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Abstract: Every year, about 310,500 pedestrians still lose their lives in traffic accidents worldwide.
Cooperative pedestrian collision avoidance represents a promising approach to reduce those accident
numbers. This approach assumes that pedestrians are equipped with mobile devices to obtain and
exchange their current movement information with nearby vehicles and use those to predict and
prevent possible collisions. However, the ability to predict collisions between a pedestrian and a
vehicle also depends on the assumptions about the pedestrianŠs future behavior. One important aspect
of those assumptions is a pedestrianŠs individual walking pattern, like his common or maximum speed.
Thus, learning and applying individual walking speed proĄles of pedestrians to improve movement
prediction may increase the accuracy of a collision detection algorithm and could, in turn, reduce
the probability of missing or erroneously triggering an alarm. In this publication, we propose an
approach to learn individual walking speed proĄles of a pedestrian based on smartphone Global
Navigation Satellite System (GNSS) data and evaluate the ability to predict collisions based on those
proĄles. Therefore, we Ąrst conducted experiments to estimate the error of walking speed obtained
from smartphone GNSS. Second, using our Pedestrian Monitor application, we recorded real-world
walking speed information from nine participants. Based on these data, we show that individually
learned walking speed proĄles are able to increase the accuracy of predicting an impending collision.

Keywords: collision avoidance; collision detection; pedestrian safety; Car2P; movement prediction;

walking speed

1 Introduction

About 310,500 pedestrians have been killed in road traffic accidents in 2016, according
to the WHO [Wo]. To reduce accident numbers, several solutions for active collision
avoidance systems have already been introduced and are available in current vehicles in
form of cameras, radars or LIDAR systems. While these solutions work well under clear
weather conditions and direct line of sight between vehicle and pedestrian, they may struggle
under bad weather or non-line of sight (NLOS) conditions. To overcome these limitations,
cooperative collision avoidance assumes that pedestrians are equipped with mobile devices
like smartphones or smart watches, which are able to obtain movement information and
exchange it with nearby vehicles, even in NLOS conditions. Usually, pedestrian collision
avoidance systems use this movement information, i.e. position, heading direction and speed
from pedestrians and vehicles, and determine if their trajectories intersect in the near future.
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If such an intersection can be determined and the remaining time to collision is below a
certain threshold, a warning is given. However, depending on how much time to collision
is left, the pedestrian as well as the vehicle can change their movement at any time and,
for example, slow down or speed up. Those possible movement changes are usually not
anticipated in existing approaches, for instance due to the absence of personalized movement
proĄles. As an example, consider that a smartphone based safety application detects that
the current walking speed is slower than his average speed, which was obtained from past
movement data. Assuming that the pedestrian would collide with a vehicle if he speeds
up, the collision detection algorithm could use this information to make the prediction
more accurate, or even issue a warning, provided certain conditions are met. As another
example, consider that an elderly person walks at a much higher walking speed than usual.
The algorithm could assume in this case that the pedestrian will slow down eventually due
to old age, and may not reach a potential collision point.

In this publication, our aim is to investigate whether it is possible to learn individual
walking speed proĄles of pedestrians using smartphones and to use those proĄles to improve
movement prediction. Obtaining more individual information about a pedestrian may not
only improve the prediction of future movements, but may also increase the accuracy of
predicting an impending collision. Therefore, we Ąrst conducted measurements to estimate
the accuracy of smartphone GNSS when pedestrians walk at different speeds. After this,
we wrote an Android-based application which was used on personal smartphones of nine
participants and automatically recorded GNSS data during their everyday life. Based on
those recorded data, we use a simulation environment to show the improvements of using
personalized walking speed proĄles for movement prediction of pedestrians.

The remainder of this paper is structured as follows. The next section gives an overview
about related publications. In Section 3, we describe the experiments for evaluating the
accuracy of smartphone GNSS. Section 4 presents details about our own application, which
was used for our long-term experiments. Section 5 describes the methodology for our
simulation setup for our evaluation, which is presented in Section 6. Finally, we conclude
the paper in Section 7.

2 Related Work

Within the last decade, considerable attention has been paid towards the development of
cooperative pedestrian collision avoidance. The earliest publications like [DF10; SNH08]
assumed the usage of mobile phones on the pedestrian side to send information to nearby
vehicles to estimate a collision risk. However, in these publications, this risk estimation is
based on current movement information and does not consider pedestriansŠ past movement
data for prediction. Nevertheless, [DF10; Ta17] discussed the theoretical beneĄts of using
a pedestrianŠs movement history for movement prediction. An actual investigation about
those beneĄts, to the best of our knowledge, has not been conducted so far. However,
there are publications which have made certain assumptions about pedestrian movement
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speed. In [An14], Anaya et al. proposed an approach for smartphone based pedestrian
protection, in which the collision risk level between pedestrian and vehicle is dependent
on vehicle dimensions, speed, yaw rate as well as the pedestrianŠs current position and
maximum speed. More speciĄcally, the collision risk is estimated based on the fact whether
the pedestrian is able to reach the intersection point between the pedestrianŠs and the
vehicleŠs trajectories, while the pedestrianŠs speed is assumed to be the highest possible
pedestrian speed. Compared to our approach, the authors always use a Ąxed value for
maximum pedestrian speed and do not consider individually learned walking speed proĄles.
In [Mu18], Murphey et al. proposed an approach for pedestrian path prediction based
on neural networks. For training the neural networks, the authors used prerecorded trip
data from pedestrians, which contain position, velocity, yaw rate and heading information.
However, past pedestrian speed information is only used implicitly for improved movement
prediction, so its actual impact remains unclear.

In conclusion, no other publication has investigated how to automatically learn individual
walking speed proĄles of pedestrians and how those proĄles can be used to improve
movement prediction to detect and avoid collisions.

3 Evaluation of smartphone GNSS speed accuracy

In order to estimate how accurate smartphones are able to measure a pedestrianŠs walking
speed, we conducted a measurement campaign using Ąve participants and two different
smartphones. We also investigate if it is possible to recognize different walking speed
proĄles in smartphone GNSS data when participants walk with varying speeds, i.e., slow,
normal and fast. Walking at a slow speed simulate situations like strolling through a city
while walking fast could represent a situation in which a pedestrian is in a hurry.

3.1 Measurement Setup

Our measurements were conducted in an urban area, where participants walked along a
straight line with a length of 50 m, while maintaining a constant speed. This measurement
track was divided into segments of 10 m. We recorded a timestamp every time a participant
passed a 10 m mark. The ground truth speed for one segment is then estimated by dividing
the distance, i.e., 10 m, by the time the participant took to walk along the segment. We used
two smartphones, a Google Nexus 5X and a Nokia 7.1 and captured GNSS speed data at
the maximum sampling frequency, which was about 1 Hz. During each measurement, the
participant holds a smartphone in the hand, which was pointing towards walking direction.
Every participant walked at a slow, normal or fast but constant walking speed for 5-10
minutes, respectively. The actual walking speed for different speed classes was dependent
on each individual participant, i.e. the participants were free to decide which walking speed
they consider as slow, normal or fast.
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3.2 Evaluation of GNSS Speed Accuracy

For our Ąrst evaluation, we considered all recorded values for walking speed, as reported
by the Android Location Provider. No outliers were removed. The evaluation results for
speed accuracy are shown in Tab. 1. The Root Mean Square Error (RMSE) values for speed
range between 0.19 m

s
and 0.25 m

s
for the Nexus 5X and between 0.17 m

s
and 0.27 m

s
for the

Nokia 7.1. The mean RMSE for both smartphones differs by 0.02 m
s

.

participant
RMSE for speed [ms ]

Nexus 5X Nokia 7.1
1 0.25 0.17
2 0.25 0.27
3 0.19 0.24
4 0.25 0.15
5 0.22 0.24

mean 0.23 0.21

Tab. 1: Mean root mean square error (RMSE) of GNSS speed

3.3 Evaluation of different speed classes

In Tab. 2, we show the results for Ąve participants for the three considered speed classes,
and their corresponding values for mean ground truth speed (µGT ), mean relative speed
error (µerror ) and standard deviation for speed error (σerror ).

participant speed class µGT [
m
s ] µerror [ms ] σerror [

m
s ]

1
slow 1.10 0.01 0.17

normal 1.54 -0.02 0.19
fast 1.90 0.01 0.16

2
slow 1.33 -0.11 0.25

normal 1.58 -0.07 0.20
fast 1.85 -0.03 0.35

3
slow 1.24 -0.16 0.23

normal 1.63 -0.04 0.27
fast 1.94 -0.02 0.23

4
slow 1.10 -0.02 0.12

normal 1.51 -0.01 0.14
fast 1.74 -0.04 0.19

5
slow 0.90 -0.05 0.18

normal 1.47 0.06 0.20
fast 1.93 -0.09 0.33

Tab. 2: Mean ground truth speed (µGT ), mean relative speed error (µerror ), and mean standard
deviation for speed (σerror ) for the Nokia 7.1 smartphone and Ąve participants

Despite a few outliers, e.g. participant 2 and 3 for slow walking speed, the mean relative
error is around 0 m

s
, but with varying values for σerror .
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In Fig. 1, we plotted a histogram including speed values of all speed classes of participant
1. This histogram shows three speed distributions which correspond to considered speed
classes slow, normal and fast.
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Fig. 1: Histogram for participant 1 with bin size 0.02 m
s , showing three different walking speed classes

(slow=1.10 m
s , normal=1.54 m

s , fast=1.90 m
s ), using a Nokia 7.1

Considering the obtained results and the ability to discriminate individual walking speed

classes shows that speed values obtained from smartphone GNSS are sufficient for learning

individual speed profiles. Approaches to improve the GNSS accuracy, like the usage of

sensor fusion techniques or upcoming advancements in GNSS technology may be able to

provide even more accurate results. However, the main focus in this publication is on the

methodology of learning individual walking speed profiles from pedestrians in order to

improve the prediction accuracy, independent of the actual data source.

4 Pedestrian Monitor

In order to capture the walking speeds from participants during their everyday life,

we implemented an Android-based smartphone app, which was used on their personal

smartphones. During one measurement, we obtained a pedestrian’s current movement

(latitude, longitude, speed, bearing, accuracy), the current activity (type, confidence) as well

as a list of satellites available. To obtain these data, we used the Android Fused Location

Provider API and the Google Activity Recognition API. Using the Activity Recognition API,

the app can automatically detect whether the pedestrian is walking or, for example, standing

still. We consider a measurement (or walking speed profile) as valid, if the pedestrian’s

activity is walking/on foot with confidence of ≥ 90%, the walking speed is ≥ 0 m
s

and < 4m
s

,

and the reported GNSS error 6 7 m. Since the error also influences the accuracy of the

speed estimation, the maximum allowed GNSS error was set to 7 m to avoid learning based

on data with insufficient accuracy.

In the following sections, we considered the data obtained in this measurement campaign

to represent the pedestrian’s real walking speed profile. However, it should be noted that
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deviations within the captured pedestrianŠs walking speed proĄles are not only caused by
pedestrian movement changes, but also GNSS errors, as shown in Section 3.

5 Simulator Setup

After capturing measurement data of walking speed from nine participants, we use those
individually learned walking speed proĄles to predict collisions between vehicles and
pedestrians. In detail, we determine the distribution of future position probabilities which
is based on individually learned speed distributions. For the evaluation, we use our own
Java-based simulator which we already used in prior publications [Ba18; BMD17].

5.1 Scenario

The scenario which we chose for our evaluation is a Euro New Car Assessment Programme
(NCAP) scenario which is depicted in Fig. 2. For our evaluation the vehicle is assumed to
be a car. This scenario was chosen since it represents approximately 80% of all accident
scenarios between pedestrians and vehicles, according to the German In-Depth Accident
Study (GIDAS) database [EKD13]. The scenario is modeled in a 2-dimensional Cartesian
coordinate system. For the carŠs geometry, we use a rectangle with a length of 4 m and a
width of 2 m. The pedestrian is modeled as a point. In the given scenario the car and the
pedestrian are moving perpendicular to each other which is modeled by setting the vehicleŠs
motion parallel to the x-axis and the motion of the pedestrian parallel to the y-axis. For
convenience, but without loss of any generality, we assume the collision point to be at (0, 0).

5.2 Motion modeling and Collision Detection

For both, the pedestrian and the car, we assume constant, linear motion. Let −→r {p,c } = (x, y)
be the current position of the pedestrian (p) and car (c), respectively. Since we consider linear
movements along the coordinate systemŠs axes, the motion for the car can be expressed as

−→r c(t) = (vc · t, 0) + (x, 0) (1)

where vc is the speed and x is the starting position of the car. Likewise, the motion of the
pedestrian is expressed as

−→r p(t) =
(
0, vp · t

)
+ (0, y) (2)

with vp being the speed and y being the starting position of the pedestrian. Concerning the
car, which has a rectangular geometry, −→r c(t) represents the center of the carŠs geometry at
time t. Based on Equation (1) and Equation (2), a collision can be detected by evaluating if
there is a t for which the current position of the pedestrian −→r p(t) intersects the rectangle
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of the car which is at position −→r c(t). If such a t exists, then the time-to-collision (TTC)
is TTC = t. The movement equations −→r (t) only depend on two parameters: The speed
v and the starting position (x, y). For better readability we will use a vector notation
−→m i = (vi, (xi, yi)) i ∈ {p, c} to refer to a speciĄc motion equation for the car (c) and the

pedestrian (p). Using the vector notation, we deĄne a binary function col
(
−→mc,

−→mp

)
which

evaluates a collision as follows:

col
(
−→mc,

−→mp

)
=

{
1 , if TTC ≥ 0

0 , else
(3)

5.3 Collision Prediction Probability

Let Vgt = {v0, v1, ..., vN } be the set of N measured pedestrian speeds. We derive an empirical
distribution Vb from the measured speed values using a bin size of b = 0.05 m

s
. We chose

0.05 m
s

as bin size to avoid empty bins in the empirical distributions, which can occur if the
smartphoneŠs GNSS speed resolution is lower than the chosen bin size. Assuming σV to be
the standard deviation of Vb we deĄne

Mb = {−→mb = (vb, (x, y))| − 3σV ≤ vb ≤ 3σV } (4)

as the set of 99.7% of all possible movement vectors based on walking speed distributions.
Using Eq. (3) we can deĄne the set Mcol ⊂ Mb of all movement vectors that lead to a
collision as

Mcol = {−→mb |
−→mb ∈ Mb ∧ col(−→mc,

−→mb) = 1} (5)

Let B = (v, v + b] the bin containing the value vb . The probability that the pedestrian will
move with a speed of vb ± b

2 is then determined by

P(−→mb) = P(vb) = P(B) =
|B |

N
(6)

We deĄne PC as the probability for a collision based on individual speed proĄles as the
sum of all probabilities P(−→mb) over all −→mb which lead to a collision:

PC =

∑
−−→mb ∈Mcol

P(−→mb) (7)

6 Evaluation

After deĄning the simulator setup in the last section, we now evaluate whether using
individually learned pedestrian walking speed proĄles (Section 4) are able to improve
collision prediction.
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6.1 Scenario

The scenario we considered is shown in Fig. 2. For sending and receiving movement
information, we assume that there is no delay and the current movement vector of the
vehicle and the pedestrian can be determined without errors. In this scenario, the pedestrian
walks with speed vgt , while the vehicles moves with a speed of vc = 50 km

h
≈ 13.9 m

s
. The

initial position of the vehicle is −→r c(t) = (−(vc · TTC + 2) , 0), while the pedestrianŠs initial
position is varied depending on the assumed ground truth walking speed. In detail, we set
−→r p(t) = (0 , −(vgt · TTC)) to assure that the collision point is always at the same position.
We investigate scenarios in which the TTC is varied between 1 - 4 s.

𝑣𝑔𝑡 ⋅ 𝑇𝑇𝐶

𝜇𝑣 + 3𝜎𝑣

𝜇𝑣 − 3𝜎𝑣
𝑣𝑐

𝑣𝑐 ⋅ 𝑇𝑇𝐶
collision area

𝑣𝑔𝑡

prediction areaspeed probability

low high low

Fig. 2: NCAP scenario for our evaluation

6.2 Usage of individual walking speed proĄles for movement prediction

In this section, our aim is to investigate whether personalized walking speed proĄles
can improve the probability of detecting an impending collision (PC). Therefore, we
consider scenarios in which pedestrians walk with their preferred walking speed, which was
determined as the 68%-conĄdence interval [µ−σ,µ+σ], calculated over all walking speed
data of a pedestrian. As a baseline for our evaluation, we consider a generalized proĄle,
which comprises walking speed data from all nine participants. This proĄle may be used to
estimate the collision risk if no individual information about the pedestrian is available. The
generalized proĄle has a mean value of 1.3 m

s
with a standard deviation of 0.34 m

s
. For the

personalized walking speed proĄle, we Ąrst assume for all scenarios that the pedestrianŠs
current speed is known. Then, by comparing the mean of all recorded proĄles with the
pedestrianŠs current speed, the proĄle with the smallest absolute difference is selected for
prediction. Finally, we determine PC for scenarios in which all of the pedestrianŠs preferred
walking speeds (in steps of 0.01 m

s
) are used as ground truth, while applying a personalized

and a generalized proĄle, respectively. We repeated these simulations for different values
for TTC and then averaged the results.
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Tab. 3 shows individual speed intervals, the pedestriansŠ age classes, the number of valid
proĄles (cf. Section 4) as well as the results for PC . Our evaluation shows that using
personalized proĄles results in higher values for PC when compared to using a generalized
proĄle, regardless of the pedestrian considered. On average, the usage of personalized
walking speed proĄles improves PC by 10%, 18%, and 21% for 2 s, 3 s, and 4 s TTC,
respectively. Due to an increased number of possible future trajectories, the beneĄts of
personalized walking speed proĄles become especially present for higher TTCs. Moreover,
these improvements are particularly noticeable for participants who walk at a lower speed
than the generalized proĄle, like participant 1, whose mean walking speed is 1.04 m

s
.

For TTC=1 s, we obtained PC > 97% for both personalized and generalized profiles and

excluded it from the table, since it represents a scenario in which a collision is almost

unavoidable.

PC (TTC=2s) PC (TTC=3s) PC (TTC=4s)

# age
speed

interval [ms ]
# profiles pers gen pers gen pers gen

1 50-59 [0.76-1.33] 6 0.95 0.74 0.88 0.55 0.82 0.46

2 30-39 [0.95-1.73] 23 0.97 0.91 0.90 0.81 0.82 0.74

3 40-49 [0.66-1.37] 43 0.95 0.70 0.88 0.52 0.80 0.44

4 20-29 [1.11-1.39] 21 0.99 0.92 0.99 0.80 0.97 0.72

5 30-39 [0.84-1.35] 12 0.96 0.80 0.89 0.61 0.81 0.52

6 20-29 [1.23-1.51] 39 0.98 0.95 0.98 0.89 0.98 0.83

7 20-29 [1.11-1.65] 50 0.98 0.94 0.97 0.87 0.94 0.81

8 20-29 [1.18-1.69] 13 0.97 0.95 0.95 0.90 0.90 0.85

9 20-29 [1.06-1.45] 3 0.97 0.92 0.97 0.80 0.93 0.71

mean 0.97 0.87 0.93 0.75 0.89 0.68

Tab. 3: PC for nine participants and varying TTCs, using their respective walking speed profiles (pers)

and a generalized profile (gen)

However, for this evaluation, we only considered scenarios, in which the pedestrian ground

truth speed actually matches typical learned pedestrian profiles. As a result, the outcome

for PC may be misleading in scenarios where the pedestrians’ current speed exceeds or

falls below the individual interval boundaries. In those cases, our approach might fail to

recognize an impending collision. Therefore, it is important to additionally incorporate

the current walking speed and find an appropriate weighting between the current and the

predicted collision risk.

7 Conclusion

In this article, we showed how cooperative VRU collision avoidance can benefit from

learning individual pedestrian walking speed profiles using smartphone GNSS. We first

showed that it is possible to distinguish between different walking speed distributions,

even in noisy smartphone GNSS measurements. We also conducted long-term experiments

to capture walking speed information from nine participants. Those individually learned
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proĄles were used to evaluate the beneĄts towards collision prediction. Using personalized
proĄles, our results show an average increase of 10%-21% collision detection accuracy
compared to a generalized proĄle. These results indicate that the usage of additional
personalized speed information, obtained from smartphones, is suitable to improve the
prediction accuracy of a pedestrian collision avoidance system.
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