
Eiciency of Projectional Editing (Extended Abstract)

Thorsten Berger1, Markus Voelter2, Hans Peter Jensen3, Taweesap Dangprasert3, Janet
Siegmund4

Abstract: Projectional editors are editors where a userŠs editing actions directly change the abstract
syntax tree without using a parser. For programming, they promise essentially unrestricted language
composition and Ćexible notations. For instance, graphical and textual domain-speciĄc languages can
be easily embedded into source code, avoiding intricate parser integration. Yet, despite these beneĄts,
programming still mainly relies on editing textual code, where projectional editors imply a very
diferent experience, often seen as the main adoption challenge. We describe an experiment [Be16] on
the eiciency of code editing in a projectional editor conducted with industrial and student developers.

Keywords: projectional editing; language workbench; experiment

Projectional editor describes a type of editor where users work on a projection of a programŠs
abstract syntax tree (AST) and directly change it with their editing gestures. This concept
is diferent from parser-based editing, where users change the concrete syntax, and a
parser then constructs the AST. Projectional editing, also known as structured editing or
syntax-directed editing, is not a new idea; early references go back to the 1980s and include
the Incremental Programming Environment, GANDALF, and the Synthesizer Generator.
More contemporary incarnations are Intentional Programming, the Whole Platform, Más,
Onion, and Jetbrains Meta Programming System (MPS). Most projectional editors are used
in language workbenchesŮtools for developing and composing languages.

Projectional editors have two main advantages resulting from the absence of parsing. First,
they support notations that cannot easily be parsed, such as tables, diagrams or mathematical
formulasŮeach of which can be mixed with the others and with textual notations. Second,
they support various ways of language composition, typically including modular language
extension as well as embedding unrelated languages into a host language. Projectional
editors can deal with mixed-language code while retaining awareness of the code structure
(avoiding syntactic ambiguities), which is much harder to achieve with parser-based tools.

These beneĄts come at a cost. Even though, projectional editors support a wide range
of non-textual notations, a signiĄcant share of any program, such as expressions and
statements, will be expressed textually. For textual notations, however, projectional editors
imply a very diferentŮtypically perceived as worseŮediting experience compared to

1 Chalmers | University of Gothenburg, Sweden, thorsten.berger@chalmers.se
2 independent / itemis, Germany, voelter@acm.org
3 ITU Copenhagen, Denmark, {hpgurre|taweesap}@gmail.com
4 University of Passau, Germany, janet.siegmund@uni-passau.de

cbe

M. Tichy, E. Bodden, M. Kuhrmann, S. Wagner, J.-P. Steghöfer (Hrsg.): SE 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 153

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/


textual (parser-based) editors, often seen as the main challenge prohibiting their widespread
adoption. The early projectional editors from the 1980s did very little to address this issue,
ultimately limiting their adoption. Contemporary tools, such as MPS, have signiĄcantly
improved usability, but inherited the bad reputation.

In our main publication [Be16], we present an experiment of code-editing activities in a
projectional editor, conducted with 19 graduate computer-science students and industrial
developers. We investigate the efects of projectional editing on editing eiciency, editing
strategies, and types and frequencies of errors madeŮeach of which we also compare to
conventional, parser-based editing. We design the experiment based on a survey [Vo14] we
conducted with industrial developers familiar with projectional editing. The instrument for
our experiment is JetBrains MPS, since (i) it is the most widely used projectional editor
today, (ii) it improved signiĄcantly over the tools from the 1980s, and (iii) it is open-source
software, which fosters the replicability of our results.

Our results show that eiciency with projectional editing can be quickly achieved for
basic code-editing activities. More experience does not lead to signiĄcantly better results.
In contrast, advanced editing (e.g., larger code modiĄcations or refactorings) requires
signiĄcantly more experience and understanding of the underlying concepts (in particular,
the AST structure). Then, however, experienced developers can outperform beginners with a
projectional editor and even the participants using the parser-based editor. The projectional
editor also fosters fewer errors (mistakes) and diferent editing strategies (e.g., increased use
of operations that work well on ASTs).

Based on our results, we conceived techniques to further improve the editing experience.
We presented Grammar Cells [Vo16], which support creating consistent language-editing
experiences, with a focus on supporting the editing of very hierarchical program constructs,
such as expressions. Grammar cells create a consistent editing experience that increasingly
resembles linear (textual) editing, further reducing the need for understanding the underlying
AST. In future work we plan to systematically study the beneĄts of arbitrary language
composition (i.e., language embedding) and Ćexible notations (graphical and textual).

Literatur

[Be16] Berger, T.; Voelter, M.; Jensen, H. P.; Dangprasert, T.; Siegmund, J.: Eiciency
of Projectional Editing: A Controlled Experiment. In: 24th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE).
2016.

[Vo14] Voelter, M.; Siegmund, J.; Berger, T.; Kolb, B.: Towards User-Friendly Projectional
Editors. In: 7th International Conference on Software Language Engineering (SLE).
2014.

[Vo16] Voelter, M.; Szabo, T.; Lisson, S.; Kolb, B.; Erdweg, S.; Berger, T.: Eicient
Development of Consistent Projectional Editors using Grammar Cells. In: 9th
International Conference on Software Language Engineering (SLE). 2016.

154 Thorsten Berger et al.


