by current or
former contractors, employees, or even business partners who have or had authorized
access to an organization’s network and want to take advantage of it [GSBT04]. To
ensure a maximum of protection — even if a total protection will never exist — this
insider threat should be reduced to a minimum. We will illustrate that the protection
level can be significantly improved by introducing the relatively light-weight concept
of a leakage-resistant data valuation.

3 Leakage-Resistant Data Valuation

Our proposed approach is a valuation-based extension of the conventional access
control for the relational database model, which calculates for every query the total
monetary value depending on queried tables and attributes as well as used operations.
In detail, every attribute A; € R of a base relation schema R is valuated by a
certain monetary value (mval(4;) € R). With these attribute valuations, we derive a
monetary value for one tuple t € r(R) given by Equation (1), as well as the total
monetary value of the relation r(R) given by Equation (2), if data is extracted by a

query.

mval(t € r(R)) = Y moval(A;) (1)
A;€ER
mual(r(R)) = Z mual(t) = |r(R)| * mval(t € r(R)) (2)
ter(R)

We are considering (1) the quality of information (monetary value of attributes)
as well as (2) quantity of information (number of tuples). Based on this, query
results derived by operations need to be considered and valuated depending on type
and granularity. For these purposes we decide, that operations which enhance the
information content should increase (e.g., joins), whereas coarsening operations (e.g.,
aggregation), which reduce the number of rows or columns, should decrease the total
monetary value of the resulting data. However, the calculated monetary value of one
tuple is less than of a tuple with the same number of attributes, but at least as of one
aggregated value, because the information content increases due to aggregation. For
the sake of simplicity, we propose to multiply the monetary value of an aggregated
attribute by a certain factor (e.g., 2), regardless of the type of aggregation (e.g., AVG,
SUM, MAX, etc.). In case of a joined tuple of several tables, all monetary values of
included attributes are summarized. The cumulated total monetary value of a query
is afterwards compared to two thresholds.

Suspicious threshold: thrg,,, € R is used to identify queries with a monetary
value which is suspicious, i.e., could indicate malicious behavior, and these are written
to an alert log and handled accordingly.

133

Truncate threshold: thry.,, € R is used to identify malicious queries directly.
Queries with a higher total monetary value are truncated when exceeding this boun-
dary. In addition, truncated queries also need to be logged, therefore the truncate
threshold is set to a higher value than the suspicious threshold (thrsysp < thrirun)-

Alert log: The alert log accordingly captures every exceedance and is written
continuously to allow a tracing of violations over time. A maintenance job periodically
analyses the captured discrepancies and informs responsible security guards — a
number of persons that are delegated (at least four-eye-principle).

To prevent valuable extractions by one query and several queries within a short
period of time, we do not only (1) truncate or log a single query that extracts
to much information, but also (2) prevent a sequence of queries with the same
intention. Hence, we cumulate the monetary values of previous non-suspicious queries
(mwal(r(R;)) < thrsysp) per user, to measure how much information was extracted
over a period of time. Because we are just interested in a certain time interval, the
user valuation is reset periodically (e.g., hourly, daily, weekly, etc.). The mechanism
of logging and truncating when reaching thresholds is also used for the time restricted
user valuation. With this determination we are facing line by line extractions, e.g., by
a batch script. Additionally, we recommend that the calculation of the total monetary
value of a query is done before physically querying the result set. Due to the fact that
monetary values of attributes and tuples as well as both thresholds are known, by
pre-calculating, there is no overhead of joining tuples, which will not be displayed
anyway. To do so, we calculate the monetary value of one result tuple including
every attribute (shown in Eq. (1)) and we derive the maximum releasable tuples
(tplmasz € IN) for a certain result relation r(R):

(3)

tplmax(r(R)):{ thTtrun w

mual(t € r(R))

To inform the requester of a query, that the result set was shortened because the
truncate threshold was exceeded, an information is displayed. The truncation only
applies to commands which create displayed results. Others, like backup processes,
data modifications, etc., could for instance be privileged by a whitelist. We see our
approach as an extended access control mechanism and classify it as active access
control regarding to [PGO6], because it provides continuous and dynamic access control
beyond initial access control decisions. For implementation purposes, monetary values
for distinct attribute may differ and need to be set manually while defining the table
schema. Moreover, monetary values of tuples are derived from attributes and do not
need to be set at all. The suspicious threshold as well as the truncate threshold are
disabled and set by default (thrgysp = thryun = 00), but can be easily activated.

To be able to define monetary values for attributes and thresholds, we propose an
extension of SQL by adding thresholds as system variables and monetary values of
attributes as extra options within the table definition. An example of syntax to
define several monetary values for attributes while creating a table and enabling both
thresholds are shown below:

134

suspicious_valuation=2000
truncate_valuation=4000

CREATE TABLE table_1

(
attribute_1 INT PRIMARY KEY MVAL 0.1,
attribute_2 UNIQUE COMMENT ’important’ MVAL 10,
attribute_3 DATE

);

Within this code example attribute 1 and 2 are directly set by definition, while
attribute number 3 is set to the default value (mval(Az) = 0) by the system. With
this determination, we can ensure, that a DBMS with an implemented leakage-resistant
data valuation, but without any set valuations, will exactly work like a conventional,
non-modified DBMS. Consequently, it is also possible to modify those valuations
by using an ALTER-command of SQL. All data valuations are stored in the data
dictionary, because it is a centralized repository of information about data such as
meaning, relationships to other data, origin, usage, and format [IBM93]. However,
at runtime all valuations should be held in main memory to ensure a maximum of
performance.

4 Related Work

Conventional database management systems mostly use access control models to face
unauthorized access on data. However, these are insufficient when an authorized
individual extracts data regardless whether she is the owner or has stolen that account.
Several methods were conceived to eliminate those weaknesses. We refer to Park and
Giordano [PGO6], who give an overview of requirements needed to address the insider
threat.

Authorization views partially achieve those crucial goals of an extended access control
and have been proposed several times. For example, Rizvi et al. [RMSR04] as well
as Rosenthal et al. [RS00] use authorization-transparent views. In detail, incoming
user queries are only admitted, if they can be answered using information contained
in authorization views. Contrary to this, we do not prohibit a query in its entirety.
Another approach based on views was introduced by Motro [Mot89]. Motro handles
only conjunctive queries and answers a query only with a part of the result set, but
without any indication why it is partial. We do handle information enhancing (e.g.,
joins), as well as coarsening operations (e.g., aggregation) and we do display a user
notification. All authorization view approaches require an explicit definition of a
view for each possible access need, which also imposes the burden of knowing and
directly querying these views. In contrast, the monetary values of attributes are set
while defining the tables and the user can query the tables or views she is used to.
Comparison methods are also not addressing the problem of how to keep up to date,

135

because new operators and constraint constructs are repeatedly evolving. Moreover,
the equivalence test of general relational queries is undecidable and equivalence for
conjunctive queries is known to be NP complete [CM77]. Therefore, the leakage-
resistant data valuation is more applicable, because it does not have to face those
challenges.

However, none of these methods does consider the sensitivity level of data that is
extracted by an authorized user. In the field of privacy-preserving data publishing
(PPDP), on the contrary, several methods are provided for publishing useful information
while preserving data privacy. In detail, multiple security-related measures (e.g.,
k-anonymity [Swe02], I-Diversity [MKGV07]) have been proposed, which aggregate
information within a data extract in a way that they can not lead to an identification
of a single individual. We refer to Fung et al. [FWCY10], who give a detailed overview
of recent developments in methods and tools of PPDP. However, these mechanisms
are mainly used for privacy-preserving tasks and are not in use when an insider
accesses data. Moreover, privacy preserving mechanisms are not applicable for our
scenario, because they do not consider a line by line extraction over time as well
as the information loss by aggregating attributes of the result set, that the user is
allowed to see.

To the best of our knowledge, there is only the approach of Harel et al. ([HSRE10],
[HSREL11], [HSRE12]) that is comparable to our data valuation to prevent suspicious,
authorized data extractions. Harel et al. introduce the Misuseability Weight (M-score)
that describes the sensitivity level of the data exposed to the user. Hence, Harel
et al. focus on the protection of the quality of information, whereas our approach
predominantly preserves the extraction of a collection of data (quantity of information).
Harel et al. also do not consider extractions over time, logging of malicious requester
and the backup process. In addition, mapping attributes to a certain monetary value
is much more applicable and intuitional, than mapping to a artificial M-score. We
also suppose a better performance for our approach, because we can calculate the
maximal size of a result set before physically querying.

Our extended authorization control does not limit the system to a simple query-
authorization control without any protection against the insider threat, rather we allow
a query to be executed whenever the information carried by the query is legitimate
according to the specified authorizations and thresholds.

5 Conclusion and Future Work

We presented the leakage-resistant data valuation as an additional layer in a security
defense model for raw data. Within this security defense model each layer functions
as a separate firewall and all of the layers are ordered like onion skins with the
raw data as base (see Fig. 1). This principle is called defense in depth, because
attackers must get through layer after layer of defense to reach the base — the raw
data. The data valuation layer is inserted below the conventional access control

136

Access Control

DBMS Level

Physical Level

Figure 1: Security defense model on DBMS and physical level

layer and therefore more powerful and restrictive. On the top of access control
methods, it is common practice to define views which give users access to a specific
portion of data without having direct access rights. Encryption on the contrary, is
situated below our data valuation layer, because it uses DBMS-, file-, application-
or client side encryption to protect the raw data [SVEG10]. In future work we will
implement our leakage-resistant data valuation approach and evaluate performance as
well as usability issues. There will also be research on modifying our quantity-cutting
mechanism to a quality-cutting one, where data will be masked instead of truncated.
Furthermore, we will publish a more detailed description of how to treat various
operations (e.g., different joins, set operation, etc.), procedures, and functions. It
needs to be investigated how to set the monetary values and thresholds effectively,
regarding to various usage scenarios. Another field of application is a self-protecting,
leakage-resistant data valuation, where the system will set various parameters by itself,
collect user profiles, and compare them to a malicious behavior that was identified
earlier. With this extension, we will also be able to establish an anomaly detection or
at least enhance an existing anomaly detection system.

Acknowledgments: This research has been funded in part by the German Federal
Ministry of Education and Science (BMBF) through the Research Program under
Contract FKZ: 13N10817. We thank Ingolf Geist for his support.

References
[BG09] Luc Bouganim and Yanli Guo. Database Encryption. In Encyclopedia of
Cryptography and Security, pages 1-9. Springer, 2009.

[BS05] Elisa Bertino and Ravi Sandhu. Database Security - Concepts, Approaches, and
Challenges. IEEE Dependable and Secure Comp., 2(1):2 —19, March 2005.

[CMT77] Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive
Queries in Relational Data Bases. In Proceedings of the ninth annual ACM
symposium on Theory of computing, STOC’T7, pages 77-90. ACM, 1977.

137

[FWCY10]

[GSBT04]

[HSRE10]

[HSRE11]

[HSRE12]

[TBM93)]

[MKGV07]

[Mot89]

[PGO6]

[RMSRO4]

[RSO0]

[SS94]

[SVEG10]

[Swe02]

[VBFT04]

Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. Privacy-Preserving
Data Publishing: A Survey of Recent Developments. ACM Comput. Surv.,
42(4):14:1-14:53, June 2010.

Richard Guida, Robert Stahl, Thomas Bunt, Gary Secrest, and Joseph Moor-
cones. Deploying and Using Public Key Technology: Lessons Learned in Real
Life. IEEE Security Privacy, 2(4):67 — 71, August 2004.

Amir Harel, Asaf Shabtai, Lior Rokach, and Yuval Elovici. M-score: Estimating
the Potential Damage of Data Leakage Incident by Assigning Misuseability
Weight. In Proceedings of the 2010 ACM workshop on Insider threats, Insider
Threats’10, pages 13-20. ACM, 2010.

Amir Harel, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Eliciting Domain
Expert Misuseability Conceptions. In Proceedings of the sixth international
conference on Knowledge capture, K-CAP’11, pages 193-194. ACM, 2011.

Amir Harel, Asaf Shabtai, Lior Rokach, and Yuval Elovici. M-Score: A Misuse-
ability Weight Measure. IEEE Trans. Dependable Secur. Comput., 9(3):414-428,
May 2012.

Corporation IBM. IBM Dictionary of Computing. McGraw-Hill, Inc., New York,
NY, USA, 10th edition, 1993.

Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrish-
nan Venkitasubramaniam. L-Diversity: Privacy Beyond k-Anonymity. ACM
Trans. Knowl. Discov. Data, 1(1):1-50, March 2007.

Amihai Motro. An Access Authorization Model for Relational Databases Based
on Algebraic Manipulation of View Definitions. In Proceedings of the Fifth
International Conference on Data Engineering, pages 339-347. IEEE Computer
Society, 1989.

Joon S. Park and Joseph Giordano. Access Control Requirements for Preventing
Insider Threats. In Proceedings of the 4th IEEE international conference on
Intelligence and Security Informatics, ISI’06, pages 529-534. Springer, 2006.

Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending
Query Rewriting Techniques for Fine-Grained Access Control. In Proceedings
of the 2004 ACM SIGMOD international conference on Management of data,
SIGMOD’04, pages 551-562. ACM, 2004.

Arnon Rosenthal and Edward Sciore. View Security as the Basis for Data
Warehouse Security. In CAiSE Workshop on Design and Management of Data
Warehouses, DMDW’2000, pages 5—6. CEUR-WS, 2000.

Ravi S. Sandhu and Pierangela Samarati. Access Control: Principle and Practice.
IEEE Communications Magazine, 32(9):40-48, September 1994.

Erez Shmueli, Ronen Vaisenberg, Yuval Elovici, and Chanan Glezer. Database
Encryption: An Overview of Contemporary Challenges and Design Considera-
tions. SIGMOD Rec., 38(3):29-34, December 2010.

Latanya Sweeney. k-Anonymity: A Model For Protecting Privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557-570, October 2002.

Vassilios S. Verykios, Elisa Bertino, Igor N. Fovino, Loredana P. Provenza, Yucel
Saygin, and Yannis Theodoridis. State-of-the-Art in Privacy Preserving Data
Mining. SIGMOD Rec., 33(1):50-57, March 2004.

138

