

lFl-rF

lndustrial Real - Time

rrr/437/81. EN

it
I

I

i

I

L

i

i

iO
:

i

I

I

FORTRAN

(l)

rl

Real Time FORTRAN Dnaft Standard

The European Workshop on Industrial Computer Systems (EWICS) has prepa-

red a Draft for Standardization, which is available for public review and

eomment, on Industrial Real Time FORTRAN.

The Draft for Standardization was developed by EWICS Technical Commit-
tee I (EWICS TCf)in eooperation with Standards Committee 6l of the In-
strument Soeiety of America (ISA S6t) and the American Technical Com-
mittee I of the International Purdue Workshop on Industrial Computer Sy-

stems (tPW TCI/A).

This Draft specifies a tasking model and a set of procedures to allow con-
trol of multitasking systems. Moreover it specifies proeedures for binary
pattern and bit processing, proeess input/output and the control of the ac-
cess of shared files. The Draft for Standardization is based on FORTRAN
77.It is currently discussed to be submitted to-ISO for international stan-
dardization.

Copies of the Draft may be obtained free of eharge from the chairman of
EWICS TCI:

Dr. Wilfried Kneis

Mergenthaler Linotype
Entwicklung

Frankfurter Allee 55-75

D-62t6 Eschborn bei Frankfurt
Federal Republie Germany

Comments to the Draft received before August ,I, 1981, will receive a
written reply after being considered by the committee. Comments should

be submitted to the chairman of EWICS TCl.

1

i

I

rPlt/Et{rcs Tc 1, 2.2/80
(IRTF)

OcLober 1 980

Draft Standard

Industrial Real-Tine

FORTRAN

Definition of Procedures for the Application of
FOnTRAN for the Control of Indusfrial Processes

Proposed by the
Technical Commit,t,ee 1

of the International Purdue ttorkshop on Indusbrial Conputer Systens
and of the European l{orkshop on Industrial Computer Systens (E}JICS)

Nofe: This eopy of the draft standard is being circulated for conment
on1y. P1eas,e address all comnents to the chairman of EI{ICS TC1:

Dr. ttilfried Kneis
Mergenthaler Linotype
Entwicklung

Frankfurter Allee 55 - 75
D-6236 Eschborn/Frankfurt
Federal Republic of Gernany

The development of this standard has been supported by the Connission
of the European Conmunities, Directorate-General III. The views
expressed herein are, however, not necessarily those of t,he

Connission.

(2)

This Standard specifies a tasking model and a set of related routines to
a11or control of nulti-tasking systems. The background to this rork ig
given in AlItlEX A, and suggestions and justification for gome features are
given in Al{l{EX B. AlfilEX C deals ritb the problem of abortiag tasks. All
annexes are included for infornation purposes and are not part of the
Standard.

No extensions or variations fron this Standard should be implenented ercept
for features explicltly declared in this Standard to be proceasor dependent.

The Standard has been prepared by the Technical Connlttee 1 of the European
lforkshop on Industrial Conputer Systens (EtlICS) in cloae cooperation with
the 15A/561 Comnittee and with the Anerican Technical Conmittee 1 of the
Internatlonal Purdue llorkshop on Industrial Conputer Systens.

The standard was prepared by the followlng nernbers of the EI{ICS comnittee:

INDUSTNIAL REAL-TIME FONTRAN
(rPn/Ewrcs tc1) 2.2/80)

A. Arthur
F. E. Bearden
R. H. Caro
L. M. Cartright
R. L". Curtie
l{. van Diehl
M. R. Gordon-C1ark
M. N. Hands
C. C. Haskell
W. Loper
T. L. Luekens
S. C. Schwanm
R. Slgnor
R. E. l{lllard
D. ll. Zobrlst

.II-

FON EI{OR D

IBM Corporatlon
The Cadre Corporation
Modular Conputer Systens
Inland Steel Corporation
ALCOA

Hewlett Packard Cmpany
Scott Paper Conpany
Digital Equipnent Corporation
Union Carbide Company
Naval Oceans Systeos Center
Johnson Service Conpany
E. I. du Pont de Neoours
General Electrlc Conpany
Dlgltal Equlpment Corporatlon
ELDEC

October 1 980

NL
A
D

GB+IJSA
GB

D

D
A

PL
D

N

D

GB

NL
D

D

D

D

GB

D

C. G. F. Anpt PTT
l{. Koblitz Technische Universltllt l{ien
C. Blune llnlversitlt (arlsruhe
P. ll. Clout Los Alanos Selentific Laboratory, USA
A. J. Cox University of Oxford
G. Heller Fachhochschule für Technik l,tannheim
tl. Knels Mergenthaler Linotype
lf. Koblltz Teehnische llniversittt Hien
K. Maliszewski ME8A - PIAP, tlarszawa
K. Mangold AEG-Telefunken
0. Pettersen Norweglan Inst. of Technology
U. Renbold Universitüt Karlsruhe
D. A. Rutherford Unlversity of Manchester
J. A. M. Snoek Del.ft University of Technology
H. Sobiesiak Kernforschungszentrum Karlsruhe
G. Teuschler Sienens AG

M. Topschowsky AEG-Telefunken
P. Urbainsky Universitllt Erlangen-l{tlrnberg
A. J. H. llalter Rutherford Laboratory, DIDCOT
G. lliesner Hahn-Meitner-Inst. fllr Kernforschung

it Many different people contributed to the developnent of this standard, but
the influence by the Anerican ISA S61 and IPI{ TC1-A Connittees was
particularly inportant. The members of these conmltteeg are:

I NDUSTR I A L REÄö{TI}IE-i FbRlTSfr }I
(rPll/Ellrcs rc1, 2.2/80)

COilTENTS

- rir-l =

rltjlti'ulrtl

i":iL ll Tiä;:i L" i{ l. i'*,"i i"ii{ --i,1 If{Tililr:it : October 1 980
,. .:111,:; .:,i " :;:,-1" *:::.41f \;rd'1i i

Page

15

15

3

3.1
3.2

lt

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3

5

5.1

5.2
5.3

5.4
5.5
5 .5.1
5.5.2

5.5.7

5.5.8
5.6
5 .6.1
5.6.2
5.7
5.8
5.8. 1

5.8.2

5.9
5.9. 1

Elininating a task fron thelr#,1r3*!q€ r:isi:r.ii.!i'li]'1 8fiOQES8+ItlP.gflOltIPUt ri.:.i.iiri:
'";

systen,",. ... KILL.. q,, ,-. . -.;.,-,....":, .:.r.: ' .r.:.,1..1, .,.,
säheau{rnsatask. ..'.,,,i,!ÄEpri .q.,,.,;E,.,,tnii,qCq3}ii,q '.....i,:i,i1;'-,.i.:.{.......... 17

Starting a task by siopllfied calls '...:... .,9 . _ ,' ,.,i1,: ,.aai
start:tng a tasl tnnlarately . srnr"!:g): '-to

"!öoie
öJ"t'{öjProcess-i/Öliüa"sefqrar

it"ttinä a task after a specified '*;+trtiieu#e'OrA the I/o routthbsl.J".;..,i{... .'....' 17

tlnH delay
5.5.3 Sta{ting a task at a speclfled :r'jr;':iu |.:1,8 lüpull0-utüu-f-'of Analog Valluägd:;:.iii..U'....-.... 17

abs[l,ute tine STnI;lT' q9,.:,.rr,:i.i -:.r ;.j] ir"r.ir;.i.;ii:" j:':l';.i*rj.::lil . Ä . i
5.5.4 starging a task in perlodlc

"*",-" , , .,1 ,',11..1,,,. Sequeatiä+ analog datä ilnyt .i.:.....t:-a[1lcutiön:'l'.1':'. 9' '''11.2', Aüalpg,d-d.ta input lri 1äpdom seduepce AIRDH 1ö

5.5.5 Initlal start iEnediately ...1.';,..1: ?i€L''+O':'l"tt':-9''t'';65'aii''{4" output .::;'.'..."j':'..:..','.. '.. Aotl 18

5.5.6 Initlal start after a speclfied - ir* !ii;::ilr ii ^ '.::''':';";'*T i-'

tln€ delay .. CICLAF 10 1ä:i:r:-rllniout/öülibut of DiglE;e'l:rlrälligd;.,ii......... 18

Inllla1 start at speclfied absolute,','i..';l!,i.-rji;:r:!:. i.':i.l ,.;l j ;.:, :r' i i.li ,': : :. ' '.r'rl ''1
tfne ,..
conirecrron of a task to an event ';';:l. po!i.,iö' ': "'jä) L qläitäi" -cltput'.. '.,'r,;;;."'.;. l.l, ..'.... .. 18

Etitsination of previous scnetiuftig'... DSreb:'lO 't-12.ä.i -'üiäitii pulse output'.,';';.:'...:'..... DOMtt 18

Eltnlnation of event connectlons ... DCON 10 12.2.2 Latched digital output'. DOLW 19

,.,:1rBl# p{l8öiöi$iät .,.,11 .;:;:;.,ii:;i:,j:r. .,:iT. 16

BTEST 16
IBSET 16
IBCLR 16

IBCHNG 16

Elioination of tioe connections .. CANCSL 11

Delaylng continuation of a task, SUSPND 11 SECTION FOUR:

Suspending until.eveqt,or Line.'--:,r:. 1rj..!::i::i.f11 !.'i+ 'FIIi$1!{{S-Jü$,11' ''j1'.:r11 r::i."1ra;:'i.ii- 1";1',5
Delav unt1l event has occurred ..'.' HOLD 11

;;i;i ;;; "p!"iri"ä ;i;;;; -,.. . 1.3- - .J.ntreauct"i.g3,,t.-.,,......:."'." "' : ; "
time',.... DELAI'11 "

' i
Eventnark operatlons 12 14 Background Infornation

Setting an eventnark to the 0N -
condltlon ...'. pOSf te {.5:,.',-'r'-F.tlp'::sfB!-?n envlronoent ;t;'':.'''i' ""' 20

AITEX D: FILE HAIDLING

ANIEX E: REFEnEilCES

19

19

5.9.2 Clearing an eventnark CLEAR 1.? :. : r*, .:,.; i.r.:: ;
5.9.3 Testlng an eventnark condltion ,.. TESTW 12 16 Probedures to control file access-....20
5.g.lt uasktn! an eventnark l,[gü''1'2.''.- r.':'':-ir' ,"=].t.,f ,...-.,.., '

5.g.5 Unnasklng an eventnark ... UffUfCf tf2,l'::'::i.6.t"'":ätrödüCtion;.:i::.:..,1.::...'........,.,..,20
5.10 Resourcemarioperatlons 12 16.2 Creationöffiles...i:.,,r.'.i'...,'.CFILll20
5.10. 1 Setblng a resouroenark io the .:::..::!;,n '!.6,,:3,'.'-peleti.gl,9f files-...!;"r';'.r'" DFILII 21

tocked conditlon .,. ,. LOCK 12 16,4 ..qD€nhg files .,3.-..-r,.!r:.:!.f i'...;..'.. oryryt
?1

5.1o.2sett1n8are3ourcenarktothe..):,.-16.5.c1o91ng'.f.iIes
unlocked conditlon . 1n{r,öö*tfä 'ijf6i:a:r:1{o-drir.r-..l"aiess Motte ...'.'":'.'.:'..;'-'."' t'tOplpl{' zt

5.10.3 Testlng and settlng a resourceDat'k i;r::!' :i' "-i '':-r '"--":
to thti locked condltlon '.. "rTtttc(

i5':"':"tt: :rilljr'i:::f n;l' '-"" ': 'i
5, 11 Senaphore operatlons'.;,;:trE:ri,., ,l:'-i-111::-* ll{rtiilil1:'l ir:r3::ii:1ir'-.1 "' ' L

5,11.1 Inttiatizatlon of senaphore pneSgf,,*,i:ui .ri4N-!El(.iAi.+!IsToRrgAL BACKGRQ.!ll$.;:1ii .:,' .,:. 23

5.11.2 tlaib on senaphore ... 1144T5".13,.": ..r.,,-:r-,.- L;rj!-Llx.r---- 'i:-:r,.l.iil .!.1'

5.11.3 Release of senaphore1 $fqI,4jl,..i.4 , A.l!liEI'E: F,U-{THEI,DESCRIP1I0.I$.
. , ,. ". , 24

5'11.|lRead1ngasenapüo""value.'.....Y.ItDsdh'14_^.'...*-._-_''..
5,12 Nornal tenotnation of executlon EXIT 14 ANNEX C: ABOFßIOil 0F TASKS-';: -r ' - 2t

28

{t

INDUSTRIAL NEAL-TIME FORTRAN
(rPn/El{rCS TC1, 2.2/80)

1 Scope and field of appllcation

This Standard establlshes external procedure references
for use in industrlal cmputer control systens. fbese
external procedut'e references provide access to tine
and date inforoation, gernlt tnterface of programs with
executlve systensr process lnput and output functlonst
allon nanlpulation of bit strlngs and provlde a [ethod
for file handllng.

These procedures are lntended for use with prograEs
written tn FoRTRAN conforaing to the cument IS0
standard according to [16], These prograns are expected
to be executable both in a solitany and in a

nultiprogramning environnent under the control of a

real-tine executive systen.

?his standard ls applicable to all FOR1RAN syEtetss whlch
require nultl-tasking features.

2 Definitiong

Terns defined elsenhere in this vocabulary are
underlined. T:hey are, howeverr underlined only at bhe
first occurrence nithin the sane definltion paragraph'
Sone of the definitions, star-ßarked ln the table (r)r
are taken froE IS0 ?382/X.

access node: The rlght or permission to access
(read or write) a flLe granted by
the processor following a request
for such peroiasion.

basic clock counts: Counts of the basic unit of the
system real tine clock as avail-
able for the userrs progran.

conputation: A set of ooeratlons applied on a
set of data, as available for the
userrs progran.

critical region: A part of a seouential Drotrao
operating on shared data such that
this progran part nust have exclu-
sive access to the shared data
during the execubion.

one of the definlte states of a
task. A doroant task is knom to
the executive svsten and is not
in any of the states PENDINC'
RUI{NING, or SUSPENDED,

A significant discrete occurrence
or lncident wtrich is intended to
affect sone task executlon in a
planned nanner. An event itself
occurs ingtantaneously and sets an

eventnark:

executlon:

executable progran:

executive routine;
executive, aysten:

file: '

lnitiation:

nulbiprocesslngl :

.tllulErproSrannlnS :

nultitaskingl:

NOI-EXISTSNT:

obJect task;
deslgnated task;
referenced task:

opePatlon:

overrun:

october 1980

Internal variable of the executive
EISlrts, uaed to indicate that an
gy94l has occurred'
If the userrs sYsten contalns
oarallel tasks, the eventnarks are

shared data elenents for the

tagks. l).

Ttre collection of actions Per-
forned by a conputer processor
carying out lnstructions in a
sequentlal nanner,

A prograr includlng all of its
functlons and subroutines in a
forn suitable for executlon.

The part of the processor nhich
supports the procedures of this
standard.

A coll.ection of related records
treated as a unit. For the Purpose
of this standard, the records are
viened as being of fixed length.
Record gtorage and access are
independent of the inbernal fornat
of records.

The action taken by the executive
svsten to start the execution of
a task al its first executabl'e
statenent.

A node of operation that Provides
for parallel procesging by tHo or
more processors of a Eultiproces-
sor.

A node of operation that Provides
for the interleaved execution of
trro or Bore computer Prograes bY
a single processor.

A nultiple ooeration that provides
for the concurPent perfornance or
interleaved execution of tlto or
nore taaka.

One of the definite (fornal)
stateE of a task. A non-existent
task is unknosn to the executive
svstem.

The task that is nanted or
expected to be started, halted,
stopped, or othernise affected as
a consequence of a systen sub-
routine call.

A deterninistic rule for the ge-
neratlon of a finite set of data
fron another finite set of data.

Occurs when the conditlon for
lnitiation of a task beconeE true
while the task is still ruhning
becauae of a prevlous initlation.

rt
DORUANT:

event:

1) Supplenentary lnfornation' see olause 4.3.1.

(3)

I}IDUSTNIAL REAL.II!{E FORTRAT{
(IPn/ElrICS TC1, 2.2/80)

parallel tasks;
concurrent tasks:

PENDII{G:

NUWIilC:

seBaphore:

sequentlal order
of operatlons:

SUSPEIIDED:

task:

tine:

A set of tasks $trose op€ratlons
nay overlap in tine.

one of th€ deflnlte states of a
task. A pending task has been
assoclated rlth an event or tl.oe
aondltlon such that rhen the
condltion occurs, the task tfill be
transferred to state RUilNItIG and
initiated.

The eoobination of a data proces-
slng systeo and the tsechanlso by
rrhlch prograns are transforned for
use on that data processlng sys-
ten. (ANSI x3.9-1978.)

-2-

virtual processor:

october 1980

An environoent in rdhlch a task can
run fron the tlne it is initlated
until it ternlnates nitlrout con-
sideratlon of resource avall-
ability, A partlcular inplerenl-
ation serves to nap a set of
vlrtual processora onto a set of
real processor(s), Thls napplng is
processor dependent,

processor:

processor dependent: the action of the processor is not
speclfled in this. standard.

repetitive executlon:Occurs rtren a task is repeatedly

resourcenark:

lnlttated, drether at fixed lnter-
vals or by repetitive events,

Internal varlable of the executlve
-9X9!9Er used to lndicate that a
resource is excluslvel.y reserved

for a task.2)

One of the deflnlte states of a
task. A running task ls executing
ln lts vlrtual nrocessor.

A variable of the executive svs-
ten. used for the exchange of
synchronizlng lnfornation betneen
lnteraoting parallel tasks. All
senaphore operations ln this stan-
dard loply critlcal rerion protec-
tlon, provlded by the executlve
systen.

An order of operatlons that aan
only be perforned strictly one
afber another ln tlne rdthout any
overlap in tine,

One of the deflnite states of a
task, A suspended task has tenpo-
rarlly halted the execution of lts
vlrtual processor, and is rlaltlng
for a speoified condition to
contlnue the execution of its
vlrtual processor,

A conputation xhich can be
scheduled.
The ooerations of thls cotrputatlon
are perforoed in a strlct seouen-
tial order of ooeratlons.
(See also deflnitlons for oblect
task and sequentlal order.)

absolute tiEe:
CoDplete tlDe and date speclfi-
catlon.
relative tine:
A line increnent or dlfference.

2) Supptenentary inforoatlon: See clause 4.3.2.

IIIDUSTRIAL REAL-TIME FORTRAI
(rPtt/E$rcs re1, 2.2/30)

SECTION ONE

MULTIPROCRAMMING AND NEAL-TIME FEATURES

This seation describes several procedure references
avallable for ttre uaerrs grograot and relating to
nultlprograoming and particularly real-tine operaf ion.
For all calls of SECTION O}lE the operatlon is generally
considered indlvlsible, 1.e. their operatlon shall
behave as if they are not lnterrupted.

3 Date and fine infornatl-on

For prograening in a real-tine environnent, the uEer
oust have access to the tine varlables of the operating
systen. These tlne variables are obtained by systeu
calls described in thls clause.

Unanblguous tine specification requlres unique design-
atlon of tine lncludlng conplete date and an acknor-
ledged calendar, defining tine zero. Execution of
reference to subroutine DATIM provides this complete
infornation. The date refers to the Gregorian Calendar.

The calls ar.e:

CALL DATIM(t1) For obtaining current date and
time.

CALL CLoCK(J,k1,k2)
For obtaining the basic clock
counts.

?.1 obtain Date and Tine

The forn of bhlE call is:

CALL DATIM(t1)

where:

tl designates an integer array, lnto wbose
flrst 8 elenents will be placed the absolute
tine, as expressed by the systenrs real-tine
clock at bhe tine rhen the call iE executed.
These elenentE are as follows:

First elenent: Counts of the basic clock.
Second tr Milliseconds (O to 9991
Third 'r Seconds (0 to 59)
Fourth rr Minutes (0 to 59)
Fifth I Hours (0 to 23)
Sixth n Day (1 to 31)
Sevenlh n Month (1 to 12)
Eighth " Year

r.2 Obtaln Clock Counbs 1)

Execution of a reference to this aubroutine allolrs the
user progran to obtaln the current value oF the systeo
real-tine clock, expressed in basic clock counts.

October'1980

The forn of this call ls:

CALL CLoCK(J,k.1,k2)

rhere:

J designates an integer variable or integer
anray elenent into which the current value
of the clock nill be placed as a positive
integer. J is counted up to a naxl[un value
as Siven by k2, then set to zero and counted
again.

k1 Nunber of basic clock counts per second. An
integer value returned by the system.
This argunent shall be an integer variable
or an lnteger array elenent.

k2 -specifies the tsaxinuE nunber J can abtain.
An integer value returned by the systen.
Thls argunent shall be an integer variable
or an integet' array elenent.

4 General aspects of tasking

4.1 States and transitions

At any tine, a task is in one and only one state.
ActlonE execubed by the executlve systenr other taskst
or the designated tagk itselfr nay cauge transitlon fron
one state to another. These transltions are perfortsed
instantly, 1.e. they are considered ideally to take no
ttu[e.

ThiE nabhenatical nodel of a task üay be visualized by
a Üstate diägranrr, Iike Fig. 1, in which the states
are nodesr lllustrated as circlesr sthile transitions
are drawn as pointed arrows from one node to another
[11].

A nultlprogramming systen conslEta of several parallel
tasks and can be considered as nodelled by a nunber of
dlsJoint but sinilar dlagrans. It is feasible to apply
a three-dioenslonal picture, nith the slnilar diagrans
sandniched on top of each other and oriented so that
the identical states of the individual diagrans cover
each other.

State transitionE are generally caused by subroutine
calIs, occurrence of events, or explratlon of tine
llBitE. Tne nane, forE, and interpretation of the
aubroutine calls are standardized and described in the
present docunent.

In the preaent docuEent, a task is described by a
nathenatical nodel illustrated by the state diagrao of
Fig. 1. This model adheres to the following basic
principles:

1. Transitions are non-anbiguous, i.e. for a Siven
stlnulus in a given state, bhe lask can transit
to only one possible new state.

2. TranEitions are performed instantlyr i.e. in
zero Line.

3. A task exists in one state only at a tine.
4. The state nodel describes the behavior of tasks

as seen by the application progranner.

-3-

ä

1) Supplenentary lnfornation, see Annex B.

INDUSTRIAL REAL-TI}{E FORTRAN
(rPn/Et{rcs Tö1, 2.2/80)

FJ,guTe I. STATE I,4ODEL AI\ID TR,ANSITION DIAGRA!4

the followlng synbollsn ls used for transltlons Ln the
state dlagran: *

r Capltal letters ln box: Effect on a task ltrposed
by anotber task. I.e. a subroutlne aall ln one
task bas the lndicated effect on the deslgnated
task,

I Capital letters rlthout box: Effect lßposed by
the taqlc ltself nhile in the state'Rltilllltlc,

. Suall letters: Conditions rnder nhlcb the
erecutlve systeo perfoms the lndicated state
transltlons.

0ct,ober 1980

tlith reference to prlnoiple 4 above, no attenpt is Eade
to descrlbe executlve systen actlons t,ransparent to the
appllaatlon prograoner, Consequently, the stale RUNllIl{O
1s related to the taskrs vlrtual processor: It ls
iooaterial for the state of a task, whether a pbyslcal
processor happens to be asslgned to it, or the executlon
is tenponarily hanpered by the executlve systeo due to
llEited avallabllity of physlaal processors and the
taskrs lou prlority. thus, the nodel is as nell adapted
to nultiprocessors as to single pr.ocessor conputers.

4.2 MulblDle actlvatlon oa1ls 1)

Dlfferent tasks nay lssue apparently conflictlng
tranEltion calls for the sane obJect task, T'h1s nill
be the case during nornal openation, as rell as under
error oondltlons, slnce the state of an obJect task ls
unknonn at the tiBe a transltlon call ls nade by another
task.

Conforoing to the requlreßent of one state only at a
tlne, as llsted Ln the prevlous clause, a distinction
ls nade betneen state tranaltlons and calls for such
transitlona. Transition calls are neceived by the
executlve systen, nhlch $111 apply its o$n scheduling
strategy in handling such ca1ls.

Dependlng on available resourcelr, like internal table
space etc, of the executive systen, a transiblon call
lrill be accepted or reJected, An argunent wl1l be
returned after the reference, rdth approprlate value
lndicating uhether the reference has been accepted
nornally or reJected.

lr ? Sn.hF^nl'.ll^n
^^h^a^la

tlithln this standard, three concepts for the synchron-
izatlon betneen tasks and the resolution of the resource
contentLon are provided:

eventnarks,
resourcenarks,
seBaphores.

EventEarks and senaplrores are nainly uaed for slmchron-
ization purposes, nhereas the resourcenarks are nalnly
used for the resolution of resowce contention. In the
folloning subclauses these three concepts are described
further,

Eventnarks, resourcenarks, and senaphores are local
varlables of the executive systen and they nay not be
accessed other than by the nechanisns described in this
standard.

lr?t nventnrFLr

In the nanagenent of concwrent tasks, it is necessary
to asaoclate certaln tasks with certain events. These
events nay be elther exbernal or lnternal events.
External eyents are of sone physical nature, like a
contact closure, but the connection betreen an external
event and its eventEark ls beyond the scope of this
standard, An internal event arl-ses fron speciflc progran
actlon (see descrlption for CALL POST, clause 5.9.1),

1) Suppleoentaty infornatlon, Eee Annex B,

4-

.)

"HHH
'HHHq

INDUSTRIAL REAL.TIUE FORTRAII
(rPfl/Ettrcs rc1, 2.2/80)

Eventnarks are selected by reference to a nuneric
selector in the ran8e 1 to n, flhere n ls processor-
dependent. Sventnarks have tno sbates:

ON

OFF

The assoclatlon of events to tasks ls done by the
subroutine calls CALL SKED (see clause 5.4), CALL COI{
(see clause 5.5.8), CALL SUSPND (see clause 5.?)' and
CALL HOLD (see clause 5,8,1).

An eventnark is turned to 0t{ by the occurrence of an
internal or external event. If one or nore tasks are
assoclated rith lhis event, the executlve systen uill
cause each associated task to begln or continue
executlon. An eventnark 1s turned to OFF by direct
progran control or by the execubive Eysten as it
servicea the tasks assoclated wlth the eventnark.
Eventnarks can be changed only by the procedure
references defined in thiE standard and by the executlve
systen that services the events.

A
EventEarks may also be set to the oFF state by a specifie
progran action, the CALL CLEAR (see clause 5.9.2), and
they tsay be nasked and unnasked (see clauses 5.9.4 and
5.9,5). Addltlonally, the value of an eventnark nay be
tested by the logical f\rnction TESTEM (see clause
5.9.3).

,t
".2

Raqarrnoanankq

A slnple neans to reaolve contention for various
resources is provided by the resourcemark concept, which
pernits one and onlv one Lask to use a resource at a
tine.

Resourceoarks are selected by reference to a nuneric
selector in the range 1 (one) to n, nhere n is
processor dependent. Resourcemarkg have t$o states:

LOCKED
I'NLOCKED

This standard does not define rhat can be considered a
resource, It ls the reEponsibilj.ty of the uEer to
assoclate a resource rrith a resourcenark. If the user
wants to reserve a resource excluslvely for the rtmning
task, he choosea a resourcenark for the resource and
perforos the reference CALL LOCK (see ctauEe 5.10,1),
Should the resourcenark be in state UI{IOCKED at this
nonent, the resourc@ark rrill change to state LOCKED,
reserving the corespondlng resource exclusively for
thls task. Ttris reservatlon ls later released by the
task, by executlon of a reference lo EXIT (see clause
5.12) or IJNLOCK (see clause 5,10.2).

Should a task attenpt to L0CK a reEourcenark rhlch is
already locked, the executive Eysteo wlll transfer thls
task into the -state SUSPENDED, $here it renains until
the resourceuark becones unlocked by sone other task.

If several tasks are raiting for a resourcenark to be
UI{LOCKED, only one sill be selected for executlon by
the executive systen, (For details, see clause 5.10.2),
Itris is a nain difference frm the eventnark concept,
where all tasks rraiting for an eventmark are transferred
to state RUI{NING lf the eventnark is set to 0l{.

-5- Octoberl980

A resourcenark can also be set to LoCKED by reference
to the Lo8ical function TLoCK (see clause 5.10.3).

4- ?. ? SenaDhores

Senaphores represent a slmchronizatlon concept useful
for cases nhere a lrore advanced nechanlso than those
avallable by resouroenarks and eventoarks is desired.
Unlike eventoarks and resourceoarks, a senaphore has
an integer value, a . the value s of a senaphore
nust be inibialized and nay later be set by the reference
CALL PRESEU (see clause 5.11.1).

If the task needs to wait untll the value of a seoaphore
is greater than or equal to a specific valuer the task
uses the reference CALL IüAITS (see clause 5.11.2). By
execution of CALL I{AITS, the executlve systen tests if
the specified decrenent J is greater than s. In this
case, the calling task is transferred to state
SUSPEIIDED, where it renains until the senaphore value
s ls increnented by another task to a value greater
than or equal to J. If J ls not greater than s ,
the value s ls decrenented by J and the calllng task
continues its execution,

By executlon of CALL S.tGt{AL (see clause 5,11.3), btre
executlve systen increnents by J the value s of the
spectfied seoaphore. Ihis increnenbation may bring a
bask, waiting for thls senaphore, fron state SUSPEIIDBD
to state nUl{NIlG, if s becones greater than or equal
to J of the suspended task. If nultiple tasks are walting
for this senaphore and are candldates for rurming, after
the increnentatlon of s bJr J, the order in rhich these
tasks tranait to state RUNNINC is processor dependent,

By setting s to certain values and choosing different
values for J, a variety of advanced synchronization
concepts and solutions for resource contention are
possible.

In addltion to the calls descrlbed above, the value of
a senaphore nay be read using the integer functlon
IRDSEM (see clause 5,11.4).

5 Procedure referenceg

E.l TernE and sunnarv of orocedure references 1)

This clause contains a sunnary of the subroutlne calls
and function references described in subseguent
clauses.

T'he follo!.ing deslgnatlons for paraneters apply to
several of the calls. If the exact neaning of these
paraneter designations deviates fron what is deEcribed
belox, it tril1 be narked Epeelfically ln the debaiied
descriptlon of the call. If the neaning ls exactly as
defined here, the description of the paraoeter will be
onltted ln the description of the call

i specifies ühe task to be affected (obJect
task), The argunent shall be an integer
arrtay '
The contents of i nay be pantly generated
by CREATE. i is used as input paraneter
in all other calls,

1)

(4)

Supplenentary inforoation, aee Annex B.

IIIDUSIRIAL REAL-TIME FORTRAN - 6 -(IPy,/Enrcs Tc1', 2.2/80)

t,t1,t2 deslgnate lnteger arrays, rrhose ftrst I
elenents contain a specification of absolute,
or relatlve tine. Negative values of
elenents are not per.Bi.tted. These elenents
are as follows:

First elenent: Basic clock counts
Second tr Milliseconds
Third tr Seconds
Fourth I Hinutes
Fifth tr Hours
Slxth n O"y(")
Seventh r Honth(s)
Eighth rr Year(s)

If, for absolute tines, value 0 ls used for
one of the three date eleEents, thls shall
be lnterpreted as rcuFent datetr, rcurrent
nonthtr, or [current yearr by the executive
systen,

?he list of functlon and subroutlne calls, descrlbed

Full description
ln clause: calL:

October 1980

The interpretation of a relabive tioe
speaification eontainlng nonths or years
different fron zero is processor dependent.

ls set on return to the cal.ling progran, to
indlcate the disposition of the request as
follows:

0 or less : undefined
1 : request accepted
2 or greater : request reJected

(error conditlon)

Thls argunent shall be an integer variable
or integer array elenent, local. to the
calling progrno, The processor may define
speciflc values 2 2 to distinguish between
certain reasons for reJection,

in detail in subsequent clauses,

paraneters:

is:
,J

5.2

5.3

5.4

CALL CBEATE(1,n)

CALL ELL(i,n)
(opposlte of CREATE)

CALL SKED(i rs,el rt1 rt2,e2 rm)
(general scheduting)

CALL 'STRT(i ,s)(start innedlatel,y)

CALL STRTAF(t,t1,o)
(start after tine delay)

CALL STRTAT(i,t1,n)
(start at absolute time)

CALL CYCL(i,t2,n)
(cyclic, with innediate
first lnitlation)

CALL CICLAF(1,t 1, t2,n)
(cyclic, rith delayed
first lnitlatlon)

CALL CTCLAT(i,t1,t 2,m)
(cyclla, xith absolute tlne
spec. of first lnitlatlon)

CALL CON(i,e,n)
(establish event connection)

CA"LL DSKED(i,s,e,n)
(elinlnate scheduling)

CALL DCON(1,e,n)
(elininate event connection)

i : identificatlon of created task and associated progran

s : oode selector
el 3 eventnark reference
t1: absolute or relative tine for first initiation
1,22 tine period for cyclic lnltiations
eza reference to eventnark for overrun

tl: tine delay before initlation

tl: absolube tine for inltiation

tzt length of tiEe interval

tl: tine delay befone flrst lnltiation
t2: length of tine interval

tl: absolute tine for flrst inltiation
t2t length of tine lnterval

e : event[ark reference

s : node selector
e : eventnark reference

e : eventnark reference

5.5.1

5.5.2

5.5.3

5.5.5

5.5.6

5.5.7

5.5.8

5.6

5.6. 1

INDUSTNIAL REAL-TIME FORTRAN
(rPr{/El{rcs Tc1 , 2.2/80)

-7 - october 1980

5.6.2 CALL CANCEL(i,n)
(elininate tine echeduling)

5.7 CALL SUSPND(s,e,t,n,n) s 3 oode selector
(suspend continuation of e : reference to eventBark for end of delay
calling task for tlne t I tlne delay
period or until event) n : lndicätor for cause of end of delay

5.8.1 CALL HoLD(e,n) e 3 reference to eventnark for end of delay
(suspenct until event occurs)

5.8.2 CALL DELAY(t,m) t : tine delay
(suspend for a relative tine)

5.9.1 CALL PoST(e,n) e : eventoark reference
(setting of an eventnark).

5.9.2 CALL CLEAR(e,n) e : eventnark reference
(resettlng of an eventnark),

5.9.3 TESTEM(e,n) e : eventnark reference
(testing the state of an function value: condilion of the eventnark
eventnark).

Ä 5'e'4
?3lirffl"lil%sk of an "u"nrr""k).

"' eventnark reference

5.9.5 CALL UNI'{KEM(e,n) e : eventnark reference
(clearing the nask of an eventnark).

5.10.1 CALL LOCK(r,n) r : resourcenapk reference
(locklng ot' a resourcemark).

5.10.2 CALL UNLOCK(r,n) r : resourcernark reference
(unlocking ol' a resourcenark).

5.10.3 TL0CK(r,rir) r 3 resourcenark reference
(testlng and locking of function value: condition of the resourcernark

, a resourcenark),

5.11,1 CALL PRESEM(r,s,n) r : senaphore reference
(initializatlon s : initial value of aenaphore
of senaphore)

5.11.2 CALL ttAITS(r,J,n) r : senaphore reference
(wait on senaphore) J : decrenent

5.11,3 CALL SIGI{AL(r,j,n) r : Semaphore reference
(releasesenaphore) j: lncrenent

,-t 5.11.4 IRDSEM(r,n) r : Eenaphore reference
7-1 (read senaphore value) function value: vaLue of seEaphore variable

5.12 CALL EXIT
(ternination of execubion).

4.2 Creation oJ a new bask lhe forn of the call is:

A neU task ls lntroduced to the real-tine systeo by CALL CREATE(i,E)
reference to subroutine CREATE. The designated task
will be aasociated with soBe speclfied progran, where:
considered a resource llke other reaourceg, necessary
for the taEk to perfoPn. The associated progran is I specifies an integer array which contains
nornally assuned to exist in an executable forn, all lnfornation necessary to specify the
Fornally, and in terns of the state nodel, the task ls task and its associated prograo. The latter
transferred f!'on NON-EXISTENT to DORMANT as effect of lncludes, a[ong other itens, its design-
the reference (see flg. 1, clause 4.1). ation, where the progran can be found such

as descrlpLion of file, residency while
A nechanisn ls assuned to exlst outside the standardr €xistent (prinary neüory residenL or awapp-
to create and inl.tiate at least a fit"st task, i.e. the able), etc. The array nay also aont,ain the
panenbr flhioh ln lts turn näy oreate olher tasks. taskrs processor priority.

INDUSTNIAL REAL.T.IüE FORTRAN
(IPrrlEl{ICS TC1, 2.?/8O)

This array t.i11 in gerieral also contain
output lnfornation: references dlstinguish-
ing this task froo other tasks created fron
identical prograo code, reference to lndi-
vidual data sets, etc.
Such inforuation nay be used by other
procedure references of clause 5, See clause
5.1, description of paraneter i,
All details of this array are processor
defined,

n see 5. 1.

q.?, ElipinatlnE a task
fron the real-tioe svstenlJ

A reference to subroutine KILL rrilI eliminate a
deslgnated task froo the real.-tine systeo, by transfer-
ring it to state N0I{-EXISTENT, If the designated task
is in state DoRl{Al{T or PtslIDIl{G, the effect shall be
carrled öut imediately. If the deslSnated task is in
state RlrNt{It{C or SUSPENDED, the ternination shall affect
only future executions. Ttlus the designated task wlll
cont,inue lts present executlon without any lnterventlon
by this call.

The forn of the call ls:

CALL KILL(i,n)

rdtrere:

i rD see 5. 1.

q.4. ScheduLine a task

Executlon of a rqference to the subroutine SKED, or
lts derlvates as listed in clause 5.5, shall schedule
the initiati,on of a designated task, establishing the
condition for subsequent transition to RUIINING. If the
designated task is in state DOnMAifT nhen the call is
eade, the deslgnated task rlll transit to state PEIIDINO,
If lt ls in state PEltlDIl{G already, the reference shall
auSoent its condltions for subsequent transfer to
nUmlIIilG acconding to the arguoents of the call, such
that the deslgnated task rrill translt to RUNNING Bhen
any of the conditlons still valid, becooes true, Itle
transitlon to state nUllNIffC requlres the task belng ln
state PE[DI[G, otherxige an overrun condition occura,
Ttre augnentatlon of runnlng condltions is subJeat to
any resource linitatlon of the processor, and any
violatlon of such linitation r'lll result ln an error
retunn,

flhen a task translts to RUiltlING, the condition that
caused thls transitlon ls renoved fron the posslble
conplex of conbined conditions, such that the ottrer
conditions renain, llhen a runnlng task subsequently
exlts, by transltion fron RUNNING to DoRMAI{T, posslble
schedul lng cond.itlons, renalning fron previous schedul-
ing calls shall cause innediate transition further to
state PENDING. lfote, however, the deflnltlon of the tern
roverun[ln clause 2 znö the provision of its
indication, as explalned below,

Each nornally accepted reference to the subroutine SKED
causes the folloning effect:

1)

october 'l980

After expiratlon of a speclfied tine delay or at a
desired absolute tine or upon bhe occurrence of a
specifled event, the obJect task is traiaferred to state
R{rNNIllG and begins at the first executable stateoent
of the progran. The actual tioe resolution obtainable
in a specific lndustrial cooputer gysteo is subJect to
the resolution of that systenrs real time clock. If
the obJect task ls initiated by an event occurrence,
the executive systen will set the eventoark OFF, as
part of the lnibiation, If nore than one task is waitlng
for a specified eventnark to change to the condition
0N, when the change occurs 4!l these tasks rill transit
into state RUNNING.

The forB of this procedure reference is:

CALL SKED(i,sre l,t l,t2,e2,m)

nhere:

i,o see 5, 1.

s is an integer expresEion, specifying three
categories of task scheduling:

- the values of the argreent s between 10
and 15 cause the task to be lnltiated
once.

- the values of the argutent I betueen 20
and 25 cause the task to be initiated
perlodically by tine.

- the values of the argunent s betlreen 30
and 35 cause the task to be initiated
rhenever a speclfied eventnark becones
0N'

The values of the argunent s betrreen 10 and 15 define
the first and only execubion of the task.

= 10: start innedlately
= 11: start at absolute tloe tl
= 12: start after tlße tl
= 1l: start at event el (once)

= 14: start at absolute tlne tl or event e1 (once)

= 15: start after tine tl or at event e1 (once)

The values of the argLment s between 20 and 25 define
the first executlon of the task lrhich is subsequent-
Iy executed repetitiveLy at the tloe period t2.

= 20: start lülediately plus cyclic by t2
= 21: start at t1 plus cyclic by t2
= 22: start after tl plus cyclic by t2
= 23: start at e1 pluE cyclic by t2
= 24: start at t1 or el plus cyclic by b2

= 25: start after t1 or at e1 plus cyolic by t2

The values of the argunent s betrreen 30 and 35 define
the first executlon of the task which ls subsequent-
Iy executed ttrenever the eventnark speclfled by el
becones 0lI.

= J0: start innediately plus repeated by el
= 31: start at tl plus repeated by el
= J2: start after tl plus repeated by el
= ll: start at el plus repeated by el
= l4: start at tl or e1 plus repeated by el
= l!: start after tl or at el plus regeated by e1

-8-

,l

Supplementary infornation, see Annex B.

INDUSTRIAL REAL-TIME FONTNAN
(IPl{/EttrCS t3l , 2.2/80)

specifies the eventnark for scheduling; an
integer expression.

deEignates an integer array containing the
absolute, respectively relatlve, tine for
the scheduling. By relative tine for
scheduling is neant the lime delay froo bhe
tine the reference iE executed unbil the
intendecl running. (See 5.1.)

L2 integer array to designate the tine perlod
for cyclic runs. (See 5.1.)

eventnark for overrun. tlill be turned ON if
overrun occurs. Tbe action perforned rrith
the scheduled task is processor dependent.

q.q. Startine a task bv simplified calls

The foLlowing calls for schedullng represent subsets
of the features of CALL SKED. They are establishecl for
the ease of progranning only:

CALL STnt(i,n)
start innediately

CALL STRTAF(i,tl,n)
start after tine tl

CALL STRTAT(i,tl,n)
start at tiBe tl

CALL cYcL(i,t2,n)
start immediately plus cyclic by t2

CALL CYCLAF(1 ,L1,L2,ß)
start after time t1 plus cyclic by t2

CALL CYCLAT(1,t1,L2,n)
start at tine t1 plus cyclic by L2

CALL C0l{(i,e1,n)
start at evenb e1 plus repeated by e1.

Execution of a reference to Eubroutlne STRT establlshes
a conditlon for lnnediate transfer of the designated
task to RUNNING via PENDING, Execution begins at the
task's flrst executable statenent. If in state DoRMANT

when the reference is nade, the task will transit bo
state PEIDING and continue irnediately to state RUNNING.

The form of the call is:

CALL STRT(i,n)

nhere:

i,D Eee 5.1.

5.5,2. Startlnr a task after a specified
time delav

Execution of a reference to subroutine STRTAF establ-
ishes a tine delay as condition for transfer of the
designated task bo RUNIIING via PENDING.

Afler expiration of a specified tlne delay after the
tlne nhen the reference is executed, the designated task
ls expecbed lo transller to state RUNNING and wlll do

October 1980

so, if its state at that tine is PENDING. If ln stabe
DoRMAN'r irhen the reference is nade, the task uill
transit to sbate PENDING. In atate RUNNING' the task
will begin at itE first executable statenent.

The forn of the call is:

CALL STRTAF(i,tl,n)

where:

irn Eee 5,1.

tl designates an integer array' specifying tbe
tine delay after nhich the obJect task is
to Etarb its execution. (See 5.1.)

5.5.-3. Süartinq a task at a
specified absolute tlne

Execution'of a reference to subroutine STnTAT establ-
isheg an absolute time as condition for transfer of
the designated task to RUNNING via PENDING.

At the specified absolute line' the obJect task is
expected to bransfer to state RUNNING and wiII do so'
if its state at that tine ls PENDING. If in state DORMANT

when the reference is nade, the task will transit to
state PENDING. In state RUNNINC, the task ltill begin
at its first executable statenent. The task is started
innediately if the specified absolute bine .is already
pasEed xhen the reference to STRTAT is executed.
The foro of this call iE:

CALL STRTAT(i,t1 ,n)

nhere:

irD

tl

see 5,1.

designaLes an integer aFay, specifying the
absolube tine at which the obJect task ig
to sbart its execution. (see 5.1.)

a.i.4 Startint a task in periodic execubion

The calls for CYCL, CYCLAF' and CICLAT for periodic
execution have the following connon features:

Ihe designated task lriLl be transfered to state PENDING

if lts present state is Dom{ANT or nhen ib beconeg
DoRUANT. Further, the reference esLablishes the
condition for subsequent transfer of the desiSnated task
fron state PENDII{G to RUNNING for a first execution
and additionally causes future period.ic executions. A

reference to subroutine CICL, CYCLAF, or CICLAT has bhe
seme lnnediate effect as a reference for single
execution; additionally, after its termination (e.9.
by EXII), the obJect task will be transferred
i-ooediately fron state DoRMANT to state PENDII{G for the
next periodic execution, as indicated in Figure 1 by
rlrepetitionErt. The next scheduled time is equal to the
sun of the previous scheduled tine and the interval
specified by the reference to these aubroutines. The
iFe-scheduling under the said.*onditions shall continue
until actively terminated by a-0aI1 of subroutine CANC8L
(see clause 5.6.2).

The actual running nay be delayed unintentionally lthile
in state RUNNING, because of running of other prograrns.
Such delays will not be accunulabed. If the execution
ls not finished before the blne for next execution, an
overrun situation exists and the actlon taken nith the
cycled task is processor dependenf.

-9-

t,1

e2

{\

fi

(5)

II{DUSTRIAL REAL-TIME FORTRAN
(rPr/Errcs rel, 2.2/80)

q.l.q Initial start lnuediatelv

The forn of the call is:

CALL CICL(t,t2,n)

where:

i rn see 5. 1.

12 deslgnates an integer array,
noninal length of the tiDe
5.1.)

specifylng the
lnterval. (See

5.q.6 Initlal start after a specifled
tlne delav

The forn of the OalI is:

CALL CICLAF'(1,t 1,t2,n)

nhere:

i,o see 5.1.

t1 deslgnates.an lnteger array, specifying a
tine delay for the inltlal actlvation, as
neasured fron the tine the call nas nade.
(see 5.1.)

E2 designates an integer array, speclfying ttte
nonlnal length of the tine lntenval, (See
5.1.)

5.5.7 Inibial start at specified absolute tioe

The forn of the call is:

OALL CYCLAT(i,t1,12,n)

where:

l,o see 5. l.

tl deslgnates an integer aray, specifying the
absolute tine at nhich the designated task
ls supposed to enter state RUI{NING lnitlal-
1y. This arguoent is exactly equivalenb to
paraneter t1 of call for subroutine
STnTAT. (See 5. 1.)

designates an lnteger array, specifying the
noninal length of the time interval. (See
5.1.)

eönna^tJnn ^f ä f.aL f^ 2n arahf-

Exeaution of a refer.ence to subroutine CoN establ-ishes
a specified everit as condition for transition fron state
PENDIIG to RUNI{tr|{G. First, the task will translt to
state P8IDIIC if t,he statä is D0RMANT when the reference
is executed, or, when the state becones DORMANT. Then,
if the related eventnark 1s or becomes 0N, the
deslgnated task nill transit froE state PENDING to
RUNNING and will begln lrith its first executable
statenent. The association between the event and the
obJect task renains until actively cancelled by a
reference to DSKED or DCoN (see clauses 5.6 and 5.6.1).

October 1980

The forn of this oall is:

CALL COtl(i,e,n)

chere:

irn see 5.1.

e specifles the eventnark; an lnteger expres-
slon.

q.6. Elinination of orevious schedullnq

Executlon of a reference to subroutine DSKED or its
derlvates, DCOI{ and CANCEL, shal.I cancel specifled
scheduling conditlons for an obJect task, Thus, it
ellninates further effects fron prevloug calls to
subroutine SKED or its sinplified derived subroutines.

If the obJeot task ls in state nUININC or SUSPENDED,
the cancelling shall affect only future executions.
Thus, the obJect task nitt oonclude its present
execution, without any intervention by thl,s call.

If the obJect task is in state PENDING, the cancelling
nill caufre a transltion to state DoRMANT if no
scheduling conditions remain.

The foro of the call is:

CALL DSKED(i,s,e,n)

irhere:

iro see 5.1.

s is an integer expression selectlng one of
the follorring condltions :

=1: El.lnlnate all tine based scheduling and
scheduling by events as specifled by
argunent e.

=2: Elininate all tioe based scheduling includ-
ing repetition by tiEe. Possible event
connections remain unaltered.

=3: Ellninate event-based scheduling, including
event-based repetition, as specified by
argunent e. Possible tine connections renain
unaltered,

e apecifies the evenbnark(s), nhose connection
ls to be elininated:

=-1: all eventEark connections for the designated
task.

=0: no event cancelling
)0: reference to one specific eventnark, as

specified by bhe value of e.
This argunenl shall be an inbeger expres-
aion.

q.6.1, EliEinati_on of event connecLlons

Executlon of a reference to subroutine DCON shall cancel
any connection betsreen an object task and a specified
event. Thus, it elininates further effects fron a
previous call to subroutine SKED or CoN. If bhe obJect
task is in state RIJNNING or SUSPENDED, the cancelling
shall affect only future executions. thus, Lhe obJect
lask will conclude its present execution, wilhout any
intervention by this call.

- 10 -

I
I

ü

t2

5-6.ß

I
l

{

IIIDUSTRIAL RBAL-TIME FORTRA}I
(rPn/Enrcs tc1, 2.2/80)

If the obJect task ls in state
dll cause a transltlon to
scheduling conditions renain'

The forn of the call ls:

CALL DCON(i,e,n)

rhere:

l,D see 5.1.

PEltDiNC, the cancelling
state DORI{ANT if no

e speclfies the eventtsark; an integer expres-
slon. See 5.6.

5.6.2. Elinination of tine connections

Executlon of a reference to subroutine CANCEL shatl
cancel the fubure inltlatlons of a designated' obJect
task due to tioe scheduling by previous aalls of SKED

or its sinplified versions. The executive systeo shall
asEure that no further nove to the state PENDING shall
take place due to previous cycllc scheduling.

If the obJect task is ln any active state (RÜNNING or
SUSPEIIDED), the elinination shall affect only future
executions. Thus' the obJect task rill conclude lts
present execuülon, wlthout any intervention by this
call.

If the obJect task is in state PENDING' the oancelling
will cauae a transltion to state DoRMANT if no
scheduling conditlons reoain.

The forn of this call is:

CALL CANCEL(i'n)

uhere:

i,D see 5. 1.

5.7 Delavlna continuation of a task

Executlon of a reference to the subroutlne SUSPND shal1
provide a neans whereby a running task is suspended
(i.e. transita to state SUSPENDED) for a specified
length of time or until a specified event has occured.
Then, the task shall transit back lo state RUNNII{G and

shal1 resune executlon with the statenent imnediately
following the call of subroutine SUSPND.

If nore than one task is suspended and $aiting for a

specified eventnark to change to the condltion 0N' when

the change occurs aLL tasks will transit to state
RI'NNING.

The tine deJ.ay is defined as tbe noninal duration fron
the bine sb€n the call $as llade unt.il the prograD resunes
execution in lts virtual processor, by being transferred
to state RUNNING. The actual instants for the entering
and leaving states RUNNING and SUSPENDED are subiect
to the resolution of the systenrs real-tine clock and

to the interrogating and activating actions perforned
by the executive system.
The forn of the call is3

CALL SUSPND(s'e't'n'n)

october 1980

is an integer expresslon selecting the
condltion on nhich the suspension shall end:

at absolute tine t
after tlne t
at event e
at absolute tlne t or event e

after tine t or at event e

specifies bhe eventnark for ending suspens-
lon, an integer expression.

designates an integer array, specifying fhe
absolute, respectively relativer tine for
the suspension. (See 5.1.)

return paraneter to indicate the cause of
'the end of the delay in case of s=4 or s=5:

11 -

rrhere:

s

-).
- a.

= 4:
- E.

e

t

n

end of delay bY event e

end of delay bY tine t.

see 5.1.

6.8 Susoendinl unt-il event or time

The followlng calls for suspension rep.resent subsefs
of bhe features of CALL SUSPND. They are established
for the ease of Programning onlY:

CALL HoLD(e,n)
susgend untll ttle event e bas occurred

CALL DELAY(t,N)
suspend for a tine delay aE speclfied by t.

5.8.1 Delav until event has occured

Execution of a reference to subrouLine HoLD shall
suspend the calling task until a specifled event has
occurred. Then, the task thall translt to state RUNNING

and thus resune execution with the statement inBediately
folloning the call of Eubroutine H0LD.

The forn of the call is:

CALL HoLD(e,B)

shere:

e specifies bhe eventnark for ending suapens-
ion; an integer exPression.

n see 5.1.

c.8.2 Delaz for a sDeclfied relLt1Jc-li!€.

Execution of a reference bo subroutine DELAY shall
transit the calling task to state SUSPENDED for a

speclfied duration. Then, the task shall transit back
to state nUNNING, resunin8 execution with the statenent
innediately folloiring the call of subroutlne DELA!.
The foro of the call is:

CALL DELAY(I,n)

= 1:
-).

fi

fi

I

-12- October 1980

rhere:

t designates an lnteger array, specLfying the
q,q.4. Haskinr an eventnark

relatlve tine for the suspenslon, (See 5.1.) Executlon of a refenence to subroutine ll(EM does not
change the stale of the designated eventnark buo causes
It to be Dasked. The Eaaklng effect ls that the eventnark
nay freely abange lts state Fithout any effect on tasks
that dght be pending or suspended r,laitlng for this
eventnark to be set.

The fot'n of thls call is:

CALL UKEU(e,n)

rhere:
Executlon of a neference to subroutlne P0ST stlall set
a deslgnated eventoar.k to the Olt condition, If the e specifles the eventnark uhose corresponding

TTDUSTRIAL REAL.TII{E FORTRAN
(rPl{/Ettlcs Tcl, 2. 2/E0)

n see 5.1.

s.Q. Eventnank ooeratldhs

5.4.1, Settlnc an eventnark to the Oll condition

eventEark uas already ON, there shall be no action.
Because of an earller transltlon call ln sone task,
the 0!l condltlon nay cause a task to be transfered
froo state PEI{DIIG or SUSPEI{DED to state RUNI{ING.

The forn of thls call ls:

CALL POST(e,n)

nhere:

sl-on.

n see 5. 1.

event is to be nasked. The arguoenb is an
lnteger expression,

E see 5.1.

q.o.E. Unnaskinr an eventBark

Execution of a neference to the subroutine UtflrlKEM shall
allow actions associated rith the specified eventnark
to be executed. If the eventnark ie in the ON condlüion,

e specifies ühe eventnark; an integer expres- bhengl.! actlons associated with the specified eventnark

e specifies the eventnark nhose corcesponding
Executlon of a reference to subroutin€ CLBAR sball cause event is to be unnasked; an integer
the designateo eventnark to becone oFF. If the eventnar.k expression,
Has already OFF, there shall be no action,

The forn of thls call is:
u see 5'1'

CALL CLÄAn(e,n) q.l0 Resourcenark operatlons

nhere: R.10.1 Settfuic a resourcenark to the
locked condition

e speciiies the eventEark; an integer expnes-
sion. Execution of a reference to the subroutine LOCK, shall

cause ühe specified resourcenark to be locked. If the
n see 5'1. specified resourcenark nas locked already, the execut-

lve systeo shall suEpend the execution of the task.
The foi.n of the call is:q.q.1. Testlnq an eventnark condition

CALL LOCK(r,n)

Execution of a reference to functlon TESTEI! ehaU return where:
a logj.cal value TRUE lt'the specified eventnark rras 0N
and a loglcal value FA,LSE if the eventnark rras OFF. If r specifies bhe resourcenark; an lnteger
the eventnark ls unknown to the processop, a logical expression.
FALSE value will be returned, and the error paraneter
wilt lndicate an error condition.

The foro of this function reference is:

TESTEM(e 'n)
':$

nhere: Execution of a reference to the subroutlne UNLoCK shall
cause one of the folloning actions:

e specifies the eventmark; an integer expres-
sion. a) If the resourcenark is unloclted, there ldll

be no action.
n see 5, 1,

wlll be executed.

The forn of this call ls:

CALL Um{KEM(e,n)

where:

n see 5,1,

q.10.2 Settlnq a resourcenark to the

e,

n|DUSTRTAL REAL-TII'i8 FoRTRAI
(rPw/Enrcs Tc1, 2.2/80)

b) If the resourceBark ls trocked and there are
no tasks suspended as a result of a
prevlously unsuccessful atteBpt to lock the
assoclated resource, the resourcenark shall
be unlocked.

o) If the t^esour.ce[ark is locked and there are
one or Dore tasks suspended as a result of
previous attenpts to lock tlre assoclated
resourceEark, one and onlv one tagk shall
tr.ansit to state RUNIIII{G. the assoclated
resourceoark retrains loaked. Ihe criteria
used to seleat the task to transit to state
RIril[IilG are procensor-dependent .

The fora of the call is:

CALL UILOCK(r,o)

rhere:

r specifies the resourcenarkl an integer
expnession.

I see 5.1.

5.10.1 Testlnp and settine a resourcenark
to th€ locked conditlon

Executlon of the functlon TLOCK shall flrst test the
specified resourcenark :
The functlon shall return the value TRI,E if the
resourcenark ls unlocked; it shal1 return. the value
FALSE, however, if the resour.ceDark ls focked. After
tbls test, the resourcenark nilr be locked.

The foro of this function reference is:

TLOCK(n,n)

wher.e:

r speaifies the resourcenark; an lnteger
expression.

n see 5.1.

The reason for the use of TLoCK as conpared to CALL
LoCK ts,to allow a task to either reserve a resource,
if lt is unlocked, or to contlnue execution if it is
locked. ThiE nould not be posslble l.ith CALL LoCK,

5.11 Senaohore ooerations 1)

All senaphore variables tlave the forn of local varlables
ot' the executive aysteo, and tlre only neans of accesg
is through an argunent, r , nhlch nefers to one
partloular semaphore. The val,ue of a particular
seoaphore variable thua referred to is terned s in
the followlng,

D Suppledientary infornatlon, see Annex B,

October 1980

fire effects of subroutlnes SIGIIAL and IIAITS are,
respectlvely, the lncreasing and decreasing of the
senaphore value by an atrount J , a positlve Lnteger
conveyed as the second arguDent of the calls. For

tlAITS, the decrease will only take place if the result
ls not less than zero; otherrrise the calllng task ls
auspended before the decreoentlng takes plaee, and
contlnuatlon wlII not occur untll after s>J, .1,e, the
decrenentation linked to tbe sontlnuation wIIl yield a
non-negatlve vaLue.

The follosing clauses describe in detait the subroutine
calls for the synchronlzing nechanlsEs nentioned ln the
introductLon above.

Execution öf a reference to the subroutine PRESEF{ has
t$o purposes:
Firstly, lt declares intention of use of a partlcular
senaphore, penlitting the systeo to glve diagnostic
Harnings at run tine lf another Eeoaphore operation ls
issued refenring to a senaphore bhat is not inltialized,
Seaondly, PRESEI| establishes the initial value for tbe
setrapbore. Nordally, PnESEü is referenced only in the
lnitialization phase of the execution of a real tine
progras. llre error paraneter n wll.l indicate an error
condition if no senaphore exists rdth the indicated
designatlon. The forn ot'the call of PnESEl,! is:

CALL PRESEM(r,s,n)

where:

specifies a se8aphore. It is an integer
expresslon.

is the initial value given to the senaphorb.
l,ntil the CALL PnESEM ls executed for. a
particular senaphore, and bhe internal
varlable is assigned value s, the lnternal
value is undefined, and another systen call
referring to this senaphore shall give an
eror return. this paraneter is an integer
expresslon.

A negatlve value is peruisslble. This Is the
only r.ay a senaphore oay attain a negatlve
value, Ihe effect of a negatlve inltial value
1s, that a correspondingly greater increase
by virtue of CALL SIGI{AL is requlred before
the releasing action can take place.

see 5,1.

Executlon of a reference bo subroutine I{AITS rdll
involve a possible suspension of the calling task, as
controlled by the referenced semaphore.

By the end of the cal1, the senaphore value s nlll
be reduced by the aaount j lhe reductlon and
subsequent continuablon nill only take place nhen thig
can be done givlng s a non-negative value, otherwise,
the caLllng task is suspended until thls decrementatlon
can take place,

- 13 -

IilDUSTRIAL REAL-TIHE FONTRAN
(rPt{/El{rcs Tc1 , 2.2/80)

The forn of the referenae to IIAITS.ls:

CALL tlAITs(r,J,D)

uhere:

r aee 5.11.1'

J ls an lnteger expresision, specifylng the
anount by wtrtclt the 8eßaphore vaniable is
to be decrenented, if applicable' Ttre value
of J nust be posltlve (one or Sneater), and

J=l corresponds to the sinple senaphore nost
coooonly used.

n see 5. 1.

8.11-3 nelease of.seoaDhore

Exeaution of a nefenence to the Eubroutlne SIGNAL sball
lncnenent an lnteger sdaphore varlable, deslgnated s

ln the expresslon below, and referred to by one of the
argunentE of the reference. The subroutine shall be
grinted exclustve access to this seEaphore during its
öperation and will execute the following nodiflcation
of its value:

_
rr= g+J

ntrere J ls an argunentr aee belot{.
A change frm zero or negatlve to positlve valuer caused
by lhis operatlon' nay provide a posslble releaslng
transfer to state RUNNII{G for a task waiting ln state
SUSPENDED for this event to occur.

Other tasks, suspended in their execution of CALL ttAITS

relating to the saoe senaphore t t ahall have their
suspension condition re-evaluated after the present
SIGIIAL call is tetninated' Ttris ltill provlde an

opportunlty for suapended tasks to be released and

resune operatlon, as descrlbed above. This continua-
tion iE subJect to al1 coEnon restrlctions pertaining
to excluslve operation on a sane senaphore. tttusr the
effect witl be that only one of the suspended tasks
wiu be examlned at a time. This exanination nay involve
reductlon of the seoaphore value againr as a consequence
of releasing operation of ITAITS for the exanined taak.
This exanination continues as long as a possibllity
r.emains that the senaphore value ls Sreater than or
equal to the J-välue of sone suspended task' the order
in nhlch suspended tasks are checked otherrise is
processor-dependent.
the foro of' the call is:

CALL SIGNAL(r,J,m)

where:

see 5, 1 1. 1,

is an integer expressionr specifylng the
aoount by which the senaphore variable is
to be incremented, if applicable' The value
of J nust be positlve (one or greater), and

J=1 correspondE to the sinple senaphore nost
connonly used,

see 5. 1.

october 1980

5.11,4 Readlne a senaphore value

A senaphore value nay be interrogated by execution of
a reference to the inte8er function InDSEI{. The purpose
of this function ls not tbat it be usqd aE a

synchronlzatlon operatlonr but only to provide a neans
to supervise synchronizatlon in a systen' lltust a

reference to function IRDSEI'i can' for exanple' provide
lnfornagion about how far a buffer or another shared
resource ls frm saturation' tlhen accepted (honoured),
the reference rtill be Sranted exclusive acceas to the
senaphore. If the seDapbore is already being accessed
by another syste! call $tren the reference to IRDSEM ls
nade, the reference will be subJect to the sane deferred
reaponse and contention oechanisos as the other
senaphore operations, On returnt the function design-
ator wlII have a value equal to the internal aenaphore
value nhen the reference rürs accepted.
The foro of the reference is:

IRDSEU(r ,n)

nhere:

r see 5.11.1'

n see 5.1.

q.12 l{onmal ternlnation of execution

Execution of a reference to subroutine EXIT shall
terninate the executlon of a task and return the task
to state DORMAT{I. Eventnarks and Senaphores shall not
be affected. neaourceBarks prevlously locked by thls
task shall be unlocked (see 4.3.2), and files released.

The foro of this call is:

CALL EXIT

The connon FoRTnAN operations SToP and END provide
alternatlve neanE to ternlnate execution of a Lask'
Holrever, thq effect on files and other resources
descrlbeo in this Etandard is processor dependent '

- 14 -

INDUSTRIAL REAL-TIME FORTNAII
(IPL/EI'ICS TCl, 2.2/80)

SECTION

BIIIANT PATTERT{ AIID

6 Introduction

The functlon references descpibed ln thls sectlon
provide nechanisos for operatlons on bit patterna as
sell ag individual blts of the lnternal representatlon
ol' lnteger varables.

fte operations presuppose that integer ntmberg are
considered as lf they are unslgned inteBers, The
arithnetic shift operation (clause T.Z.Z) is an
exception.

lflth regpect to argtuents referenclng lndivldual b1ts,
lt ls assuned a blt nuDbering rule in xhtch bit nunber
0, the rl8htnost bit, is the least signlfcant bit.

7 Blnary Pattern Processlng

7-1 Boolean oDePät-lönr

October 1980

The foru of this functLon ls:

IAIID (J,K)

Tbe value of the funation is conputed fron the values
of the paraneters J and k according to tbe following
truth table:

FunctlonValue 0001

?.1,1. Boolean Conolenent

Tbe foro of this function is:

NOT (J)

The value of the functlon ls the logical conplenent of
the paraneter value, J, according to the foltorrlng truth
table:

J ol
Functlon Value 1 0

The foro of this function is:

rEon (J,k)

The value of the function iE conputed fron the valueE
of tbe paraDeters J and k according to the following
truth table:

Functlon Value 0110

_ 15 -

Tlro

BIT PROCESSIIC

0101
0011

J
k

t'r

fl

Boolean operatlons provided are: 0R, AND, EOR, and l{OT.
These operations are loplenented as integer functions.
The lnpltcit type for OR, A}ID and EOR is indicated by
lhe use of I as the first letter of the function nane,
Their paraneters, J and k, are integer expresslons.

After exeoutlon of the functions, the para[eters renain
unahanged. The operations are perforned on correspond-
lng (equally nuubered) bits of the tro operands, glving
the correspondlng bit value ot' the result. The values
lndicated ln the folloning truth tables represent the
lndlvldual and corresponding bits or the argunents and
of the function value,

7.1,1 Incluslve OR

The forn of this functlon is:

roR (J,k)

The value of ühe function is cotsputed fron the valuea
or the paraDeters J and k accordlng to the folloxing
truth table:

Function Value 0111

0r01
0011

J
k

0101
00t1

J
k

The shlft operations provided are logical, arithnetic
and circular. The shlft operations are ihplenented as
integer functions. the functions have tno paraneters,
J and n, considered as integer expresslons.

IIIDUSTRIAL REAL.TIME FORTRAII
(rPH/EI{ICS TCl, 2.2/89'

- 16 - October 1980

J specifies the binary pattern
J speclfies the valqe (binary pattern) to be k specifies the selected bLt, nunbered as ln

shifted clause 6.

n specilies the shift count:
If k ts negative or greater than the nrnber of bits

>0 indicates a left shift that are used to represent an integer value, the resul.t
=0 indicates no shlft of the function is undefined.
<0 indicates a right Ehift

The paraneter !alues are not changed by these functlons,

If the absolute value of the shif! count i3 Sreater 8.1. Bit Testinq
than tbe nuober of bits in a nuneric storage unit, then
the result is undefined.

The fott of this function is:
fhe paraneter values are not changed by the shlft
operations. BTEST (J,k)

This functlon ls of type LOGICAL. Ihe kth bit of
7.2.1, Lopical Shift paraneter J is tested. If ib is 1, the value of the

function is TRUE ; if it is 0, the value of the function
is FALSE.

The forn of this function is:

ISHL (J,n) 8.2. Set Bit

All blts representlng the paraneter J are shifted n
places, Bits shifted out fron the left end or the right The forn of this integer function ls:
end, as the case nay be, are lost, Zeros are shifted
ln frm the opposite end, IBSET (J,k)

7.2.2. Arithneblc Shlft ?he value of t,he functlon ls equal to the value of
paraneter J with the krth big set to 1.

The forn of this functlon is:
8,1, Clear Bi!

ISHA (J,n)

Argunent J and the nmction value are consldered as Tbe forn of thls integer function is:
signed lntegers, AII bita representing the paraneter

J are shifbed n places. In the case of a right shift IBCLn (J,k)
(n(0), zeros are shifted into the teft end if J is
poaitive, and ones are shlfted in if j 1s negative.
The bits shifted out of the left end are lost. In case The value of the function is egual to the value of
of a left shift (n>0), zeros are Ehifled lnto the rlght paraleter J with the ktth bit set to O.
end while the bits shifted ou! of the left end are
Iost, In a left shift an arithnetlc overflorr nay oecur.

8.4. Chanee Bit

7.2.?, Clrcular Shift
The forn of this integer function is:

The forn of this f\rnction is:
IBCHNG (J,K)

ISHC (J,n)

Al1 bits representing the paraneter J are shifted The value of the function is equal to the vaLue of
circularly n places; 1,.e., the bits shifted out ol'one paralteter J nlth the kfth bit conplenented.
end are shifted into the opposite end. Io bits are lost,

Note: The nuDber of bits representing J is
proc.essor dependent.

I Bit Processing

Individual blts of an integer can be tested lrith the
functions for blt processing. The functions have two
paraneters J and k, which are integer expressions,

IIIDUSTRIAL NEAL-TIME FORTRAN
(rPl{/Et rcs rc1, 2.2/80)

SECTION THREE

PROCESS-IN PUT /O UTPUT

Introduction

The user of Industrial Real-Tine F'oRTnAN nust be able
to addreas speclfic process devices for his application.
As the ts€Jority of Input/output (I/O) systeus are
coEputer dependent, this can only be standardized in a
universal way by standardized calls to driver routines
ntrich are especially uritten for each I/0 syEteo.
Corlputer independent I/O systens are elther standard-
ized, or standardE are under consideratlon (CAI{AC' GPIB'
MEDIA, etc.). Standardized I/0 calls deEigned for these
systeos are equally valid to the calls presented here
but are outEide the scope of this standard.

10 Scope of the process I/0 and general structure

of the I/O routines

The process peripheral ls the link betneen the processt
or lts tetrinal devlces, and the oentral processing unlt
of the coEputer, Data describing the space and tlne
behavior ot' the process are received by a processlng
unit and prepared so that they can be transfered to
the central processing unlt through an I/0 interface.
The varlety of tasks requlred by the process has
resulted in a large nunber of peripheral devices fron
the different nanufacturers' However, in the course of
oany years of hardnare developnentr largely conpatlble
and generally accepted lines of developüent have becone
established. They nay be characterlzed by the following
statenents,

UO ports are dlstinguished by their indivldual
addresses. The I/0 port deElgnations (addresses) used
ln the procedure references will probably ln Dost
systens be ldentical to the indivldual hardrare
addresses, but this ls not nandatory. lttis relation is
considered a processor dependent feature beyond the
scope of thls standard.

The FORTRAN standard speclfies that one statenent nuat
be coopleted before the processlng of the next gtateBent
be8ins. Ttre standard pnocess I/0 here described adheres
to thls rule. The calling task will wait for coüpletlon
and thls operatlng node is lndlcated by the last letter
l{ (r*attlng) or all subroutlne naBes.

Tlre follo$lng deslgnationa for paraneters apply to
several of the referenoes. If the exact !0eaning of these
panameter deslgnatlons deviates fron what is described'
belon, it will be narlced specifiaally ln the detalled
descrlption of the reference. If the oeaning is exactly
as defined here, the descrlption ot'the Paraneter will
be onltted ln the description of the reference.

Ttre procedures for process I/o nornally have four (in
a special case, flve) parameters rrtllch ln the following
will be deslgnat€d in the general forn rith i' J' k' n
(and n if needed), Such an T/O call has the general
foPn:

0ctober 1930

CALL procio(l, J, k, t!)

nhere:

procio indicates one of the Eubroutines Eubsequent-
ly described,
specifies the nunber of values to be
transferred, an integer expression.
specifies the nane of an inbeger amay or
array elenent that containE necessary infor-
natlon for deEcrlptlon of the I/0 ports, i'e.
address and data converBion infornation. The
opderly representation of infornation is
processor dependent.
specifies the nane of an integer array or
array elenent that contains the input or
output values.
Status indicator. Its value characberizes
the nsuccess" of a call:

undefined
all data have been transferred
error conditions

Thls argunent sha1l be an integer variable
or an integer affay elenent.

1 1 Input/output of analog values

For lnput we distlnguish between harduare inplenented
sequential and randon input. In the first caser for
sequenbial input, the input paraneter J contains the
address of the flrst analog input; further addresses
rill be generated autonatically. In the second casä,
the fulf sequence of addresses nust be glven ln the
array J. For output' the forn is alnays randon, i' e-,
all addresEes are Siven in arraY J.

Generally, the fomat of i is systeü dependent. See

annex 88.

Ttre relatlonship betxeen the range or an lnput or output
port and its corresponding elenent ln k is processor
dependent, Sone suggested design Suldelines nay be found
in annex 88.

1 1.1 Seouential analoE data inDut

Execution of a reference to the subroutine AISSI reads
a sequence of analog input ports of sequential
addresEes.
The foril of the call is3

CALL AISQT' (i, J, K, N)

xhere:

i specifies the nunber of analog lnput poris
to be read. The paraDeter is an lnteger
expression.

J ls a description of either hardware or
softitare infornation for the acquisition and
for the converslon of the flrst and the
folloxlng analog ports. It is the naße of

_17-

30
=1
>2

- 18 - october '1980
INDUSTRIAL REAL-TIME FORTRA}T

(IPI{/8WrCS tcl, 2.2/80)

an lnte8er array or of an elenent ' See annex

88.
k array for recordlng the converted analog

values.
It ls the nane of an lnteger array or of an

el@ent. See annex 88.
n see 10,

a1) lnrlac r{rte lnnrrt- ln randon seouence

The subroutine AInDT reads a sequence of analog input
ports ln a sPecifled order'
The fonn of the call ls:

CALL AIRDT (l' J' k' n)

nhere:

specifies the nunber of lnput ports to be

näad. The paraneter is an lnbeger expres-
sion.
is a description of the hardmre and software
lnforuation for the acqulsition and for the
converEion of each analog value' It is tbe
nane of an.Lnteger array. See annex B8'
array for recording Lhe converted analog
values. See annex 88.
see 10.

11.3 Analoe data outDut

The subroutine AOI{ outputs a sequence of analog values
to a colleation of analog output ports ln a specified
order.
The forn of the call is:

CALL AOW (i, J, k, u)

nhere:

i speclfieE the nunber of analog output ports'
an lnteger exPression'

J contains lnfornation for the data conversion
and transfer. It is the nane of an integer
array. See annex B8'

k array fron $itlch the analog values are
output. It i5 the nane ot' an integer array'
See annex B8.

n see 10.

12 Input/Output of digital values

12.1 Dicital inDut

The forn of the call is:

CALL DIll (i' J' k, n)

rhere:

I specifles the nunber of dlgital valueg
iäput, an integer expression'

J contafns hardrare and ln sone cage softrare
infornatlon for conversion and transfer' It
is the nane of an lnteBer array' A gossible
reset speciflcation can also be contained
in J'

k arräy in ntrich the diSltal values t'lll be

stored. It i3 the naoe of an integer array'
n see 10.

12.2 Diqltal outDut

For the output' pulse output (ligital gutput $onentary)
i" ai"ti"S"l"näo fron digitar output with a pernanently

held valuä (Digital gutput l.atching) '

12,2.1 DiEital Dulse outout

Execution of a reference to the subroutine DOMII performs
puiseo output to a collection of I/O ports' A pulse

*i11 ooou. on those blts selected by a blnary 1 of the
correspondlng blt and elenent of an array k' No pulse

"pp""."
on bits seleoted by binary 0' Ttre pulse duratlon

is tndtcateo in a suitable foror by paraneter n'
The forn of the call is:

CALL DOMII (i, j, k, n, o)

Lrhere:

i specifies the nunber of digital valueg
outputt an integer exPression'

3 conialns hardnare information for transfer
of each digltal value' This paraneter is
the naEe of an integer array'

k array representing the digibal values to
be oubput. It is the name of an integer
array. Ite flrst outputted value will be

taken fron ttle firEt array eleüent (i'e'
the elenent $ttoEe index is 1 '

n nunber of time units of the conputer alock
for the pulse duration' If the processor
does not allow selectlon of duration' thls
arguEent is ignored but nust be present'
Thls argrnent shall be an integer expres-
slon.
see 10.

For this type of input/output it is assuned that' whlle
itre effect-rve lnfornatlon may be represented at tlroes
by a single biq,r it will, nevertheless, be..necessary
tä transf-er digiuar values (considered es entities using
nhole nuneric storage units or words) into or out of
* i"t"g"" array (fo-r exarople 16 bits for each nuneric
storage unit) '

IIIDUSTRIAL REAL-TII{E FORTNAN
(rPrr/trrcs tcl r 2.2/EO)

12.2.2 Latahed digltal outDut

For latched digltal output (DoLg)
' ln addltion to the

output fleld, a nask field i8 also required to lndicate
xhich blts are to be changed ln the outgut' I?re pararoeter
k ls therefore subdivlded into k! and k2.
The forn of the call ls:

CAI,L Dol,tr(i, J, k1, k2, n)

utrere:

I specifles the nuEber of digital lrords' an
integer expresslon.

J contalns hardt€re lnfornation for every
dlgital value that 13 ouüPut. fllls
para[eter ls the nane of an integer array.

k1 array representing the digital values to
be output. Ttre paraneter ls tbe naue of
an integer array.
deslgnates an array whose values define
digltal outputs which can be changed by
the subroutine. A blt set in the k2 array
lndicates that the dtgital output riII be
changed to the state defined bY the
correspondtng blt posltion in the cores-
ponding integer array elenent in kl. Ttre

order of the el€oents in kl and k2 will
conrespond to the order in J' Tttis argtment
shall be an lnteger aray naoe r or an
lnteger array eleoent,
see 10.

October 1980

SECTION FOUR

FILE HATDLITG

13 Introduction

ThesE external procedure references provide neans for
controllinB tbe access of fllegr and also provide neans
for resolving problens of file access contention in a

nultitasktng/nultlprocessing environnent. In such an
environnentr'lb is expected thät concurrent tasks will
atteopt to access the sane flle at the sane tine;
therefore, the external procedure referenceg defined
here proylde the lnforßation necesEary for the processor
to resolve such siEultaneous access ln an orderly
nanner. fhe [ethod for resolution of access control is
Ieft to the"processor'

The procedure references in this sectlon are intended
to provlde the trethods by nhiah the task can lnform
the processor of the ßanner in xhlch it intends to use
the file, but the references are not intended to require
speclfic propertles or attrlbutes to be associated with
the referenced flles. They provlde the neans to avoid
contention probleos nhen used in conJunctlon Hith sound
program deslgn but the inplenentatlon of thls standard
ls no assurance that such probleos wLll not arise'

Tlre ternlnology used in this section is defLned in
clause 1 and ln other referencesr prinarlly tn the
docunent describlng Standard FORTflAN AilSI'X3.9-1978,
t161.

14 Background Inforoation

Flles exist in nost conputlng sygtens and can have
varlous attributes and featuresr such as:

- A fite can contaln data, prograss, or catalogue
lnforoatlon.

- Ttrere can be a variety of rays for file access such
as sequentialr dlrectr and strean.

- A file can be created or deleted by a task' by a
systen utility' or at syst€n generation time.

- A file can have securlty attributes associated with
the flle for the purpose of enauring file privacy.

- tltren a file iE assoclated rith a task' this
assoclation can be restricted by the processor for
reasons of PrivacY.

- A flle oan be assoclated with a set of related
concurrent tasks and this association can be
r.estricted to assure orderly resolution of conten-
tion problens anong the concurrent basks.

- A file can be internal or external to a task.

- A file can reside on fixed or renovable nedia.

- A flle can reslde on nain storage or backing
storage,

- Restrlcbions for reaaons of privacy or contention
nay appLy to a file or a conponent of a file such
as records and data itens.

19

k2

IIIDUSTRIAL REAL-TII{E FONTNAN
(rpwzswrcs rc1, 2.2/80)

15 Fite SysteB Blvironnent

In industrial real time coEputer systens' concuffent
tasl(operation with shared resources guch as files is
a conmon occurrence' This standard does not address all
the areas of file nanagenent but is concerned with the
problens that most connonly arise in industrial real
tine conputer aysteos'

-20

FEATURES AND ATTRIBUTES OF FILES

October 1980

The folloring table shotrs those features covered by the
standard and those excluded; however' the excluded
features may affect the resulb of a request for
association of a coneurrent task to a fi1e. Such

restrlctions on association are processor dependent and
are outside the scope of this standand-

Included ln the Standard

- Flles wttose contents are considered to be data'

- Files wtrich exist on fixed nedla only or on

renovable nedia that are not renoved.

- Fites that reside in nain storage or in backing
storage,

- FlleE that are external to a concurrent task'

- Creation and deletion of flles by a concuruent task'

- The association of a fite to a concurrent task for
both systeß created and for concurrent task created
flles.

- Bestrictions on file access as applied to the file'

- The associatlon of a file to a concurrent task
irrespective or the Eethod of access (e'8' direct'
sequential r or strean) .

16 Procedures bo control file accesa

b<cluded fron the Standard

- Flles whose contents are not considered to be data
by the accessing concurrent !ask.

- Files that exist on removable oedia sthich are
renoved.

Files that are internal to a concurent task'

CreaLion and deletion of files by a systen utility
or at syst€o generation.

Methods of file access.

Restrlctions on file access aa applied to a

coBponent of a file.

Attributes of a file for the purpose of ensuring
file privacY.

CALL CFIL}I(J'n l,n2,n)

where:

J specifles the file.
fhe argunent is eibher:

a) an integer exPression
or b) an integer arPay naoe
or c) a procedure nane
or d) a character expresslon

The processor shall define wtrich of the above
four foros are acceptable'

specifles the nunber of storage units per record
in this fl1e. This argunent shal} be an inleger
expresgion,

specifies the naxinun nunber of recgrds in this
flle. thls arguoent shall be an lnteger
expression.

is set on t'eturn to the calling task to indicate
the disposltion of the request' The value nust
be 1 or greater'
1 - File successfully created
2 or greater - File not created
Thls argunent shaU be an lnteger variable nane

or integer array elenent naoe'

1 6. 1 Introduction

The pPocedure references defined in this sectlon of the
standard are non-inteFuptible; that isr the procesaor
$rill only execute one guch procedure reference at a

tine, This requlrenent ensures thab the features
described are executed ln an orderly rnanner'

Ttre argunent nr shown below, shall be set equal to or
greater than tno (2) in value when the request is not
äccepted by the executive systen. Indlvidual inplenent-
ation nay ipeclfy unique values of I rithin the
allomble range to designate the speclfic reason for
nhich the request rras reJected'

16.2 Creation of flles

Execution of a reference to the subroutine CFIL$ shall
establlsh' but nob open' ananed file' Flles established
by CFILI{ do not have any privacy attriöute

-to
restrict

a concurrent task from accessing the files' The contents
of a newly created file are undefined by the standard'
the forn of call ls:

n1

n2

r.IN9U8][&IEü{,REAL.TIUE FORTRAN
(IPH/BIrCS TC1, 2.2/E0)

16.? Deletion of Files

Execution of a reference to the subroutine DFILII shalt
renove a file frm the flle systen. Any file created
by the nechanisn of clause 16.2 can be deLeted by the
execution of a reference to DFIL-ll, but deletion nill
not be effected if the file ls currently open to any
task. The forn of this call is:

CALL DFILTI(J,n)

nhere:

J speeifies the file.
The argunent is either:

a) an integer expression
or b) an integer array nane
or c) a procedure naoe
or d) a character expresEion

The processor Ehall define nhich of the above
four foros are acceptable.

is set on return to the calling task to indicate
the dispositlon or the request. The value nust
be 1 or greater.
1 - File successfully deleted
2 or greater - Flle not deleted
This argunent shall be an lnteger variable naoe
or lnteger array elenent naoe.

15,4 Ooenlnc Files

Execution of a reference to the subroutlne 0PENH shall
associate the unit specified by the task nith the naned
file, and shall define the deslred access node of that
task to the file. The foro of thls call is:

CALL oPEilt{(1,J,k,n)

xhere:

i specifles the unit by which the file, naned by
the arguEent J, ls referenced in the task, This
argunent shall be an lnteger expression,

J specifies the file.
The argunent is elther:

a) an lntegen expression
or b) an integer array nane
or c) a procedure nane
or d) a character expresslon

Ttre processor shall define utrich of the above
four foros are acceptable.

k speclfles aocess Dode deslred by the task. It
is a declaratlon of the taskrs intended use of
the flle. Thls argunent shall be an lnteger
expresslon.
The folloring valuea are defined:
1. Unlocked - Read/rrite or wr.ite-access ls

requested by the caLllng task; other tasks
are algo allored the saoe access.

2. Protected read - Read access is requested
by the calling task and alloued to other
tasks,

3. Locked - Read/wrlte or nrLte-access is
requested by the calllng task; The calllng
task excludes any flle access blr other
tasks.

itnf ;iilE Slfi?""iÄf; äOCteEeBi.t$g&o
i i;+\!.J

" l*T ei:i-il.lt\W{I i

n 1s set on return to the qarrl'rrn€l*ae3j*oj8ngicate
the disposibion of the request, The value nust
be 1 or greater. r .*+
1 - File auccessfully opened to the calling

ri$ s/{ iir{:* -&&dtt6;":s s in'T .:l jr:i.i i3ll j eß.i?itäq* r

e or greater - FileroÖ|eppp.o€d1*Jtfie .calting
lask,

* !,:l . **il}d.*:ar'4irwnt]aball Ss1 ara,i*ntFge?:sa€tabl e nane

'.*e,'d4tQ.e8pe.sqq*qt eJ,p4€nt. ;BaiBe i1.;iy{E}ä:,1:,
, ti*!:r.i-l,?i +.X€ r::1rj_ir;i: ä*jU* j i:.:j: *dll

{,r '*a$}*ä-"j}J i,:t+ ,:* s;i: :.-ii:.s+:i * i:e*::*_ir!!-! .. i
{Eb*laülü.aEls I *l*i.i 1trr-t li!.::t .}ri;1' ljri li.!ir. *p*":

.4.äsi*ä $,fic* a::i,i r:tio!:.s r:* j-* etrr
r*ß*,*@.:fi'.lie aips*urg-g$ly,54Fn t&,srf ügtöer . srask, the
*.6liE-DpsitiP*4:ff *.ai:r1tostd.äle:;i!:l#FFtiidfoly< a parlicular
access Dode nill be as follons:

-?x-

o

A: L: *:1
j:.i ?:1$i:'{Li!.€:ni'i} .:{J

"-ityd\ir{91
.- *ar",:i.::*-i .j

slhl-qslqe6;r:i " {a-i-:}e S "aqpf.hs! ta$(pspfsqt*ly trai t he f i I e
'r*ri:ir."q+ r:,Q.PQI} tII ithen:LoelsPd.;f,q8 PBegected nodes ;

othenrise succeeds.

',EBgbtfitefl,jr*ad'l iiiirr.:i5:r: aiii c..i,:i':;-,:ri;.l ,11:r,r94,ä €ir r.1

l'; 3 ;.'a eli .l i: !' *Fliils rl&f,;1arotfiei. tasb.eüfrslrtLy bd$ the fi t e
open in the Locked .o"r..:g:olgcked|nodes.

,1..- . .i j l'.:1.;..:t s:- ..r.':r. j.j..t:;:...:,r:.:11 ..
:rLoqged i::;; EbJrrFxj :.:r+i* ri11,1;.;;

:1 ,",:::,;:l::*.-_",
..

:fr"rfr !. 1,t5;."r:iy '.n;..1:r.ir i a.l. $ij i.i!:.i?i: t::*'l*i:grn i...liii
Any attenpt to 9mßrar.flL9j.tr&Äl ip.p*oesfet only if
the file exlsts. If the file rras created by a nechanisn
outside of the standard, the attributes given to the
file at its creation Eay reatrict the gr+..i*gq]g&ign
access node to the task.

iri:.:l f ;:i:ii:i ';.ti:lr*; .tJ,i i1:it;r-i ?tiJ:.]i.;t::: i?i :.r. i: ,"::.:.) ij
.ii:::"i -i i.t:; :,rl!üi; 'l* j;:;a.::iiiit Ji 111 i;::J.rit!:1-.j

16. q Closinc Files
:4:i iq; *X.:::..ii..:c :i3 i:ititj.r:r[r I] {:)* ii:i.jl; r::;,,i ir i. , ;,ti:j 1f
,lExecsf iani gf a+f-efe.rrer\qa'lo lireritrlbrol*iaq CLoSBt'i:Ebdll
..on*@;i!.sb..€E!pc{atlantgf '<-bl-relqggq$tisÖlÄpgicä}iuni.t
with a naned flle. The forn of the caII is:g.:!:,i iii!,1 r.t

CALL CLOSEH(i,E)

where:

I speclfies bhe unit, The argument ghall be an
integer expression.

n is set on return to the calling task to indlcate
the disposition of the request, 1lle value uust
be 1 or greater,
'I - Flle successfully closed to the calllng

task.
2 or greater - l{on-perfornance
This argunent shall be an integer variable nane
or integer array eleDent naoe.

16.5 Modifv Access üode

Execution of a reference to the subroutine l{oDAPtl shall
change the calling taskrs access aode of a file
prevlously opened by the calling task rlthout closlng
and reopening the file,

If the calling task does not have accesg node to the
file, the request falls.

If the request for change cannot be grErnted, the
previous access oode re8ains in force. [re forn of this
call is:

ITID{üITNIAL 8EAL.'1Iü8 SOEINAX
(rPlt/Efrcs rc1, 2.2/80'

-22- Ootober t980

CILL HODA'ftl(t,k,n)'

rlrer.e:

I speclfles the unlt. thls argEent shall be an
lnteger erDre8slon.

k rpeelfl€s ühe neu aecess rode deslred. thls
a?grüent ehall be sr lät€ger etapl€3slon.
lbe folloulng values ar€ defined:
1. llnlocked - ßdad/rrtte or rrlte-access is

nequested by ttre calliag task; otber tasks
are also allo$ed the sane acc€gs.

2. Proieoted read - Sead access is requested
by üher oalllng task and allored to other
tasks.

3. locked - Read/rrlte or nrlte-access is
requelted by tbe calling task; T10e calllng

. tasL eicludes any flle aacess by oth€r'
tasks.

n is Bet on return to the ca11i4g task to lndloate
lhe dlsposltlon of the requ€st. fire value nuat
be 1 or gneater.
1 - Access lode r€quested ld granted to the task
2 or gr€ater - lca€sa oode bofore' tbe fequest

renalns ln force.
&1s arguoent shall be an lnteger varlable aare
or lnt€ger ?rray eleo€nt na[e. ,

Linltetlons :

If ttte flle ls cuFently open to another task, the
request fiot! a change of trode stll fail.

If tbe .flle nas areated by a nechanlsn outside of ühe
standsnd, the attrlbutes glven to the flle at: 1ts
dneatlotlnay restri.ct the grantlng of,an eecess node
to the task.

IIIDUSIBITL NEAL.TII{E FORTNAI
(rPs/Esrcs rcl, 2.2/8o)

atltlEx a

HISIONICAL BACKCROUND

4.1 Introductlon

the FoBTRAII language ras orlgtnally an lEH-developtrent
ln 1955. Since that ttre FoRTRlil has becone tbe nost
ridely .ured hfgh level language for saientlflc
appllcationt, and lange porerful user llbrarles are
avallable ln FORTRAII.

FORTRAII r.as proposed for standardizatlon tn 196? an<t
ras flnally standardlzed lnternatlonally tn 1972 by ISO.
the cu*ent deflnltlon of FORtRAll is contained r.tühtn
rEf. [161.

A.2 Speclal requirenenüs

Ihe wide use and the proved excellenoe of FoRTnAtI for
saientific appllcatlons soon led to lts use for
lndustrial real-the sysüens. These appllcatlona re-
qulre spealal operations, l.e. real-tlEe operatlons,
blt-strlng nanlpulatlon and facllltles for prooess-I/O.
I?tese oDerations can only be acconplished in one of
the folloslng tuo rays:

(I) FORTRAII renalns tbe baslc language for
arlthrctlc calculatlons and for r.eadlng and
Yrltlng of data by standard perlpherals. Ihe
speclal operatlons are reallzed by eleDents
outslde the syntax of FORTRAN.

(2) Tbe conplete real-tlne language te[alns
rtthtn the syntax of FonlnAlf lncludlng the

. speclal operatlons. Thls neans that these
operatlons have to be FORTRAf,-subroutlnes or
FORTRAII-functions.

The flrst approach Ieads to typical real-tlDe languages
$hlch offer the uEer sinple but pouerful progra[ning
faclllties for the speclal operations. In developing
such extensions the designers try to apply all the
features of the real-tine operating systen used; thus
these extensiona becone dependent on the actual systen.
This ras especlally true for the early developnents of
thls klnd (see e.g. [2], t3l, [4]). PRoc0L, as a later
developent, arolds thls disadvantage; this language
uas created in France for a serles of French conputers.
It offers very advanced features for real-tlne
progranning (see e.g. [5]).

All languages nlth extensions outside the syntax of
FORTRAil need special conpilers fop thelr translation.

In ahooslng tbe approach (2), where the language renal"ng
rdthin the syntactical frane of FOnTRAI{, one galns the
advantage that a first conpilation and oheok of the
user progran can be done on any computer for which a
FoRTnA}l coupiler exists.0n the other hand this
approach, uEing subroutlnes and functions, leads to
sooenhaü clunsy handling of the added CALLs and
FUNCTIONS and thefr associated paraneters. Yet this nay

October 1980

be considered as a [lnor lnconvenLence as tbe trany usera
of FORTnAil are well accusboned to ühls kind of
progranolng.

Indusürlal real-tlne FORTRAII has alao to be co[pared
d.th tuo other fatlllles of real-ülDe lan8uages:
industrtal real-ttoe BASIC and langua8es speclfically
designed for real-tlne appllcation!, ltke PEARL, RTL/2,
efc.

Ttre lndustrlal real-tlne BASIC languages are very easy
to learn and üo apply, they are rell sulted for slnple
and rEall pnobleüs. lb€y aan be lnpl€nented relaülvely
easily ln large as yell as ln soall co[puter systens.

the languages of the Bpeclfla real-the tJrpe dellver
very porerfirl progranolng features to the uaer. TheEe
Ianguages are therefore rell-sulled to large and conplex
probleos. Thelr lopleoentatlon (conpiler and real-the
sysüen) iq .relatlvely expenslve.

The lndustrlal real-tlne FORTRAII languages inpleoented
by approach (1) above are often slollar to the specific
real-tiue languages. 0n the other hand the lndustrial
real-tlne FORTRAil languages irpletrented by approach (2)
are ln nany respects betreen BASIC and the speclflc
real-tloe language type. Thus, this lanSuage offers the
user an alternatlve to these tro language facilltles.
Consequently, a language according to approach (2) has
to be relative slople; ühls aeana that the nu[ber and
conplexlty of the addltlonal operations have to reüaln
restrlcted because of the ease of l€arning and
programing.

4.3 Source of the Standard

In order to prevent tho developoent of nany lnco[patible
real.-tlae languaggs, T. J. Illliäps and others ln 19?0
founded the ilorkshop on Standardlzatlon of Industrlal
CoEputer LanguaSes' at Purdue Unlversity. After a unlon
rlth anotber instltuülon ln 1973r the nonkshop ms naned
trInternattonal Purdue tlorkshop on IndusCrlal Co[puter
Systeosi. fhe 0PORTRAI Coonltteer of the Purdue lJorkshop
was very active and successful fron the beginning. For
vanlous and good reasons bhls connittee chose approaoh
(2) above $lth all sp6cial operations being kept within
the syntaotical fraoe of the FORTRAil language. The
coonittee developed in a relatlvely short tlre a first
propoEal for r€al-tine F0RTRAN whlch rras approved and
publlshed by the ISA as ISA Standard S61.1 (1972) t61.
The paper contains the folloring groups and nunbers of
special operatlons:

- 3 CALLg and the FoRIRAN statenent SToP for
controlllng the state of concurnently activ-
ated rprograng[I).

- 5 CALLs for process-I/O

- 5 IIITECER FUNCIIONS for bit-string nanl-
pulation applled on an INTEGEn used as a bit-
strlng.

1) In this paper the tern rtaskrl is uEed instead
of the tero rprogranrr used in t6l, [7], [8],
and [9]. See clause 2.

23

o

i'DUI'R{*1I'iAEAL.TIME F0RTRAN
(rPw/EUrcs rc1, 2.2/80)

; S :,,l'q9 e8,r$ +?$.p PJ'gBeSgeR$ v i9?:99r .
r SF* $ 6iL ß r,:619?,3),. :' v.r{s

! ub-lti9.bed i. 9ße y,gar C $BAtQE;ar,Sh i.s; eQa p€4 ß cq(!b*tn,E bträ
following groups and nunbers of speclal opql,'aiüi€s1*r:,.i!:

i::a':.iqäri:'r 1 ii {::: ir.i; ri::ii liiil!'iil;!li .5*i:t-i. j:../.r l::ii.i:|"?u;tii:
: :jsF!-+r3il'r r, 7s*CALla*'rfoft ,: hatdiljinBil randdniii un&rnatrtjsd

ti' i f !!x : "t gLi:?ü cfJ.dqgrxlä:; i i::rn ii iiää *::: i.;1 - j :;r:": .i r i:': J;r:il.i"
,i'iJ?ä ",.1,1:i5q e:'.ii .H::.ii;i.i.:i:q'::: i"r.l.i:1-lÄ::''.r ';tl jtrelil*jj'll

- 1 LOGICAL FUNCTIOI{ for testing an individlräI
bib in an II{TEGER

";*1:i.r T'-iiiri ::.r! *i,gr:i:i:4ruiii ;:rLn.i *r,ai-l -.; S:' ii..rl:,':;iiti-:iri-:1. i::ii
: "i

gn it;':.e1 lA :,.SALhs;. *foftrrsqtb,tng i: jaldi ßJqaF8ngrdef l:En

?i.fivi."r:-.,:.;: i*$d*r,Ä$*a!. hif r&.n' a$:{ilT80$,&-i'::r: i:i.ij;tr: srjs
.{,tIü*:i,LY*'rtsi"ii{it!i** i:ri-r r..i '.r1

::.:r s-'-.i-i-':r t:i'{l.iJr:j,a
These ISA standapds have gained great acknoitledgenent

'et!{d,:ltvf #pf.ld*tide*ggerBte?$:,4sp949aEee:6ld-,H:a,w.poser
i€:aa"ifilQ.äandÄ1ngjerqe€flad}. :.Sh.*,eaef,$,V:de'!f a-leneaqntr"gtd
:rQhe:t;pub.lrlle4girqlr ,-af i:'rü9.9€ .; p-$andar$p,rhy ;utiler:r&r$een
r:lflQBTBAl{ genpdtteqqr..ef ttse :'Hsdee.:&fks-ho,g ;'and:rbhe.]SA
has been an inportantr"s-b!.-qg1:foq ::&nd:rl€.bpi ali'lnrnomqs
control,
lr:r;i;:llr*iqsri L...;i:iiEi-irl gj;r:l lä:r'-{ r::,;'i:i.-i5'*-- j$j.'i:i-1ui,nii i')i:i
,trttjthei sesntiüe i:r*fi€B IISA drafb.standardq iwBrs delrFloBgit
if r.Fthnd'iahd:,$dr4,f{lüa:Lilf .'.a.pprtlve* a&:A!g${88Ä stuaintrainds:"

lTblual nAtlS{/I84 rfl61,r=rt:i{0ü icsnqsiBsrielllä gFbi$i6rs: .of:.the
lpiJlliSapers:lexqFgt trgiifl&o ;handlin8;+.f2trer f :ile,:rhandbirg
r,iar rt'tr€i'leubgeolr,:df * $ilüSI./:trS* S61.i2 a(it9!&Ir E+,Ji.r.-As*'a
.EisFlf,djqa.dt:&tf €*rr.errw*:f no0,,,rsaetf, eB..ipepaBs j.ctbe' jtr*36
rincrqirttl,üfr 861,a.fr cteE.noib:allai&.}flBbrlouüiae.qalil*rxtt'iroUt
iE-i t" t,on1Säe.+s.onpÄet l9n.E9* the :tpqEsEq{&:e rJir.i'ji: i i !'rij i, l
I'l.i;iäi:-t !'',:i fi!::::-i ;ti'l,i:i.iij.,'ja!!." .i.r:r1rl l:.i:ir,i *.iiii ir:: 1.1 r:::l:iilfi:l:'j
iAs; tile; ir@er'1 :ISA, I 6'6 1 . d:: j cot$a ia.sr"i ßEpde Ji jgip?edlrre
references which have gained wide acceptanced:ülrriie'pap6r
can be consldered as a rrBasic Industrial ReaI Tine
FORTRANI of the Purdue Workshop. It contains only 3
CALLg and the statenenti:'Ef,OPirifoFil tlie: nangS€ment:: of
paralIeI basks (: prognano)-'.-Sinee-{ore"-exöeneür€
mechanisns are needed, the Anerican TF0RTRAN Committeerr
.xillr.ithq,:r.?urd$qifldhkshsFü.ihäs!irtoF.bdd:rrinbenpi've:lyi:'snrä
jrgiütDteiBelrharlt, papee;:rabölrt*: LYie . üa4agppesh*. öf:.rpa.na.trlr!.
.tagb;r rqr:Ea{n rcd .ias is8ai..s61!; 3rd tF,}r:;iBatrtcl}el üoi::bhl-!
;trptriki ,#hp::rgfki.ilg,Sftlrprlf Rrcize'sg-goR{:R&fflr,-oß,Jhe; Qerrm*t
,V:0",I./9D"Rrihg:q!r:deve.lp9ed. i:4* coüplete:., p-rQno3&.:b!tI8Fg?estr-
.FrQftIi*I{-r ?ä!lr;rrp-u}illls.ipdc{*s,ii'a}ii'dF'.af.ü:.,€tändefd"s.rsE:rftte
rIDFz.JttDBj E:lo.,]u-',i ,:r.l:,'l :\) iJ:iii.r:.iri{1'a:l il;'rii.t':iil 1r1 n'.:'i . {'.:ir::,i:111:;i

'ti:) Ftiiiriti;:ii]{: rr,r::: trit"i: il-l it:3:,,:r:.,:.:t? l);:z' ':"t::1::ii 1-:t'i:1i üi:l{
dl.Rr.oaeps*F.OfitRAN' 1.'751!!:rrcaüpr?r*es'r ill :,0AöLSli fori i tbe
üAnagiede.fi& :iqf lit.paralle.l;i.:i.baEkE:.:r,F$d, i:thr$.r, of'fePsl r. a
:rtirt,ri p.te{ rrbüt lFlibhf{tI *tooI !,fors:FrögreElqirlgi f, eel-titüe
ieperaüio$a;i Br€i ihiF"äry i. pal$ern .anü.:birü*processiugrji.s
Lgjsjilsrn'f,o;r tS{srS61r il!:1'.{ 1 9.76) ;i;öepe1y -übeadeseriiüitolr, iF
dlfrefiSirlu..r Breyis: ars|addtrtirli.rialtIIltEGEfl.;Ftlücif..Iol{ir;:tror
'äritteleßi.e ;-.asdr: Lpirs-ulgr:rshi ft .ahil .;a i CAL!-, fon r:a äit
change. The process I/0 is practical$S')ide*tij€atr,:tb'.I:sA
s61.1 (1976); only the standardization of the analog
I/0 is perforned In the direcbion of a resbricbive
'atändeL.d. ;lbeg,f,iile hä,rriftüdg jls all'ff,etdüü fron Lhe ISA
S6:J:r:&. Qli9..If.,I: staüdatd .{tbe,r lai.t gp ;bdingi ;iin a proposed
state at that tine) . : .. r-: :.. :, ,, ..

In 19?6 the Purdue Sff,o,eg,l.l Teg.ftqigal ,,9og!'ittee 1 on
Industrial Real-tlne noninlw ras'fbunääd by meobeis of
th6 VDI^DE working .group .rlPnozegg-F0ltTnANrr and other
speclallstg in Euro-pe, The c'onnittg.e dec-ided to uork
out a cömplete proposdl för inilqstp3äJ real-tine
FOBTRAN. , :!]J: :. ;

Up to the end of 1977, l.be cooperation between -the
rtiliBFicänl] and Eüröpean''cmnirtu€*es BEt.rathöf }öose, b'y
oltLy ohb: jo;iäi nÖetiag: pbrl IFärr:atl'i'tb,e llhteFnational
Purdue t{orkshop neet I ng, Ttlil st tbe''Aneii cärii .httdi ,E uropean
comnittees lrorked rather independently of each other,

illj.l;r j:J:i.rr.: liiij,'] .".":.riilmeltrütöElj{980
;;,:. . ' .:,, .fi.. ''

rith the result bhat the papers produced nere quite
different in several respects. Iherefore, the IS0 TC97
SC5 tlcl, the Purdue Euf.ofdfil66l4shop, the ECMA TC8 and
the International Purdue l{orkshop all requested the
Aneri can and Eüiiti 6däö)! 3öfu ifÄ ä dgl'öbi" ö äve I op propo sa I s
Iargely, or preferably completely, identical. In order
to reach this obJective, cooperation had to be
intensified considerably. Since t8el.ht$ddlbr.röf 1i7.8.,
nearly all American neetings were,'attended-.by-+,or 2
Europeans and vice versa, Since this close cooperation
was established, the Anerican and Buropean connittees
lnrvq.drde bi$iif nünaötl ryr<gt"€ss r*n q{-öa{,tfrü{{3 ibb}tä6rbrrtg.
lBtrrB,r:,äe @itrs.i göod E6äitfiötigö.:öoüIil:f b€irrifiiäcfiäd! :,on: a
flü{öbtrt'Lh,of tfi'e d*}.6!rgj,üti poiirrtrs.. Sit?i$s56aur.urrtr id,f.€
@mpleteii adgree@nt iEhd*r,ra.; cemdh i:AneniEäIt/&mosean
proposal is accomplished by this #hn-if,ä'fd;;, +iJs:.i:;r::

::Pttrist'*Idustrial.:iSei}:l'r.1H@i rI.ORfnAfi:i:aüärüärd.l.*riÄilii.iSö€id
tut:;.beudöäbtd fiöEir4i.üryrto::j;iris;.;tö':atton:rthb:Sljri8iless
'!f1.F.Ontmj[i:särtr)als6 gEdTSögFdssl,of.i i.ieäL[lt iüe i-rdpeiFaEfäb
systems. Thus supplenents must be expected. " iÖ i .1 ,'ir:'r

+-,:r:raitt":l:jirJ"1 ;i::l1tj;.-l :,)i

ANNEX.B-.

.;t:'; 'ili:.i:'i)i:i'.i ':tr ,FU.Fflt$SrjjDtSC.RTpfilo[.6.r; ;:;'i;: :::t:ii1i ::,.rt

'i{i",, -t:j,: :1:f.i: ::7 i"je:. :r:ri}ä ti{:..!ttt:i,'..ir.!.ju i:ii; l:1;iit},!i
,-3': r,r^:: iBßElIJlQ.tIt{,S',{tro I*iD.&R.nDUIAU-'Cbi&US$Sr iiari::{: r
rrjftf ilr:i1g?;i i:r;itij-.,i;-lil'-r .aj,;: ,tr,:,.:i.:l:i'tG{9 ttlt.!"i"r :,1 -

.;'..'*::ir:ili.1'li.lrji tsJ.ji.ii'.:Si L';::.:tüi'l4j-1ilry-nt !;1 i,1:1i:, 1:aa

i l: l: _T: ::'::::T:1Y:119_ _:*ä', .i:;' i;;i ;;, ; i,. i " ;i;
Sone of the definitions listed in clause 2 are insplred
'Uyi 6n:r;g;gqr6r.;d firü1 srtuh: lilue?'aHjye ;äii:t,1.2!, [113], and
bühd[.::g6rlfcös] The :jJ€eih.lt1io]is ö6nFg6öofid larSely bo
'+;tibsa, i*oiffitrl'y:gsi6*tr5 ry1t1" {hüLqriiatfohäi ::Füirdue l{orkshop
:ahü:räli6i ldelät.iöäDf rot:'ltealrity. ::iöen€iöäir. tör definltions
of the ISA s$arfdäSö 36t:,r2.1jtrgl {,edd.}rthb.:ijproposed ISA
standard 561.3, t151. Definitions of the states refer

:üoi $:i8urqi.t io$;Sibt tori &1b änrd t t s.i{a5gp1 pülon in X[aus e
'Jh änÄrirhryj bo!: c{6ät6ö;if; :,tb€. :if:!.Eurre1 änü :i:ü'$' description
dt!€::CodEUltedr;:*::l ;: d:a::i ..qtrt : rjj,)./r:i,;* j: i:a*,,1t]

':{: ?*jr:r:i;j':r'Yiir,':-ianJrl'j'ji,'t 3,: r;J ';1jlj+. i'r,i:1i JJlr!:,qü
The names of the calls in tEls;güänilaFail6äüö been chosen
according to a few rules:

,+.rr';.i:.!lir;: iril:tfb.,rtäüesj;3rh(!ltldrjtje:1ögsdr{pü,lve-'E gi!{hg.:äh
;,ii:;:;rr:i"lrri':qiirdlcätionjÖf; thd.*lr.rusö:lair.r .r,:j..) 'i.i-'r'j; :-"::i;':l
::r,: it,) ii'/?i; i:f .::i:.:: j.r:":::r,r .iri ii:,{.r.lit Ii.'l .i,::'i erri.lj j j:,-'cl

€i:: i Ii! rr irfEeyi:ähqUtrA :üe]r&i.!Fftt eätr! fiä6ü[.JddIIgrir|.aff!
i.:jii.r : i..r, :1ir üf : the ESÄ.rrttäüdaFd:.t.1s6.?tl:, .s6 1 . 2ärfd A61*:i,
.,:.i?:ii-:-{r j'i,ili.f litlöh:iä :96,i,3:rg5:.:199,::öööpl3tid,JL id€rfitf.€a-l-
'i " - i ii:.ii"f .. i t.(i1ia,l öä[1 {rn] eh6 G6her,{ :jiäniltrds,:: : 411, : ilig
.:.]:,:ii.: ii ii! .l+iüböi.icasbr;;anifuientldal,Iräne:lia desiüiabltdr
:;!ij:r'.l:j:.r.i *i6dd :onltyl:thd6;r.:i-: *;';:i.r .:r;',t:,1i.,. .::.:,-,;ir'.i: .:.
- i:':;j.iji:l::::,:l ilrr:iis":'1 '1il l::,::::,,-t : .:|1 q::,;iir,i','- it. :):::!;.,. :.'t, i;tr,,i
r3;: : :;". i d. : ThE naüeB: ghbüId :'rf6t1öd: too eiöinftron:;':dth6rrritb

they night eastrit': eöirtciöe.' t Itä r riäüe-s
naturally selected by users for certain

i.r itii j.,:l.ii: AppIlöätlOn gt|.Ogl'äd$;.n ii:i üJ :t,:jt;ri;:!r::::r : .l t.

' ,i .:1| ... : ,j i.

Rule nunber -2 has t-he desired effect, that an
tlnFl.€*iört6ä€ilia::,,ireyj :.öli6osel - to .keäp. o311gir::,i1rii646,y
riöble[aft teü: rt acöOi'iltäE']üo :; rdfi : :i oi'd€i'i) st äädatd ; .,:r,1,ahd
!6r(n sb{ nd }üd €r''pnogfAinb wil 1'

- notr bäc ooe' ö6so16tö1, i'fljbt
üeoäüg.€ öf ' :tn€ r,lieüiri.ibpI'dneiftat0öh. .: i.: i j i':., :r:;r,i::.,- i rt' r !,i il
:a.;)i,'t i--.r1.ij:l '::i!l:r.:l ji::j -'i r:,i: r .t-j. . ti;rl:..il:j'l:l

-e4-

*

INDUSTRIAL REAL-TIUE FONTRAN

(rPtl/$rrcs rcl, 2.2/80)

8.2 Use of CALL CLOCK (clause 3'2)

8.3 Choice of task nodel (clause 4)

The catl CALL CLOCK i3 useful' first of all for

"ppUo"iion"
requiring a sonenhat f9wel level of

orä*ranntns. AII three paraneters are output argunents'

:'aä;Eü ln line) supplving the lnstantaneous value

äf'trre systen clock. Ttlls value dlrectly represents the

contenti oF the counting reglster of the clock'

The next tno arguoents supply systen constants necessary

.no ""ffi"i"nt
to 3chieve Eysteo independence ln the

use of this callr to allon the user to preserve
portability and syEten independence for his progralls'

The first of these argunentg' k1, 8upplles the basic
cioct< frequency, wherea! ttte last argument infoms about

irr.-t"a"rä ofile ctock' i.e. it reveals the nunber of
üii" oi the clock register. The Eoduro is equal to the

value of k2 plus one. One clock tick after the value
or: 1 is equ.i to k2' J xill be reset to zero and start
counting upnards again.

October 1 980

after any activation call. The benefit of a systen nith
penaing table coBest hoflever' not so luch fron

"irpfiiio.tion
of the application progran'.as fron the

suuliantiaf tine savings obtained fron the reduced

nunber of error returns.

A further advantage of buffered calls is that nultlple
activations are lossible, yielding an OR-function of
activations of a certain task. For exanple, an operator
action to schedule a certain bäsk to start its operation
in five nlnutes doeE not conflict witn a previous call
for operablon at 10.00 orclock next day'

Ihis rule ltill also give a sinple and Iogical operation
of the CYCL, CYCLAF, CYCLAT, and CON calls' i'e' the

calls causing poEsibillty of nultiple. subsequent
."iir.ti.n" Gun'"1 t whenever a task attains state
oönr.lart, (by CALL ExrT or sToP)' the pendinS-table i8

"trä"r"d.
-ri

Iisted' the task rilr be transferred
intrediately to stabe PENDING, Suided by an OR-function
oi

"un-oonaitlon"
from the table-entries' If the

acLivatirig call nas one of the recurrence calls CICLT

etc., or CoN, tn" table condition nill renain' The sane

flill be the case if nultiple calls of STRIAF or STRTAT

were nade, leaving the future activatlon tines in the
table. ürus, there nill be no dlfference, in principlet
between ttte iBnediate effects of Eultip1e calls of
SfRTAFT etc, and the recurrence calls CYCL, etc' and

con. ihe effect of the recurrence calls nill only be

that the condltion in the tabte entry will be adiusted
recursfvefy at the instant nhen ttte task after a CALL

EXIT is transferred past DORUANT to PENDING'

tlhat is said above about ühe specific calls like
STARTAT' CYCLAT, etc. pertains also to referencea to
inä ooti""tt"nsive CALL SKED' nith approprlate argunent
valueg.

A different issue is the probleo caused by tasks nhose

executlon is excesslvely delayed, so tlrat the tine or
other RUNNINS conditions for their next execution' as

scheduled by caII of SKED or it derived sinplified
verslons, ts already satisfied before EXIT of the
p""tiou"'run is caileo. Such conditlona aPe terned
ioverunn and should nornally be regarded as errors and

Si"" "ot"
error reaction. The problen ist honevert that

it. .""o" condition does not exist when the schedullng
call is nader and nost sysLens do not keep any record
oi connections bacr to the Ecbeduling task; at leagt'
such operationg nould hardly conforn to FoRTRAI{' Thus'

in general there is no obvious recelver of such error

"""ötiott"
nithin the userrs progran' Most appropriate-

Iy, such error reactions should be bandled by the

"V"t"t,
and as suchr it is outside the scope of bhis

siandard' The standard provldes one posslblllty'
however, by thich the user nay Bake his orm nechanlso

for handlin8 overrun conditions' By using the CALL SKED'

rather ttranlhe sinplified calls' th13 call has a return
argnnent, e2, fo" indication of overrun' 11113 eventnark
silt ue turned oN in case of overrun' Thus, a speciar
user-supplied üagk tray be connected to this eventtirark
by CALL COI and thus initlated upon bhe overun
cändltlon, bher€by Eoniioring ovemun conditidns in
other tasks.

8.4 Use of error paraoeter (clause 5'1)

25

Connonly' in nany lnplenentations, 1- 91lI to the

;;;;ti; systeo ibv calls of sKED, srRrAF' srRrAr'

"io.i
fo" siate transition to PEllDIllG causes liEting

in-"' t"Uf", approprlately called rrpendingtabletr' This

i" . qu""" of transltion calls waiting to be effected'
i.e. lntended to cauEe staüe transitions sone tine
iater. Atl entrles in this table involve soae conditions
for future activations, and these conditions are eibher
iir" ä"p"na"nt (STRTAF, STRTAT) or event dependent

iöörll. Ätt"i"s ribh tine conditions niII generally be

sorted according to the actlvation tloe' Often'
exeoutive system inplenentors will find it convenlent
io spllt this queue into tuo: a tlne queue and an event

il.;;. tlith an ordered tlne queue' the executive
Jystents task of Bonltoring wben tine ls due for any

täsk nill be Einple: it has only to check the flrst

"i"t"nt,
since this alnays represenLs the nert gask to

üe- actfvateO. The other part of the rrpending-tablen

contains entries nade by reference to the subroutine
öoll.lnr these elenents refer to events as tbeir
conditions. The executive systen wlll check this queue

nhen external interrupts are receivedr as well as at
sone otber instances, in order to be able to react on

possible progra!0ned events' for exanple eventnarks get

lo Otl by reference to subroutine POST'

iintlar-tabtes nay exist to direct the supervision of

"u"p"na"a
tasks; ln fact, often these tito sets of tableg

will be ccoblned.

Transltlon catLs Iike those trentioned nilt cause entry
in bhe npending-tabletr up to the point wtrere the oaxl'[ulB

taufe "p"o"
t" exhausted. tthen this occurst the

transitiön call ntll be reJected itith the emor
p."*"t"t (terned n in clause 5) tndicating thls fact
üy being set to a value greater tban one'

The obvlous benciflt of a systen like this ni1I be ühat

;-!AIi for a state transition will be lndependent of
*räilt.t" the obJect task happens to be ln at fhe
itne the calt is oade. Therefore, there 1111 be no

oonfffot rdth the state, and error returns are less
iikety to occur. A rnininunr systen sithout such

u"if""fng rill behave like the systen described ntren

lfre- penO-fng table ls full. Since thls &f, happen for
any iabte & frntt" slze' the progrannlng of the tasks
r,r"t .ffot for this by checking the error paraneter

The processor nay deflne speolfic values for u) 2 to
dlstinguish betneen certain reasons for reJection' For

exanplä, it could be advantageous, after a reJbcted

IIIDUS?NIAL REAL-TIME FORTRAN
(rP$/Enrcs Tc1, 2.2/80)

reference üo subroutine tlAITS, to get sone further
lnforoatlon. This could be supplied by bhe folloning
range of values of n:

n is set on return to the calling task, to
lndlcate the disposition of lbe request as
follows:
0 or less : undeflned,
1 : request acceptedr sYnchron-

ization obtained.
2 z request reJected' because of

non-exlstlng senaphore.
3 : request reJected, because J

is butside allored range.
4 or greater : request reJected, because of

unspecified error.
Ihls argunent shall be an integer variable
or integer array elenent.

8.5 Creatlon of a new task (clause 5.2)

In that the tasklng nodel used ln this standard inplies
lndependent täsking, a reference to subroutlne CREATE

shall not form a dependent relationshlp betr'teen the
creating task and the created task. That ls, the
ternlnation of one task should not cause a state
transltion of another task, in splte of the fact that
the one task nay have created the other taEk.

It is not the lntent of this standard, however, to
preclude alternative subroutines, sinilar to CREATE,
lthlch do forn independent tasking relationships,

8.5 Use of CALL KILL (clause 5,3)

The processor nay inpose certain restrictions regarding
$hich calling tasks nay be pernitted to elininate other
tasks. For exaople, a reference to subroutlne KILL nay
be effective only if the designated task has been
created by the sane calling task, i.e. there exists a
parent - child relationstllp.

8.7 Use of senaphores (clause 5. 1 1)

Seflaphores represent ond' of the nost baitlc synchron-
lzatlon nechanlms, and thls is probably also the one
nost widely accepted. This consideratlon has been
doninant for the selection as the Dain synchronlzation
mechanisn included in the proposed standard.

Senaphores are -traditionally nanlpulated by Diikstrats
P and V pnimltives; [14]. Although these prlnitives
are widely 4o* by these terms, single letter
identifiers should be avoided, since they can too easily
be confused with user defined nanes. Alsor the
senaphores and senaphore operations contained hePe are
nore advanced than the connon sinple typer slnce
increnent is not confined to value 1. Ttlus, the
senaphore nanipulating subroutine calls are described
here, uslng the designations I{AITS (I{AIT on Semaphore),
and SIGNAL, corresponding to P and V respectively.

October 1980

Argunent r specifles a seoaphore. ltris neans, that r=2
specifies one semaphore, r=3 another, coBpletely
dlfferent, senaphore. In a userrs progra!, r t.ill
usually be speclfied as a constant.

Acclusive access righbs of a task referencing IIAITS are
released uhen the task is suspended, This is necessary
to avoid deadlock, and since this suspension is.a norual
and intended operation of the synchronization nechanisr
under control of the operating systen, it does not
conftlct rtth the basic atonic t equireaent oentioned
before.

8.8 Terolnation of executlon (clause 5.12)

It ls reconoended to terelnate execution of a task by
call of subroutine EXIT, which perforng a defined
release of the relrources Eventnar.ks, Senaphores, and
Resourcenarks. This iE not the case for the coonon
FoRTnAN operations STOP and EllD, whose effect on these
resouces ls processor dependent.

8.9 Binary pattern operations (clauses 6 and ?)

The arithnetic in nosl applicabion progrtulE of process
technology is nuch less characterized by the proceEsing
of INTEGER, f,EAL, or DottBLE PRECISIoN quantities -- as,
for exanple, in engineering-soientifia ppograBs -- ühan
by the processing of binary patterns or single bits,
$hich often represent some forn of statua values or
packed data. Since this standard conplies lrith the rules
of the general IS0 FORTRAN standard, it is not possible
to introduce new data types for the eleuents: binary
pattern and bit. If one proceeds, however, on the
prenise that in nost nodern digital conputers Lnteger
values are represented by their blnary values, then one
can rrith the aid of standardized procedure refenences
effectively process blnary patterns as well as single
bits.

In the procedure references described in sectiou tro
it is assmed that lnteger nulbers are represented in
binary foro. ftle representation of negative values is
processor dependent.
For exanple the follonlng lnternal representatlon sould
be obtained with ä nord length of 16 bits on a trora
conplenent nachine:

Value Binary Pattern

Bit3 15 14 13 12 11 l0 09 08 0? 06 05 Oll 03 02 Ol OO

-26-

00
10

-1 1

10 0

-10 1

0000000000000
0000000000000'l 111111111111
0 0 0 0 00 0 0 0 0 010
1111111111101

00
01
1l
10
10

The bits are thus nunbered fron right to left,

This standard does not prohibit inplenentations of the
binary pattern operations as Lntrinsic fungtions.

ITTDUSTRIAL REAL.TIUE FORTRAN
(rPI{/EUTCS tC1, 2.2/80)

8.10 Analog input operatl,ons (clauses 10 - 11)

The paraneters J and k for analog I/O have the followlng
neanlng:

Ihe paraneter J conslsts of a neasunenent speclflcatlon
and a neasurenent point address.

The neasurenent specification nay for exanple contaln
the Deasurenent range of the analog lnput unlt, The
neasurenent polnt address speclfies the address(es) of
the analog I/O points; this also cmprises a channel
äddness, lf required. Generaily, the fonnat of J ts
syst€o dependent.

For block tranEfera of sequential analog inputs, only
one eleoent of J ls nequlred. thls nay be detenoined
by one or tro lntegers.

For bloak transfers of randon analog inputs or outputs,
the neasurenent point address at least changes froo
polnt to point. Therefore, a descrlption field for J
with several eleBents is required.

The relatlonship betreen the neasurenent range of an
lnput pont and lts oorresponding elenent Ln k 1s
processor dependent.

the following scallng rules have the advantage that the
englneerlng units y can be cooputed fron the converted
values x fllth the sane forDula y=f(r) for all
cooputerlt wlth the sane integer representation rlthout
any knorledge of the special codlng of the ADC used,

- The analog value zero is r.epresented by the
nunerical value zero.

- A unlpolar posltive analog signal is represented
by a posltive nunerical value suoh that ,l00 I of
the neasurenenü range is represented by half of (the
naxlnun value +1) of integer varlableE, Tttis allons
a neasureoent overrange of approxioately 99 I. Ttrus,
ln the case of 16 bit storage unlt for integer
vaniables, 100 t of the neasuretsent range $ould
correspond to 2rr14 = 16384 and the representatl,on
accuracy H,ould be 2rl(-15) or about .003 I of the
neasurenent range.

- Bipolar, as uell as negative unipolar, analog
slgnals are represented sinilarly to unlpolar
positive signals, such that negative analog values
are represented by negative nunerioal values ln the
usual fornat of the processor.

ANNEX C

ABORTION OF TASKS

An trabortingtr nechanlsn is sonetines needed in an
lndustrial RT systen. There ls, however, several valJd
arglments agalnst bhe incluslon of a nechanisn, capable
of forceful ternlnating another task which nay be in
an arbltrary state at that nonent. Such a nechanlsn
will involve the rlsk for leavlng the coüputer and its
nenorry, files, and other reEources in a nessy,
lndefinite, and possibly dangerous slate, Aborbion, or
forceful teruination of an obJect task, nay be necessary
because of nalfunction in a process sectLon, or some
ottrer unusual sltuation. Ihe abortion is effected by a

- 27 - October 1980

call, issued in sone supenvislng taak, often running
interacüj.vely ln oper.ator dialog.

Tlris annex outlines a safe nethod, by r.hich the
appllcatlon prograooer is not given a general aborting
tool, but a prescription on hot to progran an equivalent
oechanis@ that can be used safely and in an ordered
nanner,

A task rlll often have sectlons where aborüion would
be lnproper, or fatal. Equally, there are sections,
where a posEible abort could be done rithout problens.
The appllcatlon progranner. is the obvious person noat
able to ldentify these sections..

Assune an eventDark is defined to be used to guide annabortr for a certain task. For reference, let us denote
thLs eventnark iIABORTi ln the folloeing. This eventnark
oay be set ON by a supervi-sing task, possibly follordng
an operator regueat. In all tasks, where the appllcation
progranner decides that abort nay be necessary and can
be alloued, he includes the folloring and similar
statenents at the rsafe spotstr of the program:

90 rF (TESTEI|(rAB0RT,M)) G0 T0 9000

9000 conTrruE
C HERE I.IAI BE II{CLUDED ANI PROCNil{ PORTIOI
C DEEUED NECESSARI OR COTVEI{IENT BI
C THE APPLICATIOII PROGRAHMEN, TO B8
C EXECUTED JUST BEFORE THE FONCED TSNUINATION.

CALL EXIT
END

A supervising task üay now abort the obJect task by
calllng:

CALL CANCEL(I ,M1)
rF (Ml.N8.1) G0 TO 8010
CALL POST(rABoRT,r{1)

li.l"t
-' 1) co r0 8000

The effect is that the aborted task ibself.nay perforn
a ngracefulr terninatlon, taking care of opened files,
dangerous process states, etc.

Renark, that CANCEL and PoST should be called in that
order, Otherwise, a slight possibillty exists, that a
ner executLon of task i nlll be initlated bet.ween
call of POST and CANCEL.

If the task to be aborted ls in state SUSPEIIDED, lt
generally does not generate any harnful operations. It
nay renain there forever, bhough,.Haiting for a
conditlon that will never occur, because of sone
nalfunction, In this case, this taak Day occupy sone
resources that are needed by the rest of the system.
Usually, the operating systen is provided nith sone
nechanlgn to deallocate such resources, so lhis is not
covered any further here. For the purpose of taking
care of the case that the obJect bask is PENDING, the

INDUSTRIAL RBAL-TIME FORTRAN
(IPtlElIrCS r9l, 2.2/80)

aborting statenents include a CALL CANCEL in the
controlling task, wtrereby the obJect task transits back
to DORMANT iuroediately,

Al{l{Ex D

FILE HAITDLING

This docunent is based on the prograhnln8 language
FORTRAil (IS0 1539 - 1980) t161. In sectlon four, file
handling, the access to flle is assuned to be perforned
by the standard FoRTRAN input/output statetsents.

October 1980

Europe Spring Meeting 19'17 at ISPRA CCn
Euratom, Vol. II. IFIA, Rocquencourt, 1977.

P. Brlnch ll,ansen: Operating Systen Principles.
Prentice-llall, 1973.

A. C. Shaw: the Logical Design of Operating
Systens. Prentice-Hall, 1974.

E. l{, DiJkstra: Cooperating Sequential Proces-
ses. In rProgrrmning Languagesr (V. Cenuys,
ed,), pp 43 - tl2. Anerican Press, l{en lopk,
1 968.

ISA s61.3 (Aug. 1978) Draft standard: Indust-
rlal Cooputer Systen F0RTRAII Procedures for bhe
Managenent of Independent Interrelated Tasks.
Instrunent Soclety of Anerica, 1978.

Internatlonal Standard IS0 1539 -
Progrannlng Languages: FORIRAN
(rso 1539 - 1980)

-?8-

112)

I13l

t 141

t1l

r.2l

t 151

aNrEx E t161

REFEREIIC ES

ISO Reconnendation R 1539, Progrennlng Language
FORTRAII. IS0, ceneva (Switzerland), 1972.

Hohroeyer, R. E.: CDC 1700 FoRTRAN for Process
Control. IEEE Transactions on IECI, Vo1. 15,
No. 2, Dec. 1968.

IXDAC 8. Digital Equipoent Corporation, 1969.

DDP-516 OLERT, PrograBner's Reference !{anual.
HoneyrEll Inc., Doc. }{o. 1300 72069 A, E!{-602,
1 969.

Bonnard, P.3 PRoCoL: A PrograEnlngi Systen
Adapted to Process Control. IFAC Congress,
Paris,1972.

ISA 561.1 (1972) Standard, Industrial Conputer
Systen FORTRAN Procedures for Ececutive Func-
tions and ProceEs Input-Output. Instrunent
Society of Anerica, 1972.

ISA 561.2 (1973) Draft Standard: Industrlal
Conputer Systeo FORTRAN Procedures for Handllng
nandon Unfornatted Files, Blt Uanipulatlon, and
Date and Tlne Infornation. lnstrunent Society
of Anerica, 1973.

AllS/1SA 561.1 (1976) Standard, Industrlal
Conputer Systen FORTRAN Procedures for Btecu-
tive Functions, Process Input-output, and Blt
Manipulation. Instrunent Society of Anerica,
197 6.

AI{SI/ISA 561..2 (1978) Standard: Industrial
Cmputer Systen FORTRAI{ Procedures for File
Access and the Control of File Contention.
Instru[ent Society of Anerica, 1978.

VDI/VDE 3556, Prozess-FORTRAN 75, eine h-
weiterung von FORTRAN für Prozesgrechner-
Anren<tungen. VDl/VDE-ntchlinie (Entwurf) .
VDI^DE - c,esellschaft füF l,!ess- und Regelungs-
technik, Dllsseldorf,'1978.

O, Pettersen: l{anagenent of Parallel Activities
in Real-Tloe FoRTRAI{. State l{odel and State
Transitions. 2nd edition. l,linutes of the Purdue

t3l

t4l

t5l

t6l

t7l

t8l

t9l

I10l

t11I

