IRTF

Industrial Real — Time
FORTRAN

II1/437/81 EN

IRTF

Industrial Real — Time
v FORTRAN

Real Time FORTRAN Draft Standard

The European Workshop on Industrial Computer Systems (EWICS) has prepa-
red a Draft for Standardization, which is available for public review and
comment, on Industrial Real Time FORTRAN.

The Draft for Standardization was developed by EWICS Technical Commit-
tee 1 (EWICS TCl)in cooperation with Standards Committee 61 of the In-
strument Society of America (ISA S61) and the American Technical Com-

mittee 1 of the International Purdue Workshop on Industrial Computer Sy-
stems (IPW TC1/A). :

This Draft specifies a tasking model and a set of procedures to allow con-
trol of multitasking systems. Moreover it specifies procedures for binary
pattern and bit processing, process input/output and the control of the ac-
cess of shared files. The Draft for Standardization is based on FORTRAN

77. 1t is currently discussed to be submitted to ISO for international stan-
dardization.

Copies of the Draft may be obtained free of charge from the chairman of
EWICS TCl1:

Dr. Wilfried Kneis
Mergenthaler Linotype
Entwicklung

Frankfurter Allee 55-75
D-6236 Eschborn bei Frankfurt
Federal Republic Germany

Comments to the Draft received before August 31, 1981, will receive a
written reply after being considered by the committee. Comments should
be submitted to the chairman of EWICS TCl.

)

IPW/EWICS TC 1, 2.2/80 October 1980
(IRTF)

Draft Standard

Industrial Real-Time

e s S s e e - s = e W S e e e e ——

Definition of Procedures for the Application of
FORTRAN for the Control of Industrial Processes

Proposed by the
Technical Committee 1
of the International Purdue Workshop on Industrial Computer Systems

and of the European Workshop on Industrial Computer Systems (EWICS)

Note: This copy of the draft standard is being circulated for comment
only. Please address all comments to the chairman of EWICS TC1:

Dr. Wilfried Kneis
Mergenthaler Linotype
Entwicklung

Frankfurter Allee 55 - 75
D-6236 Eschborn/Frankfurt
Federal Republic of Germany

The development of this standard has been supported by the Commission
of the European Communities, Directorate-General III. The views
expressed herein are, however, not necessarily those of the

Commission.

INDUSTRIAL REAL-TIME FORTRAN - II - October 1980

(IPW/EWICS TC1, 2.2/80)

FOREWORD

This Standard specifies a tasking model and a set of related routines to
allow control of multi-tasking systems. The background to this work is
given in ANNEX A, and suggestions and justification for some features are
given in ANNEX B. ANNEX C deals with the problem of aborting tasks. All
annexes are included for information purposes and are not part of the
Standard.

No extensions or variations from this Standard should be implemented except
for features explicitly declared in this Standard to be processor dependent.

The Standard has been prepared by the Technical Committee 1 of the European
Workshop on Industrial Computer Systems (EWICS) in close cooperation with
the ISA/S61 Committee and with the American Technical Committee 1 of the
International Purdue Workshop on Industrial Computer Systems.

The standard was prepared by the following members of the EWICS committee:

C. G. F. Ampt PTT NL
W. Koblitz Technische Universitdt Wien A
C. Blume Universit#t Karlsruhe D
P. N. Clout Los Alamos Scientific Laboratory, USA GB+USA
A. J. Cox University of Oxford GB
G. Heller Fachhochschule fiir Technik Mannheim D
W. Kneis Mergenthaler Linotype D
W. Koblitz Technische Universitit Wien A
K. Maliszewski MERA - PIAP, Warszawa PL
K. Mangold AEG-Telefunken D
0. Pettersen Norwegian Inst. of Technology N
U. Rembold Universit#t Karlsruhe D
D. A. Rutherford University of Manchester GB
J. A. M. Snoek Delft University of Technology NL
H. Sobiesiak Kernforschungszentrum Karlsruhe D
G. Teuschler Siemens AG D
M. Topschowsky AEG-Telefunken D
P. Urbainsky Universitit Erlangen-NHirnberg D
A. J. H. Walter Rutherford Laboratory, DIDCOT GB
G. Wiesner Hahn-Meitner-Inst. fiir Kernforschung D

Many different people contributed to the development of this standard, but

the influence by the American ISA S61

particularly important. The members of these committees are:

A. Arthur IBM Corporation

F. E. Bearden The Cadre Corporation

R. H. Caro Modular Computer Systems

L. M. Cartright Inland Steel Corporation

R. L. Curtis ALCOA

W. van Diehl Hewlett Packard Company

M. R. Gordon-Clark Scott Paper Company

M. N. Hands Digital Equipment Corporation
C. C. Haskell Union Carbide Company

W. Loper Naval Oceans Systems Center
T. L. Luekens Johnson Service Company

S. C. Schwarm E. I. du Pont de Nemours

R. Signor General Electric Company

R. E. Willard Digital Equipment Corporation
D. W. Zobrist ELDEC

and IPW TC1-A Committees was

INDUSTRIAL REAG{TIME?FORTRAN - T =
(IPW/EWICS TC1, 2.2/80)

L October 1980

CONTENTS Page
1 Scope"nd ie Qf app 1gabi'nf1?7
2 Defini Iong %9 k

SECTION ONE: &%
MULTIPROGRAMMTEG’ARB>REEL TIME;FEETURES

3
3.1
3.2
Boolean Compl me t
4 “%Réiﬁ%i#é é :
o Statestand transig
4.2 Multiple ‘activation cal
4.3 Synchronization concept
4.3.1 Eventmarks .
4.3.2 Reséarcemarks © . s 16
4.3.3 Semaphores B T
J¥ . BTEST 16
5 Procedure references o o IBSET 16
.. IBCLR 16
5.1 Terms and summary of proce ure . IBCHNG 16
referendes ii.0uuun. ¥
5.2 Creation of a new task
5.3 Eliminating a task from the real«
system........ R R R R see), s S . {53
5.4 Scheduling a £ask ..:.ecsrveevimesnns S B g T duct, ; W 17
5.5 Starting a task by simplified calls . apie 7 S)
5.:5-1 Starting a task immediately
552 Starting a task after a specified 17
timg delayccc00000 o
5:5:3 Starting a task 17
absglute EiIMe .iiineisnaisnnessini
5.5.4 Starﬁ;ng a task in periodic exe- . spys 17
O s Cisis s ovin o S0 8 Wbess fata input i dom se quence . AIRDW 18
5.5.5 Initial start immediately .. % eYeLY 5 ata output Y...... hOW 18
5.5.6 Initial start after a specified i ai2
time delayco000vee000.... CYCLAF 10 12030 Input/Oubput of DigitaloValuesi..il......... 18
5:547 Initial start at specified absolute. .
R R = 18
5:5.8 Conﬂection of a task to an event utput ' g x5 a3 18
5.6 Elimination of previous schéduling . o 1 pulse output . el DOMW 18
5:6.1 Elimination of event connections ... DCON 10 52 Latched digital output DOLW 19
5.6.2 Elimination of time connections .. CANCEL 11
BT Delaying continuation of a task SUSPND 11 SECTION FOUR:
5.8 Suspending until.event .or time.swysdcmssilhat PILE.HANDLING o -
5.8:1 Delay until event has occurred
5.8.2 Delay for a specified relative e i e
time I RO BELAY T
5.9 Eventmark operationsccoevieeccncacn 12 14
5.9.1 Setting an eventmark to the ON
condition «.iSeesisees sislere s STaiEieaerets POST 12 15 4z o Pilen
5.9.2 Clearing an eventmark s
5.9.3 Testing an eventmark condition ... TESTEM 1
5.9.4 Masking an eventmark MKEM- T, e : S
5.9.5 Unmasking an eventmark 215076, 17 Introduction : 20
5.10 Resourcemark operations B T 16.2 Creation-of files ...i... 20
5.10.1 Setting a resourcemark to the camomes - (16s3 s Deletioniof filesudd Siewsvee.. DFILW 21
locked condition Ty T 16.4 Opening files ... OPENW 21
5.10.2 Setting a resourcemark to the i - CLOSEW 21
unlocked condition ...c:csssscoses “UNI MODAPW 21
5.10.3 Testing and setting a resourcemark =
to the locked condition UTLOC
5.11 Semaphore operations Seseeiy B3 sah s &
5-11.1 Initialization of semaphore ? i o ANN & Alo10RIL JUND. S 23
5.:015.2 Wait on semaphore LT 5} fi
5.11.3 Release of semaphore IGNAL. 14, .) URT NS .| p 24
5.11.4 Reading a semaphore value .. "IRDSEM 1% ' % T e
5.12 Normal termination of execution EXIT 14 ANNEX C: 27
ANNEX D: FILE HANDLING 28

ANNEX E: REFERENCES

3)

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

1 Scope and field of application

This Standard establishes external procedure references
for use in industrial computer control systems. These
external procedure references provide access to time
and date information, permit interface of programs with
executive systems, process input and output functions,
allow manipulation of bit strings and provide a method
for file handling.

These procedures are intended for use with programs
written in FORTRAN conforming to the current ISO
standard according to [16]. These programs are expected
to be executable both in a solitary and in a
multiprogramming environment under the control of a
real-time executive system.

This standard is applicable to all FORTRAN systems which
require multi-tasking features.

2 Definitions

Terms defined elsewhere in this vocabulary are
underlined. They are, however, underlined only at the
first occurrence within the same definition paragraph.
Some of the definitions, star-marked in the table (¥),
are taken from ISO 2382/X.

access mode: The right or permission to access
(read or write) a file granted by
the processor following a request

for such permission.

basic clock counts: Counts of the basic unit of the
system real time clock as avail-
able for the user's program.
computation: A set of operations applied on a
set of data, as available for the
user's program.
critical region: A part of a sequential program
operating on shared data such that
this program part must have exclu-
sive access to the shared data
during the execution.
DORMANT: One of the definite states of a
task. A dormant task is known to
the executive system and is not
in any of the states PENDING,
RUNNING, or SUSPENDED.

event: A significant discrete occurrence
or incident which is intended to
affect some task execution in a
planned manner. An event itself
occurs instantaneously and sets an

eventmark!).

) Supplementary information, see clause 4.3.1.

eventmark:

execution:

executable program:

executive routine;
executive.system:

file:

initiation:

multiprocessing.:

multiprogramming*:

multitasking‘:

NON-EXISTENT:

object task;
designated task;
referenced task:

operation:

overrun:

October 1980

Internal variable of the executive
system, used to indicate that an
event has occurred.

If the user's system contains
parallel tasks, the eventmarks are

shared data elements for the
tasks.1).

The collection of actions per-
formed by a computer processor
carrying out instructions in a
sequential manner.

A program including all of its
functions and subroutines in a
form suitable for execution.

The part of the processor which
supports the procedures of this
standard.

A collection of related records
treated as a unit. For the purpose
of this standard, the records are
viewed as being of fixed length.
Record storage and access are
independent of the internal format
of records.

The action taken by the executive
system to start the execution of
a task at its first executable
statement.

A mode of operation that provides
for parallel processing by two or
more processors of a multiproces-
sor.

A mode of operation that provides
for the interleaved execution of
two or more computer programs by
a single processor.

Amultiple operation that provides
for the concurrent performance or
interleaved execution of two or
more tasks.

One of the definite (formal)
states of a task. A non-existent
task is unknown to the executive
system.

The task that is wanted or
expected to be started, halted,
stopped, or otherwise affected as
a consequence of a system sub-
routine call.

A deterministic rule for the ge-
neration of a finite set of data
from another finite set of data.

Occurs when the condition for
initiation of a task becomes true
while the task is still running
because of a previous initiation.

INDUSTRIAL REAL-TIME
(IPW/EWICS TC1, 2.

parallel tasks;
concurrent tasks:

PENDING:

processor:

processor dependent:

repetitive execution:

resourcemark:

RUNNING:

semaphore:

sequential order
of operations:

SUSPENDED:

task:

time:

FORTRAN
2/80)

A set of tasks whose operations
may overlap in time.

One of the definite states of a
task. A pending task has been
associated with an event or time
condition such that when the
condition occurs, the task will be
transferred to state RUNNING and

dpitjated.

The combination of a data proces-
sing system and the mechanism by
which programs are transformed for
use on that data processing sys-
tem. (ANSI X3.9-1978.)

The action of the processor is not
specified in this- standard.

Occurs when a task is repeatedly
ipnitjated, whether at fixed inter-
vals or by repetitive events.

Internal variable of the executive
sSystem, used to indicate that a
resource is exclusively reserved

for a tggg,z)

One of the definite states of a
task. A running task is executing

in its yvirtual processor.

A variable of the executive sys-
tem, used for the exchange of
synchronizing information between
interacting _parallel tasks. All
semaphore operations in this stan-
dard imply gritical region protec-
tion, provided by the executive
system.

An order of operations that can
only be performed strictly one
after another in time without any
overlap in time.

One of the definite states of a
task. A suspended task has tempo-
rarily halted the execution of its
irtual progessor, and is waiting
for a specified condition to
continue the execution of its
virtual processor.
A computation which can be
scheduled.
The operations of this computation
are performed in a strict sequen-
tial order of operations.
(See also definitions for object
task and sequential order.)

absolute time:

Complete time and date specifi-
cation.

relative time:

A time increment or difference.

2) Supplementary information: See clause 4.3.2.

virtual processor:

October 1980

An environment in which a tagk can
run from the time it is initiated
until it terminates without con-
sideration of resource avail-
ability. A particular implement-
ation serves to map a set of
virtual processors onto a set of
real processor(s). This mapping is
G

.

INDUSTRIAL REAL-TIME FORTRAN -3 =

(IPW/EWICS TC1, 2.2/80)

SECTION ONE

MULTIPROGRAMMING AND REAL-TIME FEATURES

This section describes several procedure references
available for the user's program, and relating to
multiprogramming and particularly real-time operation.
For all calls of SECTION ONE the operation is generally
considered indivisible, i.e. their operation shall
behave as if they are not interrupted.

3 Date and Time information

For programming in a real-time environment, the user
must have access to the time variables of the operating
system. These time variables are obtained by system
calls described in this clause.

Unambiguous time specification requires unique design-
ation of time including complete date and an acknow-
ledged calendar, defining time zero. Execution of
reference to subroutine DATIM provides this complete
information. The date refers to the Gregorian Calendar.

The calls are:

CALL DATIM(t1) For obtaining current date and
time.

CALL CLOCK(Jj,k1,k2)

For obtaining the basic clock
counts.

3.1 Obtain Date and Time

The form of this call is:
CALL DATIM(t1)
where:

t1 designates an integer array, into whose
first 8 elements will be placed the absolute
time, as expressed by the system's real-time
clock at the time when the call is executed.
These elements are as follows:

First element: Counts of the basic clock.
Second " Milliseconds (0 to 999)
Third " Seconds (0 to 59)

Fourth " Minutes (0 to 59)

Fifth " Hours (0 to 23)

Sixth e Day (1 to 31)

Seventh " Month (1 to 12)

Eighth n Year

: it Clock Counts)
Execution of a reference to this subroutine allows the

user program to obtain the current value of the system
real-time clock, expressed in basic clock counts.

n Supplementary information, see Annex B.

October 1980

The form of this call is:
CALL CLOCK(j,k1,k2)
where:

J designates an integer variable or integer
array element into which the current value
of the clock will be placed as a positive
integer. j is counted up to a maximum value
as given by k2, then set to zero and counted
again.

k1 Number of basic clock counts per second. An
integer value returned by the system.
This argument shall be an integer variable
or an integer array element.

k2 ~Specifies the maximum number j can attain.
An integer value returned by the system.
This argument shall be an integer variable
or an integer array element.

4 General aspects of tasking

4.1 States and transitions

At any time, a task is in one and only one state.
Actions executed by the executive system, other tasks,
or the designated task itself, may cause transition from
one state to another. These transitions are performed
instantly, i.e. they are considered ideally to take no
time.

This mathematical model ot a task may be visualized by
a "state diagram", like Fig. 1, in which the states
are nodes, illustrated as circles, while transitions
are drawn as pointed arrows from one node to another

[11].

A multiprogramming system consists of several parallel
tasks and can be considered as modelled by a number of
disjoint but similar diagrams. It is feasible to apply
a three-dimensional picture, with the similar diagrams
sandwiched on top of each other and oriented so that
the identical states of the individual diagrams cover
each other.

State transitions are generally caused by subroutine
calls, occurrence of events, or expiration of time
limits. The name, form, and interpretation of tne
subroutine calls are standardized and described in the
present document.

In the present document, a task is described by a
mathematical model illustrated by the state diagram of
Fig. 1. This model adheres to the following basic
principles:

1. Transitions are non-ambiguous, i.e. for a given
stimulus in a given state, the task can transit
to only one possible new state.

2. Transitions are performed instantly, i.e. in
zero time.

3 A task exists in one state only at a time.

4. The state model describes the behavior of tasks

as seen by the application programmer.

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

STOP END

CYCLAT
repetitions

STRTAT

STATE MODEL AND TRANSITION DIAGRAM

Figure 1.

The following symbolism is used for transitions in the
state diagram: i

b Capital letters in box: Effect on a task imposed
by another task. I.e. a subroutine call in one
task has the indicated effect on the designated

task.

b Capital letters without box: Effect imposed by
the task itself while in the state RUNNING.

L4 Small 1letters: Conditions wunder which the
executive system performs the indicated state
transitions.

-4 - October 1980

With reference to principle 4 above, no attempt is made
to describe executive system actions transparent to the
application programmer. Consequently, the state RUNNING
is related to the task's virtual processor: It is
immaterial for the state of a task, whether a physical
processor happens to be assigned to it, or the execution
is temporarily hampered by the executive system due to
limited availability of physical processors and the
task's low priority. Thus, the model is as well adapted
to multiprocessors as to single processor computers.

4.2 Multiple activation calls V)

Different tasks may issue apparently conflicting
transition calls for the same object task. This will
be the case during normal operation, as well as under
error conditions, since the state of an object task is
unknown at the time a transition call is made by another
task.

Conforming to the requirement of one state only at a
time, as listed in the previous clause, a distinction
is made between state transitions and calls for such
transitions. Transition calls are received by the
executive system, which will apply its own scheduling
strategy in handling such calls.

Depending on available resources, like internal table
space etc. of the executive system, a transition call
will be accepted or rejected. An argument will be
returned after the reference, with appropriate value
indicating whether the reference has been accepted
normally or rejected.

nchronizat t

Within this standard, three concepts for the synchron-
ization between tasks and the resolution of the resource
contention are provided:

eventmarks,
resourcemarks,
semaphores.

Eventmarks and semaphores are mainly used for synchron-
ization purposes, whereas the resourcemarks are mainly
used for the resolution of resource contention. In the
following subclauses these three concepts are described
further.

Eventmarks, resourcemarks, and semaphores are local
variables of the executive system and they may not be
accessed other than by the mechanisms described in this
standard.

4.3.1 Eventmarks

In the management of concurrent tasks, it is necessary
to associate certain tasks with certain events. These
events may be either external or internal events.
External events are of some physical nature, like a
contact closure, but the connection between an external
event and its eventmark is beyond the scope of this
standard. An internal event arises from specific program
action (see description for CALL POST, clause 5.9.1).

n Supplementary information, see Annex B.

4)

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

Eventmarks are selected by reference to a numeric
selector in the range 1 to n, where n is processor-
dependent. Eventmarks have two states:

ON
OFF

The association of events to tasks is done by the
subroutine calls CALL SKED (see clause 5.4), CALL CON
(see clause 5.5.8), CALL SUSPND (see clause 5.7), and

‘CALL HOLD (see clause 5.8.1).

An eventmark is turned to ON by the occurrence of an
internal or external event. If one or more tasks are
associated with this event, the executive system will
cause each associated task to begin or continue
execution. An eventmark is turned to OFF by direct
program control or by the executive system as it
services the tasks associated with the eventmark.
Eventmarks can be changed only by the procedure
references defined in this standard and by the executive
system that services the events.

Eventmarks may also be set to the OFF state by a specific
program action, the CALL CLEAR (see clause 5.9.2), and
they may be masked and unmasked (see clauses 5.9.4 and
5.9.5). Additionally, the value of an eventmark may be
tested by the logical function TESTEM (see clause
5:9:3)5

4.3.2 Resourcemarks

A simple means to resolve contention for various
resources is provided by the resourcemark concept, which

permits one and only one task to use a resource at a

time.

Resourcemarks are selected by reference to a numeric
selector in the range 1 (one) to n, where n is

" processor dependent. Resourcemarks have two states:

LOCKED
UNLOCKED

This standard does not define what can be considered a
resource. It is the responsibility of the user to
associate a resource with a resourcemark. If the user
wants to reserve a resource exclusively for the running
task, he chooses a resourcemark for the resource and
performs the reference CALL LOCK (see clause 5.10.1).
Should the resourcemark be in state UNLOCKED at this
moment, the resourcemark will change to state LOCKED,
reserving the corresponding resource exclusively for
this task. This reservation is later released by the
task, by execution of a reference to EXIT (see clause
5.12) or UNLOCK (see clause 5.10.2).

Should a task attempt to LOCK a resourcemark which is
already locked, the executive system will transfer this
task into the -state SUSPENDED, where it remains until
the resourcemark becomes unlocked by some other task.

If several tasks are waiting for a resourcemark to be
UNLOCKED, only one will be selected for execution by
the executive system. (For details, see clause 5.10.2).
This is a main difference from the eventmark concept,
where all tasks waiting for an eventmark are transferred
to state RUNNING if the eventmark is set to ON.

-5 - October 1980

A resourcemark can also be set to LOCKED by reference
to the logical function TLOCK (see clause 5.10.3).

§iRe3 Semaphores

Semaphores represent a synchronization concept useful
for cases where a more advanced mechanism than those
available by resourcemarks and eventmarks is desired.
Unlike eventmarks and resourcemarks, a semaphore has
an integer value, s The value s of a semaphore
must be initialized and may later be set by the reference
CALL PRESEM (see clause 5.11.1).

If the task needs to wait until the value of a semaphore
is greater than or equal to a specific value, the task
uses the reference CALL WAITS (see clause 5.11.2). By
execution of CALL WAITS, the executive system tests if
the specified decrement j is greater than s. In this
case, the calling task is transferred to state
SUSPENDED, where it remains until the semapnore value
s is incremented by another task to a value greater
than or equal to j. If j is not greater than s ,
the value s is decremented by j and the calling task
continues its execution.

By execution of CALL SIGNAL (see clause 5.11.3), the
executive system increments by j the value s of the
specified semaphore. This incrementation may bring a
task, waiting for this semaphore, from state SUSPENDED
to state RUNNING, if s becomes greater than or equal
to j of the suspended task. If multiple tasks are waiting
for this semaphore and are candidates for rumming, after
the incrementation of s by j, the order in which these
tasks transit to state RUNNING is processor dependent.

By setting s to certain values and choosing different
values for j, a variety of advanced synchronization
concepts and solutions for resource contention are
possible.

In addition to the calls described above, the value of

a semaphore may be read using the integer function
IRDSEM (see clause 5.11.4).

5 Procedure references

5.1 Terms and summary of procedure references 1)

This clause contains a summary of the subroutine calls
and function references described in subsequent
clauses.

The following designations for parameters apply to
several of the calls. If the exact meaning of these
parameter designations deviates from what is described
below, it will be marked specifically in the detailed
description of the call. If the meaning is exactly as
defined here, the description of the parameter will be
omitted in the description of the call.

i specifies the task to be affected (object
task). The argument shall be an integer
array.

The contents of i may be partly generated
by CREATE. i 1is used as input parameter
in all other calls.

n Supplementary information, see Annex B.

INDUSTRIAL REAL-TIME FORTRAN -6 -
(IPW/EWICS TC1, 2.2/80)

t,t1,t2 designate integer arrays, whose first 8
elements contain a specification of absolute,
or relative time. Negative values of
elements are not permitted. These elements
are as follows:

First element: Basic clock counts

Second n Milliseconds
Third L) Seconds
Fourth o, Minutes
Fifth L Hours

Sixth " Day(s)
Seventh " Month(s)
Eighth v Year(s)

If, for absolute times, value 9 is used for
one of the three date elements, this shall
be interpreted as "current date", "current
month", or "current year" by the executive
system.

October 1980

The interpretation of a relative time
specification eontaining months or years
different from zero is processor dependent.

is set on return to the calling program, to
indicate the disposition of the request as
follows:

0 or less ¢ undefined
1 : request accepted
2 or greater : request rejected

(error condition)

This argument shall be an integer variable
or integer array element, local to the
calling program. The processor may define
specific values > 2 to distinguish between
certain reasons for rejection.

The list of function and subroutine calls, described in detail in subsequent clauses, is:

Full description

in clause: call: parameters:
5.2 CALL CREATE(i,m) i : identification of created task and associated program
5.3 CALL KILL(i,m)
(opposite of CREATE)
5.4 CALL SKED(i,s,el,t1,t2,e2,m) s : mode selector
(general scheduling) el: eventmark reference

t1: absolute or relative time for first initiation
t2: time period for cyclic initiations
e2: reference to eventmark for overrun

55541 CALL 'STRT(i,m)
(start immediately)
552 CALL STRTAF(i,t1,m) t1: time delay before initiation
(start after time delay)
5353 CALL STRTAT(i,t1,m)
(start at absolute time) t1: absolute time for initiation
5:525 CALL CYCL(i,t2,m)
(cyeclic, with immediate t2: 1length of time interval
first initiation)
5.5.6 CALL CYCLAF(i,t1,t2,m) t1: time delay before first initiation
(eyelie, with delayed t2: 1length of time interval
first initiation)
5.5.7 CALL CYCLAT(i,t1,t2,m) t1: absolute time for first initiation
(cyclic, with absolute time t2: 1length of time interval
spec. of first initiation)
5.5.8 CALL CON(i,e,m) e : eventmark reference
(establish event connection)
5.6 CALL DSKED(i,s,e,m) s : mode selector
(eliminate scheduling) e : eventmark reference
5.6.1 CALL DCON(i,e,m) e : eventmark reference

(eliminate event connection)

“

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

5.6.2 CALL CANCEL(i,m)
(eliminate time scheduling)

54T, CALL SUSPND(s,e,t,n,m) s ¢
(suspend continuation of e :
calling task for time v §
period or until event) e

5.8.1 CALL HOLD(e,m) e :
(suspend until event occurs)

5.8.2 CALL DELAY(t,m) t =g
(suspend for a relative time)

5.9.1 CALL POST(e,m) e :
(setting of an eventmark).

5:9.2 CALL CLEAR(e,m) e :
(resetting of an eventmark).

5.9.3 TESTEM(e,m) e :
(testing the state of an funct
eventmark) .

5.9.4 CALL MKEM(e,m) e :
(setting the mask of an eventmark).

5.9.5 CALL UNMKEM(e,m) e :
(clearing the mask of an eventmark).

5.10.1 CALL LOCK(r,m) r o3
(locking ot a resourcemark).

5210.2 CALL UNLOCK(r,m) i
(unlocking or a resourcemark).

5053 TLOCK(r,m) r
(testing and locking of funct
a resourcemark).

5:11:1 CALL PRESEM(r,s,m) o
(initialization s :
of semaphore)

5.11.2 CALL WAITS(r,j,m) r:
(wait on semaphore) e

5,113 CALL SIGNAL(r,j,m) By
(release semaphore) 3%

5.11.4 IRDSEM(r,m) P
(read semaphore value) funct

5.12 CALL EXIT
(termination of execution).

” tion o ew task

A new task is introduced to the real-time system by
reference to subroutine CREATE. The designated task
will be associated with some specified program,
considered a resource like other resources, necessary
for the task to perform. The associated program is
normally assumed to exist in an executable form.
Formally, and in terms of the state model, the task is
transferred from NON-EXISTENT to DORMANT as effect of
the reference (see fig. 1, clause 4.1).

A mechanism is assumed to exist outside the standard,
to create and initiate at least a first task, i.e. the
parent, which in its turn may create other tasks.

October 1980

mode selector

reference to eventmark for end of delay
time delay

indicator for cause of end of delay

reference to eventmark for end of delay

time delay

eventmark reference

eventmark reference

eventmark reference
ion value: condition of the eventmark

eventmark reference

eventmark reference

resourcemark reference

resourcemark reference

resourcemark reference
ion value: condition of the resourcemark

semaphore reference
initial value of semaphore

semaphore reference
decrement

Semaphore reference
increment

semaphore reference
ion value: value of semaphore variable

The form of the call is:
CALL CREATE(i,m)
where:

i specifies an integer array which contains
all information necessary to specify the
task and its associated program. The latter
includes, among other items, its design-
ation, where the program can be found such
as description of file, residency while
existent (primary memory resident or swapp-
able), ete. The array may also contain ‘the
task's processor priority.

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

This array will in general also contain
output information: references distinguish-
ing this task from other tasks created from
identical program code, reference to indi-
vidual data sets, etc.

Such information may be wused by other
procedure references of clause 5. See clause
5.1, description of parameter i.

A1l details of this array are processor

defined.
m see'5.1.
5.3. __Eliminating a task
from the real-time szstem1)

A reference to subroutine KILL will eliminate a
designated task from the real-time system, by transfer-
ring it to state NON-EXISTENT. If the designated task
is in state DORMANT or PENDING, the effect shall be
carried out immediately. If the designated task is in
state RUNNING or SUSPENDED, the termination shall affect
only future executions. Thus the designated task will
continue its present execution without any intervention
by this call.

The form of the call is:
CALL KILL(i,m)
where:

i,m see 5.1.

Sc i task

Execution of a reference to the subroutine SKED, or
its derivates as listed in clause 5.5, shall schedule
the initiation of a designated task, establishing the
condition for subsequent transition to RUNNING. If the
designated task is in state DORMANT when the call is
made, the designated task will transit to state PENDING.
If it is in state PENDING already, the reference shall
augment its conditions for subsequent transfer to
RUNNING according to the arguments of the call, such
that the designated task will transit to RUNNING when
any of the conditions still valid, becomes true. The
transition to state RUNNING requires the task being in
state PENDING, otherwise an overrun condition occurs.
The augmentation of running conditions is subject to
any resource_ limitation of the processor, and any
violation of such limitation will result in an error
return.

When a task transits to RUNNING, the condition that
caused this transition is removed from the possible
complex of combined conditions, such that the other
conditions remain. When a running task subsequently
exits, by transition from RUNNING to DORMANT, possible
scheduling conditions, remaining from previous schedul-
ing calls shall cause immediate transition further to
state PENDING. Note, however, the definition of the term
"overrun" in clause 2 and the provision of its
indication, as explained below.

Each normally accepted reference to the subroutine SKED
causes the following effect:

N Supplementary information, see Annex B.

October 1980

After expiration of a specified time delay or at a
desired absolute time or upon the occurrence of a
specified event, the object task is transferred to state
RUNNING and begins at the first executable statement
of the program. The actual time resolution obtainable
in a specific industrial computer system is subject to
the resolution of that system's real time clock. If
the object task is initiated by an event occurrence,
the executive system will set the eventmark OFF, as
part of the initiation. If more than one task is waiting
for a specified eventmark to change to the condition
ON, when the change occurs all these tasks will transit
into state RUNNING.

The form of this procedure reference is:

CALL SKED(i,s,el,t1,t2,e2,m)

where:
i,m see 5.1.
s is an integer expression, specifying three

categories of task scheduling:

- the values of the argument s between 10
and 15 cause the task to be initiated
once.

- the values of the argument s between 20
and 25 cause the task to be initiated
periodically by time.

- the values of the argument s between 30
and 35 cause the task to be initiated
whenever a specified eventmark becomes
ON.

The values of the argument s between 10 and 15 define
the first and only execution of the task.

10: start immediately

11: start at absolute time t1

12: start after time t1

13: start at event el (once)

14: start at absolute time t1 or event el (once)
15: start after time t1 or at event el (once)

The values of the argument s between 20 and 25 define
the first execution of the task which is subsequent-
ly executed repetitively at the time period t2.

20: start immediately plus cyclic by t2

21: start at t1 plus cyclic by t2
22: start after t1 plus cyeclic by t2
23: start at e1l plus cyclic by t2

24: start at t1 or el plus cyeclic by t2
25: start after t1 or at el plus cyclic by t2

The values of the argument s between 30 and 35 define
the first execution of the task which is subsequent-
ly executed whenever the eventmark specified by el
becomes ON.

30: start immediately plus repeated by ef

31: start at t1 plus repeated by e1l
32: start after t1 plus repeated by el
33: start at el plus repeated by e1

34: start at t1 or el plus repeated by e1
35: start after t1 or at el plus repeated by el

<

(5)

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

el specifies the eventmark for scheduling; an
integer expression.

t1 designates an integer array containing the
absolute, respectively relative, time for
the scheduling. By relative time for
scheduling is meant the time delay from the
time the reference is executed until the
intended running. (See 5.1.)

t2 integer array to designate the time period
for cyclic runs. (See 5.1.)

e2 eventmark for overrun. Will be turned ON if
overrun occurs. The action performed with
the scheduled task is processor dependent.

tarti task b lified calls

The following calls for scheduling represent subsets
of the features of CALL SKED. They are established for
the ease of programming only:

CALL STRT(i,m)
start immediately

CALL STRTAF(i,t1,m)
start after time t1

CALL STRTAT(i,t1,m)
start at time t1

CALL CYCL(i,t2,m)
start immediately plus cycliec by t2

CALL CYCLAF(i,t1,t2,m)
start after time t1 plus cyelic by t2

CALL CYCLAT(i,t1,t2,m)
start at time t1 plus cyclic by t2

CALL CON(i,e1,m)
start at event el plus repeated by ef.

w1 tarti a tas te

Execution of a reference to subroutine STRT establishes
a condition for immediate transfer of the designated
task to RUNNING via PENDING. Execution begins at the
task's first executable statement. If in state DORMANT
when the reference is made, the task will transit to
state PENDING and continue immediately to state RUNNING.

The form of the call is:

CALL STRT(i,m)

where:
i,m see 5.1.
B.5.2, Starting a task after a specified

time 1

Execution of a reference to subroutine STRTAF establ-
ishes a time delay as condition for transfer of the
designated task to RUNNING via PENDING.

After expiration of a specified time delay after the
time when the reference is executed, the designated task
is expected to transfer to state RUNNING and will do

2.9 October 1980

so, if its state at that time is PENDING. If in state
DORMANT when the reference is made, the task will
transit to state PENDING. In state RUNNING, the task
will begin at its first executable statement.

The form of the call is:

CALL STRTAF(i,t1,m)

where:
i,m see 5..1.
£ designates an integer array, specifying the

time delay after which the object task is
to start its execution. (See 5.1.)

Hig:R: Starting a task at a
specified absolute time

Execution -of a reference to subroutine STRTAT establ-
ishes an absolute time as condition for transfer of
the designated task to RUNNING via PENDING.

At the specified absolute time, the object task is
expected to transfer to state RUNNING and will do so,
if its state at that time is PENDING. If in state DORMANT
when the reference is made, the task will transit to
state PENDING. In state RUNNING, the task will begin
at its first executable statement. The task is started
immediately if the specified absolute time is already
passed when the reference to STRTAT is executed.

The form of this call is:

CALL STRTAT(i,t1,m)

where:
i,m see 5.1.
t1 designates an integer array, specifying the

absolute time. at which the object task is
to start its execution. (See 5.1.)

5.5.4 Starting a task in periodic execution

The calls for CYCL, CYCLAF, and CYCLAT for periodic
execution have the following common features:

The designated task will be transferred to state PENDING
if its present state is DORMANT or when it becomes
DORMANT. Further, the reference establishes the
condition for subsequent transfer of the designated task
from state PENDING to RUNNING for a first execution
and additionally causes future periodic executions. A
reference to subroutine CYCL, CYCLAF, or CYCLAT has the
same immediate effect as a reference for single
execution; additionally, after its termination (e.g.
by EXIT), the object task will be transferred
immediately from state DORMANT to state PENDING for the
next periodic execution, as indicated in Figure 1 by
"repetitions". The next scheduled time is equal to the
sum of the previous scheduled time and the interval
specified by the reference to these subroutines. The
re-scheduling under the said gonditions shall continue
until actively terminated by a‘call of subroutine CANCEL
(see clause 5.6.2).

The actual running may be delayed unintentionally while
in state RUNNING, because of running of other programs.
Such delays will not be accumulated. If the execution
is not finished before the time for next execution, an
overrun situation exists and the action taken with the
cycled task is processor dependent.

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

i nit tart t
The form of the call is:

CALL CYCL(i,t2,m)

where:
i,m see 5.1.
t2 designates an integer array, specifying the
nominal length of the time interval. (See
5¢1.)
it start aft ecified
time delay
The form of the call is:
CALL CYCLAF(i,t1,t2,m)
where:
i,m see 5.1.
t1 designates an integer array, specifying a
time delay for the initial activation, as
measured from the time the call was made.
(See 5.1.)
t2 designates an integer array, specifying the

nominal length of the time interval. (See
5:15)

25 Init tart at specified absolute time
The form of the call is:

CALL CYCLAT(i,t1,t2,m)

where:

i,m see 5.1.

t1 designates an integer array, specifying the
absolute time at which the designated task
is supposed to enter state RUNNING initial-
ly. This argument is exactly equivalent to
parameter t1 of call for subroutine
STRTAT. (See 5.1.)

t2 designates an integer array, specifying the
nominal length of the time interval. (See
5%1%)

.8 onnection of a task to an event

Exscution of a reference to subroutine CON establishes
a specified event as condition for transition from state
PENDING to RUNNING. First, the task will transit to
state PENDING if the staté is DORMANT when the reference
is executed, or, when the state becomes DORMANT. Then,
if the related eventmark is or becomes ON, the
designated task will transit from state PENDING to
RUNNING and will begin with its first executable
statement. The association between the event and the
object task remains until actively cancelled by a
reference to DSKED or DCON (see clauses 5.6 and 5.6.1).

= 10 =

October 1980

The form of this call is:

CALL CON(i,e,m)

where:
i,m see 5.1,
e specifies the eventmark; an integer expres-

sion.

5.6. Elimination of previous scheduling

Execution of a reference to subroutine DSKED or its
derivates, DCON and CANCEL, shall cancel specified
scheduling conditions for an object task. Thus, it
eliminates further effects from previous calls to
subroutine SKED or its simplified derived subroutines.

If the object task is in state RUNNING or SUSPENDED,
the cancelling shall affect only future executions.
Thus, the object task will conclude its present
execution, without any intervention by this call.

If the object task is in state PENDING, the cancelling
will cause a transition to state DORMANT if no
scheduling conditions remain.

The form of the call is:

CALL DSKED(i,s,e,m)

where:
i,m see 5.1.
s is an integer expression selecting one of

the following conditions:

=1: Eliminate all time based scheduling and
scheduling by events as specified by
argument e.

=2: Eliminate all time based scheduling includ-
ing repetition by time. Possible event
connections remain unaltered.

=3: Eliminate event-based scheduling, including
event-based repetition, as specified by
argument e. Possible time connections remain
unaltered.

e specifies the eventmark(s), whose connection
is to be eliminated:
-1: all eventmark connections for the designated
task.
=0: no event cancelling
>0: reference to one specific eventmark, as
specified by the value of e.
This argument. shall be an integer expres-
sion.

561 Elimination of event connections

Execution of a reference to subroutine DCON shall cancel
any connection between an object task and a specified
event. Thus, it eliminates further effects from a
previous call to subroutine SKED or CON. If the object
task is in state RUNNING or SUSPENDED, the cancelling
shall affect only future executions. Thus, the object
task will conclude its present execution, without any
intervention by this call.

—~

.

INDUSTRIAL REAL-TIME FORTRAN - 11 =

(IPW/EWICS TC1, 2.2/80)

If the object task is in state PENDING, the cancelling
will cause a transition to state DORMANT if no
scheduling conditions remain.

The form of the call is:
CALL DCON(i,e,m)
where:
i,m see 5.1.

e specifies the eventmark; an integer expres-
sion. See 5.6.

5.6.2. Elimination of time connections

Execution of a reference to subroutine CANCEL shall
cancel the future initiations ot a designated, object
task due to time scheduling by previous calls of SKED
or its simplified versions. The executive system shall
assure that no further move to the state PENDING shall
take place due to previous cyclic scheduling.

If the object task is in any active state (RUNNING or
SUSPENDED), the elimination shall affect only future
executions. Thus, the object task will conclude its
present execution, without any intervention by this
call.

If the object task is in state PENDING, the cancelling
will cause a transition to state DORMANT if no
scheduling conditions remain.

The form of this call is:
CALL CANCEL(i,m)
where:

i,m see 5.1.

e conti tion o task

Execution of a reference to the subroutine SUSPND shall
provide a means whereby a running task is suspended
(i.e. transits to state SUSPENDED) for a specified
length of time or until a specified event has occurred.
Then, the task shall transit back to state RUNNING and
shall resume execution with the statement immediately
following the call of subroutine SUSPND.

If more than one task is suspended and waiting for a
specified eventmark to change to the condition ON, when
the change occurs all tasks will transit to state
RUNNING.

The time delay is defined as the nominal duration from
the time when the call was made until the program resumes
execution in its virtual processor, by being transferred
to state RUNNING. The actual instants for the entering
and leaving states RUNNING and SUSPENDED are subject
to the resolution of the system's real-time clock and
to the interrogating and activating actions performed
by the executive system.

The form of the call is:

CALL SUSPND(s,e,t,n,m)

October 1980

where:

s is an integer expression selecting the
condition on which the suspension shall end:

: at absolute time t

after time t

at event e

at absolute time t or event e
after time t or at event e

wonononn
Ui EWN =
o oo oo

e specifies the eventmark for ending suspens-
ion, an integer expression.

t designates an integer array, specifying the
absolute, respectively relative, time for
the suspension. (See 5.1.)

n return parameter to indicate the cause of
“the end of the delay in case of s=4 or s=5:

1: end of delay by event e
2: end of delay by time t.

m see 5.1.

5.8 Suspending until event or time

The following calls for suspension represent subsets
of the features of CALL SUSPND. They are established
for the ease of programming only:

CALL HOLD(e,m)
suspend until the event e has occurred

CALL DELAY(t,m)
suspend for a time delay as specified by t.

5.8.1 Delay until event has occurred

Execution of a reference to subroutine HOLD shall
suspend the calling task until a specified event has
occurred. Then, the task shall transit to state RUNNING
and thus resume execution with the statement immediately
following the call of subroutine HOLD.

The form of the call is:

CALL HOLD(e,m)

where:
e specifies the eventmark for ending suspens-
ion; an integer expression.
m see 5.1.
5.8.2 Delay for a specified relative time

Execution of a reference to subroutine DELAY shall
transit the calling task to state SUSPENDED for a
specified duration. Then, the task shall transit back
to state RUNNING, resuming execution with the statement
immediately following the call of subroutine DELAY.
The form of the call is:

CALL DELAY(t,m)

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)
where:

t designates an integer array, specifying the
relative time for the suspension. (See 5.1.)

m see 5.1.

5*9;_____Exsn&mank_gnszailéhg
5.9.1. __Setting an_ eventmark to the ON condition

Execution of a reference to subroutine POST shall set
a designated eventmark to the ON condition. If the
eventmark was already ON, there shall be no action.
Because of an earlier transition call in some task,
the ON condition may cause a task to be transferred
from state PENDING or SUSPENDED to state RUNNING.

The form of this call is:

CALL POST(e,m)

where:
e specifies the eventmark; an integer expres-
sion.
m see 5.1.
5.9.2. Clearing an eventmark

Execution of a reference to subroutine CLEAR shall cause
the designatea eventmark to become OFF. It the eventmark
was already OFF, there shall be no action.

The form of this call is:

CALL CLEAR(e,m)

where:
e specifies the eventmark; an integer expres-
§ion. v
m see 5.1.

tma ondition

Execution of a reference to function TESTEM shall return
a logical value TRUE it the specified eventmark was ON
and a logical value FALSE if the eventmark was OFF. If
the eventmark is unknown to the processor, a logical
FALSE value will be returned, and the error parameter
will indicate an error condition.

The form of this function reference is:

%

TESTEM(e,m) 2
where:
e specifies the eventmark; an integer expres-
sion.

m see 5.1.

=45 =

October 1980

5.9.4. Masking an eventmark

Execution of a reference to subroutine MKEM does not
change the state of the designated eventmark but causes
it to be masked. The masking effect is that the eventmark
may freely change its state without any effect on tasks
that might be pending or suspended waiting for this
eventmark to be set.

The form of this call is:

CALL MKEM(e,m)

where:

e specifies the eventmark whose corresponding
event is to be masked. The argument is an
integer expression.

m see 5.1.

5.9.5. Unmasking an eventmark

Execution of a reference to the subroutine UNMKEM shall
allow actions associated with the specified eventmark
to be executed. If the eventmark is in the ON condition,
then all actions associated with the specified eventmark
will be executed.

The form of this call is:

CALL UNMKEM(e,m)

where:

e specifies the eventmark whose corresponding
event is to be unmasked; an integer
expression.

m see 5.1.

5.10 __ Resourcemark operations
to th
Jlocked condition

Execution of a reference to the subroutine LOCK, shall
cause the specified resourcemark to be locked. If the
specified resourcemark was locked already, the execut-
ive system shall suspend the execution of the task.
The form of the call is:

CALL LOCK(r,m)

where:
r specifies the resourcemark; an integer
expression.
m see 5.1.
: 2 __Sett to t
il ndit

Execution of a reference to the subroutine UNLOCK shall
cause one of the following actions:

a) If the resourcemark is unlocked, there will
be no action.

INDUSTRIAL REAL-TIME FORTRAN =13 - October 1980
(IPW/EWICS TC1, 2.2/80)
b) If the resourcemark is locked and there are The effects of subroutines SIGNAL and WAITS are,

no tasks suspended as a result of a
previously unsuccessful attempt to lock the
associated resource, the resourcemark shall
be unlocked.

c) If the resourcemark is locked and there are
one or more tasks suspended as a result of
previous attempts to lock the associated
resourcemark, gne and only one task shall
transit to state RUNNING. The associated
resourcemark remains locked. The criteria
used to select the task to transit to state
RUNNING are processor-dependent.

The form of the call is:

CALL UNLOCK(r,m)

where:
r specifies the resourcemark; an integer
expression.
m see 5.1.

5.10.3 Testing and setting a resourcemark
Lo the locked condition

Execution of the function TLOCK shall first test the
specified resourcemark:

The function shall return the value TRUE if the
resourcemark is unlocked; it shall return the value
FALSE, however, if the resourcemark is locked. After
this test, the resourcemark wili be locked.

The form of this function reference is:

TLOCK(r,m)
where:
P specifies the resourcemark; an integer
expression.
m see 5.1.

The reason for the use of TLOCK as compared to CALL
LOCK is‘to allow a task to either reserve a resource,
if it is unlocked, or to continue execution if it is
locked. This would not be possible with CALL LOCK.

5.11 Semaphore operations 1)

All semaphore variables have the form of local variables
ot" the executive system, and the only means of access
is through an argument, r , which refers to one
particular semaphore. The value of a particular
semaphore variable thus referred to is termed s in
the following.

1 Supplerdientary information, see Annex B.

respectively, the increasing and decreasing of the
semaphore value by an amount Jj , a positive integer
conveyed as the second argument of the calls. For
WAITS, the decrease will only take place if the result
is not less than zero; otherwise the calling task is
suspended before the decrementing takes place, and
continuation will not occur until after s>j, i.e. the
decrementation linked to the continuation will yield a
non-negative value.

The following clauses describe in detail the subroutine
calls for the synchronizing mechanisms mentioned in the
introduction above.

9:11..1 Initialization of semaphore

Execution 6f a reference to the subroutine PRESEM has
two purposes:

Firstly, it declares intention of use of a particular
semaphore, permitting the system to give diagnostic
warnings at run time if another semaphore operation is
issued referring to a semaphore that is not initialized.
Secondly, PRESEM establishes the initial value for the
semaphore. Normally, PRESEM is referenced only in the
initialization phase of the execution of a real time
program. The error parameter m will indicate an error
condition if no semaphore exists with the indicated
designation. The form ot the call of PRESEM is:

CALL PRESEM(r,s,m)
where:

r specifies a semaphore. It is an integer
expression.

s is the initial value given to the semaphore.
Until the CALL PRESEM is executed for a
particular semaphore, and the internal
variable is assigned value s, the internal
value is undefined, and another system call
referring to this semaphore shall give an
error return. This parameter is an integer
expression.

A negative value is permissible. This is the
only way a semaphore may attain a negative
value. The effect of a negative initial value
is, that a correspondingly greater increase
by virtue ot CALL SIGNAL is required before
the releasing action can take place.

m see 5.1.

ait a r

Execution of a reference to subroutine WAITS will
involve a possible suspension of the calling task, as
controlled by the referenced semaphore.

By the end of the call, the semaphore value s will
be reduced by the amount j The reduction and
subsequent continuation will only take place when this
can be done giving s a non-negative value. Otherwise,
the calling task is suspended until this decrementation
can take place.

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

The form of the reference to WAITS is:

CALL WAITS(r,j,m)

where:

& see 5.11.1.

J is an integer expression, specifying the
amount by which the semaphore variable is
to be decremented, if applicable. The value
of j must be positive (one or greater), and
j=1 corresponds to the simple semaphore most
commonly used.

m see 5.1.

5.11.3 __ _Release of semaphore

Execution of a reference to the subroutine SIGNAL shall
increment an integer semaphore variable, designated s
in the expression below, and referred to by one of the
arguments of the reference. The subroutine shall be
granted exclusive access to this semaphore during its
operation and will execute the following modification
of its value:

8=8+]
where j 'is an argument, see below.
A change from zero or negative to positive value, caused
by this operation, may provide a possible releasing
transfer to state RUNNING for a task waiting in state
SUSPENDED for this event to occur.

Other tasks, suspended in their execution of CALL WAITS
relating to the same semaphore r, shall have their
suspension condition re-evaluated after the present
SIGNAL call is terminated. This will provide an
opportunity for suspended tasks to be released and
resume operation, as described above. This continua-
tion is subject to all common restrictions pertaining
to exclusive operation on a same semaphore. Thus, the
effect will be that only one of the suspended tasks
will be examined at a time. This examination may involve
reduction of the semaphore value again, as a consequence
of releasing operation ot WAITS for the examined task.
This examination continues as long as a possibility
remains that the semaphore value is greater than or
equal to the j-value of some suspended task. The order
in which suspended tasks are checked otherwise is
processor-dependent.

The form of the call is:

CALL SIGNAL(r,j,m)

where:
r see 5.11.1.
3 is an integer expression, specifying the

amount by which the semaphore variable is
to be incremented, if applicable. The value
of j must be positive (one or greater), and
j=1 corresponds to the simple semaphore most
commonly used.

m see 5.1.

=l

October 1980

4 a a al

A semaphore value may be interrogated by execution of
a reference to the integer function IRDSEM. The purpose
of this function is not that it be wused as a
synchronization operation, but only to provide a means

to supervise synchronization in a system. Thus, a

reference to function IRDSEM can, for example, provide
information about how far a buffer or another shared
resource is from saturation. When accepted (honoured) ,
the reference will be granted exclusive access to the
semaphore. If the semaphore is already being accessed
by another system call when the reference to IRDSEM is
made, the reference will be subject to the same deferred
response and contention mechanisms as the other
semaphore operations. On return, the function design-
ator will have a value equal to the internal semaphore
value when the reference was accepted.

The form of the reference is:

IRDSEM(r,m)

where:
r see 5.11.1.
m see 5.1.

[o ter ti

Execution of a reference to subroutine EXIT shall
terminate the execution of a task and return the task
to state DORMANT. Eventmarks and Semaphores shall not
be affected. Resourcemarks previously locked by this
task shall be unlocked (see 4.3.2), and files released.

The form of this call is:

CALL EXIT
The common FORTRAN operations STOP and END provide
alternative means to terminate execution of a task.

However, the effect on files and other resources
described in this standard is processor dependent.

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

SECTION TWO

BINARY PATTERN AND BIT PROCESSING

6 Introduction

The function references described in this section
provide mechanisms for operations on bit patterns as
well as individual bits of the internal representation
ot integer varables.

The operations presuppose that integer numbers are
considered as if they are unsigned integers. The
arithmetic shift operation (clause 7.2.2) is an
exception.

With respect to arguments referencing individual bits,

it is assumed a bit numbering rule in which bit number
0, the rightmost bit, is the least signifcant bit.

T Binary Pattern Processing

I.1 _____ Boolean operations

Boolean operations provided are: OR, AND, EOR, and NOT.
These operations are implemented as integer functions.
The implicit type for OR, AND and EOR is indicated by
the use of I as the first letter of the function name.
Their parameters, j and k, are integer expressions.

After execution of the functions, the parameters remain
unchanged. The operations are performed on correspond-
ing (equally numbered) bits of the two operands, giving
the corresponding bit value of the result. The values
indicated in the following truth tables represent the
individual and corresponding bits or the arguments and
of the function value.

y 2 5 Inclusive OR

The form of this function is:

IOR (J,k)

The value of the function is computed from the values
of' the parameters j and k according to the following
truth table:

J 0101
k 0 0=

Function Value 0111

- 15 =

October 1980

The form of this function is:

IAND (j,k)

The value of the function is computed from the values
ot the parameters j and k according to the following
truth table:

J

0101
k 0011

Function Value 00 0 1

The form of this function is:

NOT (J)

The value of the function is the logical complement of
the parameter value, j, according to the following truth
table:

J 01

Function Value 10

I.1.4. Exclusive OR

The form of this function is:
IEOR (j,k)
The value of the function is computed from the values

of the parameters j and k according to the following
truth table:

J 0.1 :0:9
k 0011
Function Value 0110

1.2 Shift Operations

The shift operations provided are logical, arithmetic
and circular. The shift operations are implemented as
integer functions. The functions have two parameters,
J and n, considered as integer expressions.

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

J specifies the value (binary pattern) to be
shifted
n specifies the shift count:

>0 indicates a left shift
=0 indicates no shift
<0 indicates a right shift

If the absolute value of the shift count is greater
than the number of bits in a numeric storage unit, then
the result is undefined.

The parameter values are not changed by the shift
operations.

12515 Logical Shift

The form of this function is:
ISHL (j,n)

All bits representing the parameter j are shifted n
places. Bits shifted out from the left end or the right
end, as the case may be, are lost. Zeros are shifted
in from the opposite end.

2.2 Arithmetic Shift

The form of this function is:
ISHA (j,n)

Argument j and the function value are considered as
signed integers. All bits representing the parameter
Jj are shifted n places. In the case of a right shift
(n<0), zeros are shifted into the left end if j is
positive, and ones are shifted in if j is negative.
The bits shifted out of the left end are lost. In case
of a left shift (n>0), zeros are shifted into the right
end while the bits shifted out of the left end are
lost. In a left shift an arithmetic overflow may occur.

7:2:3. Circular Shift
The form of this function is:
ISHC (j,n)
All bits representing the parameter j ;re shifted
circularly n places; i.e., the bits shifted out of one

end are shifted into the opposite end. No bits are lost.

Note: The number of bits representing j is
processor dependent.

8 Bit Processing

Individual bits of an integer can be tested with the
functions for bit processing. The functions have two
parameters j and k, which are integer expressions.

- 16 =

October 1980

J specifies the binary pattern
k specifies the selected bit, numbered as in
clause 6.

If k is negative or greater than the number of bits
that are used to represent an integer value, the result
of the function is undefined.

The parameter values are not changed by these functions.
it T

The form of this function is:

BTEST (j,k)
This function is of type LOGICAL. The kth bit of
parameter j is tested. If it is 1, the value of the

function is TRUE ; if it is 0, the value of the function
is FALSE.

8.2. Set Bit

The form of this integer function is:

IBSET (j,k)

The value of the function is equal to the value of
parameter j with the k'th bit set to 1.

8.3. _ Clear Bit

The form of this integer function is:

IBCLR (j,k)

The value of the function is equal to the value of
parameter j with the k'th bit set to 0.

8.4. ___ Change Bit

The form of this integer function is:

IBCHNG (j,k)

The value of the function is equal to the value of
parameter j with the k'th bit complemented.

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

SECTION THREE

PROCESS-INPUT/OUTPUT

9 Introduction

The user of Industrial Real-Time FORTRAN must be able
to address specific process devices for his application.
As the majority of Input/Output (I/O) systems are
computer dependent, this can only be standardized in a
universal way by standardized calls to driver routines
which are especially written for each I/0 system.
Computer independent I/0 systems are either standard-
ized, or standards are under consideration (CAMAC, GPIB,
MEDIA, etc.). Standardized I/0 calls designed for these
systems are equally valid to the calls presented here
but are outside the scope of this standard.

10 Scope of the process I/0 and general structure

of the I/0 routines

The process peripheral is the link between the process,
or its terminal devices, and the central processing unit
of the computer. Data describing the space and time
behavior of the process are received by a processing
unit and prepared so that they can be transferred to
the central processing unit through an I/0 interface.
The variety of tasks required by the process has
resulted in a large number of peripheral devices from
the different manufacturers. However, in the course of
many years ot hardware development, largely compatible
and generally accepted lines of development have become
established. They may be characterized by the following
statements.

I/0 ports are distinguished by their individual
addresses. The I/0 port designations (addresses) used
in the procedure references will probably in most
systems be identical to the individual hardware
addresses, but this is not mandatory. This relation is
considered a processor dependent feature beyond the
scope of this standard.

The FORTRAN standard specifies that one statement must
be completed before the processing of the next statement
begins. The standard process I/0 here described adheres
to this rule. The calling task will wait for completion
and this operating mode is indicated by the last letter
W (waiting) or all subroutine names.

The following designations for parameters apply to
several of the references. It the exact meaning of these
parameter designations deviates from what is described
below, it will be marked specifically in the detailed
description of the reference. If the meaning is exactly
as defined here, the description ot the parameter will
be omitted in the description of the reference.

The procedures for process I/0 normally have four (in
a special case, five) parameters which in the following
will be designated in the general form with i, j, k, m
(and n if needed). Such an I/0 call has the general
form:

=17 =

October 1930

CALL procio(i, j, k, m)
where:

procio indicates one of the subroutines subsequent-
1y described.

i specifies the number of values to be
transferred, an integer expression.
J specifies the name of an integer array or

array element that contains necessary infor-
mation for description of the I/0 ports, i.e.
address and data conversion information. The
orderly representation of information is
processor dependent.

k specifies the name of an integer array or
array element that contains the input or
output values.

m Status indicator. Its value characterizes
the "success" of a call:

L undefined
=1 all data have been transferred
2 error conditions

This argument shall be an integer variable
or an integer array element.

1 Input/Output of analog values

For input we distinguish between hardware implemented
sequential and random input. In the first case, for
sequential input, the input parameter j contains the
address of the first analog input; further addresses
will be generated automatically. In the second case,
the full sequence of addresses must be given in the
array j. For output, the form is always random, i. e.,
all addresses are given in array j.

Generally, the format of j is system .dependent. See
annex BS8.

The relationship between the range of an input or output
port and its corresponding element in k is processor
dependent. Some suggested design guidelines may be found
in annex B8.

e ti t

Execution of a reference to the subroutine AISQW reads
a sequence of analog input ports of sequential
addresses.

The form of the call is:

CALL AISQW (i, j, k, m)

where:

i specifies the number of analog input ports
to be read. The parameter is an integer
expression.

J is a description of either hardware or

software information for the acquisition and
for the conversion of the first and the
following analog ports. It is the name of

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

an integer array or of an element. See annex
B8.

k array for recording the converted analog
values.
It is the name of an integer array or of an
element. See annex BS.

m see 10.

11.2_ Analog data input in random sequence

The subroutine AIRDW reads a sequence of analog input
ports in a specified order.
The form of the call is:

CALL AIRDW (i, Jj, k, m)

where:

i specifies the number of input ports to be
read. The parameter is an integer expres-
sion.

| is a description of the hardware and software
information for the acquisition and for the
conversion of each analog value. It is the
name ot an integer array. See annex B8.

k array for recording the converted analog
values. See annex B8.

m see 10.

11.3 _Analog data output

The subroutine AOW outputs a sequence of analog values
to a collection of analog output ports in a specified
order.

The form of the call is:

CALL AOW (i, j, k, m)

where:
i specifies the number of analog output ports,
an integer expression.
J contains information for the data conversion

and transfer. It is the name of an integer
array. See annex B8.

k array from which the analog values are
output. It is the name of an integer array.
See annex B8.

m see 10.

12 Input/Output of digital values

For this type of input/output it is assumed that, while
the effective information may be represented at times
by a single bit, it will, nevertheless, be necessary
to transfer digital values (considered as entities using
whole numeric storage units or words) into or out of
an integer array (for example 16 bits for each numeric
storage unit).

- 18 =

October 1980

J12.1 Digital input

The form of the call is:
CALL DIW (i, j, k, m)
where:

3 specifies the number of digital values
input, an integer expression.

j contains hardware and in some case software
information for conversion and transfer. It
is the name of an integer array. A possible
reset specification can also be contained

insge
k array in which the digital values will be
stored. It is the name of an integer array.
m see 10.
12.2 Digital output

For the output, pulse output (Digital Qutput Momentary)
is distinguished from digital output with a permanently
held value (Digital Qutput Latching).

J2.2.1 Digital pulse output

Execution of a reference to the subroutine DOMW performs
pulsed output to a collection of I/0 ports. A pulse
will occur on those bits selected by a binary 1 of the
corresponding bit and element of an array k. No pulse
appears on bits selected by binary 0. The pulse duration
is indicated in a suitable form, by parameter n.

The form of the call is:

CALL DOMW (i, j, k, n, m)

where:
¥ specifies the number of digital values
output, an integer expression.
J contains hardware information for transfer

of each digital value. This parameter is
the name of an integer array.

14 array representing the digital values to
be output. It is the name of an integer
array. The first outputted value will be
taken from the first array element (i.e.
the element whose index is 1.

n number of time units of the computer clock
for the pulse duration. If the processor
does not allow selection of duration, this
argument is ignored but must be present.
This argument shall be an integer expres-
sion.

m see 10.

INDUSTRIAL REAL-TIME FORTRAN
" (IPW/EWICS TC1, 2.2/80)

12.2.2 Latched digital output

For latched digital output (DOLW), in addition to the
output field, a mask field is also required to indicate
which bits are to be changed in the output. The parameter
k is therefore subdivided into k1 and k2.

The form of the call is:

CALL DOLW(i, j, k1, k2, m)

where:
i specifies the number of digital words, an
integer expression.
J contains hardware information for every
digital value that is output. This

parameter is the name of an integer array.

k1 array representing the digital values to
be output. The parameter is the name of
an integer array.

k2 designates an array whose values define
digital outputs which can be changed by
the subroutine. A bit set in the k2 array
indicates that the digital output will be
changed to the state defined by the
corresponding bit position in the corres-
ponding integer array element in ki. The
order of the elements in k1 and k2 will
correspond to the order in j. This argument
shall be an integer array name, or an
integer array element.

m see 10.

= A8 =

October 1980

SECTION FOUR

FILE HANDLING

13 Introduction

These external procedure references provide means for
controlling the access of files, and also provide means
for resolving problems of file access contention in a
multitasking/multiprocessing environment. In such an
environment, it is expected that concurrent tasks will
attempt to access the same file at the same time;
therefore, the external procedure references defined
here provide the information necessary for the processor
to resolve such simultaneous access in an orderly
manner. The method for resolution of access control is
left to the processor.

The procedure references in this section are intended
to provide the methods by which the task can inform
the processor of the manner in which it intends to use
the file, but the references are not intended to require
specific properties or attributes to be associated with
the referenced files. They provide the means to avoid
contention problems when used in conjunction with sound
program design but the implementation of this standard
is no assurance that such problems will not arise.

The terminology used in this section is defined in
clause 1 and in other references, primarily in the
document describing Standard FORTRAN ANSI 'X3.9-1978,
[161.

14 Background Information

Files exist in most computing systems and can have
various attributes and features, such as:

- A file can contain data, programs, or catalogue
information.

- There can be a variety of ways for file access such
as sequential, direct, and stream.

- A file can be created or deleted by a task, by a
system utility, or at system generation time.

- A file can have security attributes associated with
the file for the purpose of ensuring file privacy.

- Wnhen a file is associated with a task, this
association can be restricted by the processor for
reasons of privacy.

- A file can be associated with a set of related
concurrent tasks and this association can be
restricted to assure orderly resolution of conten-
tion problems among the concurrent tasks.

- A file can be internal or external to a task.
- A file can reside on fixed or removable media.

- A file can reside on main storage or backing
storage.

- Restrictions for reasons of privacy or contention
may apply to a file or a component of a file such
as records and data items.

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

=20 =

15 File System Environment

In industrial real time computer systems, concurrent
task operation with shared resources such as files is
a common occurrence. This standard does not address all
the areas of file management but is concerned with the
problems that most commonly arise in industrial real
time computer systems.

AND R

Included in the Standard

Files whose contents are considered to be data.
Files which exist on fixed media only or on
removable media that are not removed.

Files that reside in main storage or in backing
storage.

Files that are external to a concurrent task.
Creation and deletion of files by a concurrent task.
The association of a file to a concurrent task for
both system created and for concurrent task created
files.

Restrictions on file access as applied to the file.
The association of a file to a concurrent task

irrespective of' the method of access (e.g. direct,
sequential, or stream).

16 Procedures to control file access

fo] tion

The procedure references defined in this section of the
standard are non-interruptible; that is, the processor
will only execute one such procedure reference at a
time. This requirement ensures that the features
described are executed in an orderly manner.

The argument m, shown below, shall be set equal to or
greater than two (2) in value when the réquest is not
accepted by the executive system. Individual implement-
ation may specify unique values of m within the
allowable range to designate the specific reason for
which the request was rejected.

i £.08

Execution of a reference to the subroutine CFILW shall
establish, but not open, a named file. Files established
by CFILW do not have any privacy attribute to restrict
a concurrent task from accessing the files. The contents
of a newly created file are undefined by the standard.
The form of call is:

October 1980

The following table shows those features covered by the
standard and those excluded; however, the excluded
features may affect the result of a request for
association of a concurrent task to a file. Such
restrictions on association are processor dependent and
are outside the scope of this standard.

OF FI

ud from e St ard
Files whose contents are not considered to be data

by the accessing concurrent task.

Files that exist on removable media which are
removed.

Files that are internal to a concurrent task.

Creation and deletion of files by a system utility
or at system generation.

Methods of file access.

Restrictions on file access as applied to a
component of a file.

Attributes of a file for the purpose of ensuring
file privacy.

CALL CFILW(Jj,n1,n2,m)
where:
3 specifies the file.
The argument is either:
a) an integer expression
or b) an integer array name
or c¢) a procedure name
or d) a character expression
The processor shall define which of the above
four forms are acceptable.
n1 specifies the number of storage units per record
in this file. This argument shall be an integer
expression.
n2 specifies the maximum number of records in this
file. This argument shall be an integer
expression.

is set on return to the calling task to indicate
the disposition of the request. The value must
be 1 or greater.

1 - File successfully created

2 or greater - File not created

This argument shall be an integer variable name
or integer array element name.

ENDUSTIRIAL:REAL-TIME FORTRAN -

(IPW/EWICS TC1, 2.2/80)

16,3 Deletion of Files

Execution of a reference to the subroutine DFILW shall
remove a file from the file system. Any file created
by the mechanism of clause 16.2 can be deleted by the
execution of a reference to DFILW, but deletion will
not be effected if the file is currently open to any
task. The form of this call is:

CALL DFILW(j,m)
where:

J specifies the file.
The argument is either:
a) an integer expression

or b) an integer array name

or c¢) a procedure name

or d) a character expression
The processor shall define which of the above
four forms are acceptable.

m is set on return to the calling task to indicate
the disposition of the request. The value must
be 1 or greater.

1 - File successfully deleted

2 or greater - File not deleted

This argument shall be an integer variable name
or integer array element name.

16.4 __ Opening Fil

Execution of a reference to the subroutine OPENW shall
associate the unit specified by the task with the named
file, and shall define the desired access mode of that
task to the file. The form of this call is:

CALL OPENW(i,j,k,m)
where:

i specifies the unit by which the file, named by
the argument j, is referenced in the task. This
argument shall be an integer expression.

J specifies the file.
The argument is either:
a) an integer expression

or b) an integer array name

or c) a procedure name

or d) a character expression
The processor shall define which of the above
four forms are acceptable.

k specifies access mode desired by the task. It
is a declaration of the task's intended use of
the file. This argument shall be an integer
expression.

The following values are defined:

1. Unlocked - Read/write or write-access is
requested by the calling task; other tasks
are also allowed the same access.

2. Protected read - Read access is requested
by the calling task and allowed to other
tasks.

3. Locked - Read/write or write-access is
requested by the calling task; The calling
task excludes any file access by other
tasks.

21 -

m is set on return to the cal king wasigo indicate
the disposition of the request. The value must
be 1 or greater. e
1 - File successfully opened to the calling
{18 &ﬂslk,t ne eIy
2 or greater - File
task.
Thishargument: ahaLl bmamanteser vagiable name

th9p§n£d~ja}‘the calling

nother . task, the
for:ia particular

£ «another'haakrcurrsntly has the file
open in the Locked Inlacked imodes.

Any attempt to opgn.,a‘ fide: ;nat.l -be ,uc;eessf‘nl only if
the file exists. If the file was created by a mechanism
outside of the standard, the attributes given to the

file at its creation may restrict the grantan - Of an
access mode to the task.

Execution of a:reference-to th subroutlne-CLOSEH;ahall
-end: the -task association- of sthe specified; 1@gtea'-un1t
with a named file. The form of the call isi= 3

CALL CLOSEW(i,m)
where:

1 specifies the unit.
integer expression.

The argument shall be an

m is set on return to the calling task to indicate
the disposition of the request. The value must
be 1 or greater.

1 - File successfully closed to the calling
task.

2 or greater - Non-performance

This argument shall be an integer variable name

or integer array element name.

if e

Execution of a reference to the subroutine MODAPW shall
change the calling task's access mode of a file
previously opened by the calling task without closing
and reopening the file.

If the calling task does not have access mode to the
file, the request fails.

If the request for change cannot be granted, the
previous access mode remains in force. The form of this
call is:

INDUSTRIAL REAL-TIME FORTRAN -22 -
(IPW/EWICS TC1, 2.2/80)

CALL MODAPW(i,k,m)*
where:

i specifies the unit. This argument shall be an
integer expression. .

k specifies the new access mode desired. This
argument shall be an integer expression.

The following values are defined:

1. Unlocked - Réad/write or write-access is
requested by the calling task; other tasks
are also allowed the same access.

2. Protected read - Read access is requested
by the calling task and allowed to other
tasks.

3. Locked - Read/write or write-access is
requested by the calling task; The calling
task excludes any file access by other
tasks.

m is set on return to the calling task to indicate
the disposition of the request. The value must
be 1 or greater.

1 - Access mode requested is granted to the task

2 or greater - Access mode before the request
remains in force.

This argument shall be an integer variable name

or integer array element name.

Limitations

If the file is currently open to another task, the
request for a change of mode will fail.

If the file was created by a mechanism outside of the
standard, the attributes given to the file at its
creation may restrict the granting of an access mode
to the task.

October 1980

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

ANNEX A

HISTORICAL BACKGROUND

A.1 Introduction

The FORTRAN language was originally an IBM-development
in 1955. Since that time FORTRAN has become the most
widely used high 1level language for scientific
applications, and large powerful user 1libraries are
available in FORTRAN.

FORTRAN was proposed for standardization in 1967 and
was finally standardized internationally in 1972 by ISO.
The current definition of FORTRAN is contained within
ref. [16].

A.2 Special requirements

The wide use and the proved excellence of FORTRAN for
scientific applications soon led to its use for
industrial real-time systems. These applications re-
quire special operations, i.e. real-time operations,
bit-string manipulation and facilities for process-I/0.
These operations can only be accomplished in one of
the following two ways:

(1) FORTRAN remains the basic language for
arithmetic calculations and for reading and
writing of data by standard peripherals. The
special operations are realized by elements
outside the syntax of FORTRAN.

(2) The complete real-time language remains
within the syntax of FORTRAN including the
special operations. This means that these
operations have to be FORTRAN-subroutines or
FORTRAN-functions.

The first approach leads to typical real-time languages
which offer the user simple but powerful programming
facilities for the special operations. In developing
such extensions the designers try to apply all the
features of the real-time operating system used; thus
these extensions become dependent on the actual system.
This was especially true for the early developments of
this kind (see e.g. [2], [3], [4]). PROCOL, as a later
development, avoids this disadvantage; this language
was created in France for a series of French computers.
It offers very advanced features for real-time
programming (see e.g. [5]).

All languages with extensions outside the syntax of
FORTRAN need special compilers for their translation.

In choosing the approach (2), where the language remains
within the syntactical frame of FORTRAN, one gains the
advantage that a first compilation and check of the
user program can be done on any computer for which a
FORTRAN compiler exists. On the other hand this
approach, using subroutines and functions, leads to
somewhat clumsy handling of the added CALLs and
FUNCTIONs and their associated parameters. Yet this may

=23 =

October 1980

be considered as a minor inconvenience as the many users
of FORTRAN are well accustomed to this kind of
programming.

Industrial real-time FORTRAN has also to be compared
with two other families of real-time languages:
industrial real-time BASIC and languages specifically
designed for real-time applications, like PEARL, RTL/2,
ete.

The industrial real-time BASIC languages are very easy
to learn and to apply. They are well suited for simple
and small problems. They can be implemented relatively
easily in large as well as in small computer systems.

The languages of the specific real-time type deliver
very powerful programming features to the user. These
languages are therefore well suited to large and complex
problems. Their implementation (compiler and real-time
system) is relatively expensive.

The industrial real-time FORTRAN languages implemented
by approach (1) above are often similar to the specific
real-time languages. On the other hand the industrial
real-time FORTRAN languages implemented by approach (2)
are in many respects between BASIC and the specific
real-time language type. Thus, this language offers the
user an alternative to these two language facilities.
Consequently, a language according to approach (2) has
to be relative simple; this means that the number and
complexity of the additional operations have to remain
restricted because of the ease of learning and
programming.

A.3 Source of the Standard

In order to prevent the development of many incompatible
real-time languages, T. J. Williams and others in 1970
founded the "Workshop on Standardization of Industrial
Computer Languages" at Purdue University. After a union
with another institution in 1973, the workshop was named
"International Purdue Workshop on Industrial Computer
Systems". The "FORTRAN Committee" of the Purdue Workshop
was very active and successful from the beginning. For
various and good reasons this committee chose approach
(2) above with all special operations being kept within
the syntactical frame of the FORTRAN language. The
committee developed in a relatively short time a first
proposal. for real-time FORTRAN which was approved and
published by the ISA as ISA Standard S61.1 (1972) [6].
The paper contains the following groups and numbers of
special operations:

- 3 CALLs and the FORTRAN statement STOP for
controlling the state of concurrently activ-

ated "programs" 1).
- 6 CALLs for process-I/0

- 5 INTEGER FUNCTIONs for bit-string mani-
pulation applied on an INTEGER used as a bit-
string.

n In this paper the term "task" is used instead
of the term "program" used in [6], [7], [8],
and [9]. See clause 2.

{INDUSTRIAL{REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

A nSeqond supplementany.paper-dsh; S6k.2o-E9T3).c was
published zone yearpstatencoThisicpapens contains the
following groups and numbers of special operatdonss:«g

TAOY smit-issv Isiuteub \Z

o ed c? oels esd am

-1 LocrcAL FUNCTION for testing s indlvldual
bit in an INTBGER

s been an important*rWVQoq*:&ndeuﬁbni&L {process
control .
bed X 3 sl
o6 4 sthag meant ime H1 atandmnda wer:fz :devg;xnped
ﬁm*i:haamfahdwerém‘dma&lyappmved aszANSTAISA standands:.
{Thus;sANSTZAI84 i861::12<[8]) icontains-a11s seetions! ofl tthe
«oldi-papersiexcept the:file:handling;:the: fiteshandlking
4§ therisubjectn:of o ANSI/ALSAT S63+2 2£1978): [[9di.i-Assa
significant -diffenence;ifr rearkier ;panezss,rthg A9T6
~ergion of:86141 doesmobvallow:gubroutine ,@Lbzummit
iwaitonuthescompletionszof the r;@dgduse o3
pismey ol rE edd
iAs: theiopaper 1 ISAcsS861.4:437 cohtanm sSeme hprocedure
references which have gained wide acceptanceyithis paper
can be considered as a "Basic Industrial Real Time
FORTRAN" of the Purdue Workshop. It contains only 3
CALLs and the statement:STOP::ifor:the: management’ of
parallel tasks (= programs).--Sinee-more --extensive

mechanisms are needed, the American "FORTRAN Committee"
of ; therPurdue: sdorkshopirhasvaorkied i iintensivelyi-oniia
{Supplementary: paperxabbiti the .Management:s 6f=iparallel
tasksy:torigand zed ias : 18AL 8614 3nd 15z Pakdl kel boiithis
work, the working group:¥Prozess~FEORTRAN" 0f. the; Germean
VDI/VDE:: has:-developed, ra¢ conxpl:ete pmposaalsn ¥Prozess-
'FQM‘W 'liﬂ!}: Aol

ubiii shedgo

“re’strigheﬂnbut iponerfil . ool\xfom-qaragraminswteai t:me
nperatao;m., The;rbinarp, pabsem amiﬂmm Awocessiwu

different.) There dre:! aﬁdxt:mﬁa]; %IHEEGER WNCIIMS Por

‘arithmetic handzwirculariwshift and =aiCALL: for it
change. The process I/0 is practicaliycidentiical to:ISA
S61.1 (1976); only the standardization of the analog
I/0 is performed in the direction of a restrictive
‘standard. jThesfile hahdling <ds different from the ISA

In 1976 the Purdue ,Europe”, Techglcal Coxqmlttee 1 on
Industrial Real-time Fbl-ﬁ‘RAN was' founded’ by members of
QRTRAN" and other

out” “a”“complete
FORTRAN.

Up to the end of 1977, the cooperation betweeh"”the
Amerdicaniand Eur6pean ‘committees ‘was:srathér ldose, by
only one: joint meeting per year “atithe szIntermational
Purdue Workshop meeting. Thusy:thé Amefican and European
committees worked rather independently of each other,

- 2K -

with the result that the papers produced were quite
different in several respects. Therefore, the ISO TC97
SC5 WG1, the Purdue Eubopél Wéfkshop, the ECMA TC8 and
the International Purdue Workshop all requested the
American and EupBpeéan ¢bdimitteési (to”dBvelop proposals
largely, or preferably completely, identical. In order
to reach this objective, coope‘ratlon had to be
intensified considerably. Since theé!mwiddle “é6f 1978,
nearly all American meetings were~-attended-by—t—or 2
Europeans and vice versa. Since this close cooperation
was established, the American and European committees
mmmi&’ima&’mm&n peaciting Ydgrie

Phus =8 quitedgood ébmpromiseidodtd: ben
mﬁﬂhﬁimmf‘ the dimer!giﬁg po:mtd m*ach&WQmerﬁv

(ol th}me aM)alse) Ehé”ﬂﬂogﬁess* mi“mal»tmeaapepaﬁﬁg
systems. Thus supplements must be expected. .[3!] .%s

[13], and

d i largely to

Those e%mbhly“ﬁse‘dﬁ\f‘n i tirdue Workshop
atdiare idehtiédlooronearly 'identicalcte® definitions
of the ISA standdfd $61%x271g] 2dndsithe’'proposed ISA
standard S61.3. [15]. Definitions of the states refer
tnfﬁg’aree*; as Sectmti Oneaamd ttsi deseripti!on in Tlause
¢ f rit's' description

'I'he names of‘ the calls in tm.sxsbandak“dz‘hd?é been chosen
according to a few rules:

Tneyf‘sho;lﬂd iie &mmrenﬁf Fom 'oa”fl’!bln atfy
ofithe ESA vsﬁandams S6Eet, $61. 2

they might easii;i eéiﬂcidé mmanﬁes

naturally selected by users f‘or certain

“2 has

Rule the desu'ed ef'fect
) fiss o =

number

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

B.2 Use of CALL CLOCK (clause 3.2)

The call CALL CLOCK is useful, first of all for
applications requiring a somewhat lower level of
programming. All three parameters are output arguments,
j (the first in line) supplying the instantaneous value
of the system clock. This value directly represents the
contents of the counting register of the clock.

The next two arguments supply system constants necessary
and sufficient to achieve system independence in the
use of this call, to allow the user to preserve
portability and system independence for his programs.

The first of these arguments, ki1, supplies the basic
clock frequency, whereas the last argument informs about
the modulo of the clock, i.e. it reveals the number of
bits of the clock register. The modulo is equal to the
value of k2 plus one. One clock tick after the value
ot j is equal to k2, J will be reset to zero and start
counting upwards again.

B.3 Choice of task model (clause 4)

Commonly, in many implementations, a call to the
executive system (by calls of SKED, STRTAF, STRTAT,
etc.) for state transition to PENDING causes listing
in a table, appropriately called "pendingtable". This
is a queue of transition calls waiting to be effected,
i.e. intended to cause state transitions some time
later. All entries in this table involve some conditions
for future activations, and these conditions are either
time dependent (STRTAF, STRTAT) or event dependent
(CON). Entries with time conditions will generally be
sorted according to the activation time. Often,
executive system implementors will find it convenient
to split this queue into two: a time queue and an event
queue. With an ordered time queue, the executive
system's task of monitoring when time is due for any
task will be simple: it has only to check the first
element, since this always represents the next task to
be activated. The other part of the "pending-table"
contains entries made by reference to the subroutine
CON. All these elements refer to events as their
conditions. The executive system will check this queue
when external interrupts are received, as well as at
some other instances, in order to be able to react on
possible programmed events, for example eventmarks set
to ON by reference to subroutine POST.

Similar tables may exist to direct the supervision of
suspended tasks; in fact, often these two sets of tables
will be combined.

Transition calls like those mentioned will cause entry
in the "pending-table" up to the point where the maximum
table space is exhausted. When this occurs, the
transition call will be rejected with the error
parameter (termed m in clause 5) indicating this fact
by being set to a value greater than one.

The obvious benéfit of a system like this will be that
a call for a state transition will be independent of
what state the object task happens to be in at the
time the call is made. Therefore, there will be no
conflict with the state, and error returns are less
likely to occur. A "minimum" system without such
buffering will behave like the system described when
the pending table is full. Since this may happen for
any table of finite size, the programming of the tasks
must allow for this by checking the error parameter

z 95 %

October 1980

after any activation call. The benefit of a system with
pending table comes, however, not so much from
simplification of the application program, as from the
substantial time savings obtained from the reduced
number of error returns.

A further advantage of buffered calls is that multiple
activations are possible, yielding an OR-function of
activations ot a certain task. For example, an operator
action to schedule a certain task to start its operation
in five minutes does not conflict witn a previous call
for operation at 10.00 o'clock next day.

This rule will also give a simple and logical operation
of the CYCL, CYCLAF, CYCLAT, and CON calls, i.e. the
calls causing possibility of multiple subsequent
activations (RUNs): Whenever a task attains state
DORMANT, (by CALL EXIT or STOP), the pending-table is
checked. If listed, the task will be transferred
immediately to state PENDING, guided by an OR-function
of run-conditions from the table-entries. If the
activating call was one of the recurrence calls CYCL,
ete., or CON, the table condition will remain. The same
will be the case if multiple calls of STRTAF or STRTAT
were made, leaving the future activation times in the
table. Thus, there will be no difference, in principle,
between the immediate effects of multiple calls of
STRTAF, etc. and the recurrence calls CYCL, etc. and
con. The effect of the recurrence calls will only be
that the condition in the table entry will be adjusted
recursively at the instant when the task after a CALL
EXIT is transferred past DORMANT to PENDING.

What is said above about the specific calls 1like
STARTAT, CYCLAT, etc. pertains also to references to
the comprehensive CALL SKED, with appropriate argument
values.

A different issue is the problem caused by tasks whose
execution is excessively delayed, so that the time or
other RUNNING conditions for their next execution, as
scheduled by call of SKED or it derived simplified
versions, is already satisfied before EXIT of the
previous run is called. Such conditions are termed
"overrun" and should normally be regarded as errors and
give some error reaction. The problem is, however, that
the error condition does not exist when the scheduling
call is made, and most systems do not keep any record
of connections back to the scheduling task; at least,
such operations would hardly conform to FORTRAN. Thus,
in general there is no obvious receiver of such error
reactions within the user's program. Most appropriate-
ly, such error reactions should be handled by the
system, and as such, it is outside the scope of this
standard. The standard provides one possibility,
however, by which the user may make his own mechanism
for handling overrun conditions. By using the CALL SKED,
rather than the simplified calls, this call has a return
argument, €2, for indication of overrun. This eventmark
will be turned ON in case of overrun. Thus, a special
user-supplied task may be connected to this eventmark
by CALL CON and thus initiated upon the overrun
condition, thereby monitoring overrun conditions in
other tasks.

B.4 Use of error parameter (clause 5.1)

The processor may define specific values for m 2 2 to
distinguish between certain reasons for rejection. For
example, it could be advantageous, after a rejected

INDUSTRIAL REAL-TIME FORTRAN - 26 -

(IPW/EWICS TC1, 2.2/80)

reference to subroutine WAITS, to get some further
information. This could be supplied by the following
range of values of m:

m is set on return to the calling task, to
indicate the disposition of the request as
follows:

0 or less undefined.

1 request accepted, synchron-

ization obtained.

2 : request rejected, because of

non-existing semaphore.

request rejected, because j

is outside allowed range.

4 or greater : request rejected, because of
unspecified error.

This argument shall be an integer variable

or integer array element.

3

B.5 Creation of a new task (clause 5.2)

In that the tasking model used in this standard implies
independent tasking, a reference to subroutine CREATE
shall not form a dependent relationship between the
creating task and the created task. That is, the
termination of one task should not cause a state
transition of another task, in spite of the fact that
the one task may have created the other task.

It is not the intent of this standard, however, to

preclude alternative subroutines, similar to CREATE,
which do form independent tasking relationships.

B.6 Use of CALL KILL (clause 5.3)

The processor may impose certain restrictions regarding
which calling tasks may be permitted to eliminate other
tasks. For example, a reference to subroutine KILL may
be effective only if the designated task has been
created by the same calling task, i.e. there exists a
parent - child relationship.

B.7 Use of semaphores (clause 5.11)

Semaphores represent one of the most basic synchron-
ization mechanisms, and this is probably also the one
most widely accepted. This consideration has been
dominant for the selection as the main synchronization
mechanism included in the proposed standard.

Semaphores are traditionally manipulated by Dijkstra's
P and V primitives. [14]. Although these primitives
are widely known by these terms, single 1letter
identifiers should be avoided, since they can too easily
be confused with user defined names. Also, the
semaphores and semaphore operations contained here are
more advanced than the common simple type, since
increment is not confined to value 1. Thus, the
semaphore manipulating subroutine calls are described
here, using the designations WAITS (WAIT on Semaphore),
and SIGNAL, corresponding to P and V respectively.

October 1980

Argument r specifies a semaphore. This means, that r=2
specifies one semaphore, r=3 another, completely
different, semaphore. In a user's program, r will
usually be specified as a constant.

Exclusive access rights of a task referencing WAITS are
released when the task is suspended. This is necessary
to avoid deadlock, and since this suspension is.a normal
and intended operation of the synchronization mechanism
under control of the operating system, it does not
conflict with the basic atomic requirement mentioned
before.

B.8 Termination of execution (clause 5.12)

It is recommended to terminate execution of a task by
call of subroutine EXIT, which performs a defined
release of the resources Eventmarks, Semaphores, and
Resourcemarks. This is not the case for the common
FORTRAN operations STOP and END, whose effect on these
resouces is processor dependent.

B.9 Binary pattern operations (clauses 6 and T7)

The arithmetic in most application programs of process
technology is much less characterized by the processing
of INTEGER, REAL, or DOUBLE PRECISION quantities -- as,
for example, in engineering-scientific programs -- than
by the processing of binary patterns or single bits,
which often represent some form of status values or
packed data. Since this standard complies with the rules
of the general ISO FORTRAN standard, it is not possible
to introduce new data types for the elements: binary
pattern and bit. If one proceeds, however, on the
premise that in most modern digital computers integer
values are represented by their binary values, then one
can with the aid of standardized procedure references
effectively process binary patterns as well as single
bits.

In the procedure references described in section two
it is assumed that integer numbers are represented in
binary form. The representation of negative values is
processor dependent.

For example the following internal representation would
be obtained with a word length of 16 bits on a two's
complement machine:

Value Binary Pattern

Bit: 15 14 13 12 11 10 09 08 07 06 05 O4 03 02 01 00

0 0- "OFHMIERIESOREgREE0R soF 0. 20 S08 "ORI0E 08, 0
1 0= 020 0= D0 10, V00 0 00 0 0208 O
-1 b i b e e S B S T 88 e o U
10 @E=e 500 S0 (REEE 1 QS S QRS OF S0WE] Z0RE 1S 0
=10 e i i e i Bl B R R A 1| 2l Pl i 8V E)

The bits are thus numbered from right to left.

This standard does not prohibit implementations of the
binary pattern operations as intrinsic functions.

|

INDUSTRIAL REAL-TIME FORTRAN
(IPW/EWICS TC1, 2.2/80)

B.10 Analog input operations (clauses 10 - 11)

The parameters j and k for analog I/0 have the following
meaning:

The parameter j consists of a measurement specification
and -a measurement point address.

The measurement specification may for example contain
the measurement range of the analog input unit. The
measurement point address specifies the address(es) of
the analog I/0 points; this also comprises a channel
address, if required. Generally, the format of j is
system dependent.

For block transfers of sequential analog inputs, only
one element of j is required. This may be determined
by one or two integers.

For block transfers of pandom analog inputs or outputs,
the measurement point address at least changes from
point to point. Therefore, a description field for j
with several elements is required.

The relationship between the measurement range of an
input port and its corresponding element in k is
processor dependent.

The following scaling rules have the advantage that the
engineering units y can be computed from the converted
values x with the same formula y=f(x) for all
computers with the same integer representation without
any knowledge of the special coding of the ADC used.

- The analog value zero is represented by the
numerical value zero.

- A unipolar positive analog signal is represented
by a positive numerical value such that 100 % of
the measurement range is represented by half of (the
maximum value +1) of integer variables. This allows
a measurement overrange of approximately 99 #. Thus,
in the case of 16 bit storage unit for integer
variables, 100 % of the measurement range would
correspond to 2%##14 = 16384 and the representation
accuracy would be 2%##(-15) or about .003 % of the
measurement range.

- Bipolar, as well as negative unipolar, analog
signals are represented similarly to unipolar
positive signals, such that negative analog values
are represented by negative numerical values in the
usual format of the processor.

ANNEX C

ABORTION OF TASKS

An "aborting" mechanism is sometimes needed in an
industrial RT system. There is, however, several valid
arguments against the inclusion of a mechanism, capable
of forceful terminating another task which may be in
an arbitrary state at that moment. Such a mechanism
will involve the risk for leaving the computer and its
memory, files, and other resources in a messy,
indefinite, and possibly dangerous state. Abortion, or
forceful termination of an object task, may be necessary
because of malfunction in a process section, or some
other unusual situation. The abortion is effected by a

ST =

October 1980

call, issued in some supervising task, often running
interactively in operator dialog.

This annex outlines a safe method, by which the
application programmer is not given a general aborting
tool, but a prescription on how to program an equivalent
mechanism that can be used safely and in an ordered
manner.

A task will often have sections where abortion would
be improper, or fatal. Equally, there are sections,
where a possible abort could be done without problems.
The application programmer is the obvious person most
able to identify these sections.

Assume an eventmark is defined to be used to guide an
"abort" for a certain task. For reference, let us denote
this eventmark "IABORT" in the following. This eventmark
may be set ON by a supervising task, possibly following
an operator request. In all tasks, where the application
programmer decides that abort may be necessary and can
be allowed, he includes the following and similar
statements at the "safe spots" of the program:

90 IF (TESTEM(IABORT,M)) GO TO 9000

9000 CONTINUE

c HERE MAY BE INCLUDED ANY PROGRAM PORTION

c DEEMED NECESSARY OR CONVENIENT BY

c THE APPLICATION PROGRAMMER, TO BE

c EXECUTED JUST BEFORE THE FORCED TERMINATION.

CALL EXIT
END

A supervising task may now abort the object task by
calling:

CALL CANCEL(i ,M1)
IF (M1.NE.1) GO TO 8010
CALL POST(IABORT,M1)
IF (M1.NE.1) GO TO 8000

The effect is that the aborted task itself may perform
a "graceful" termination, taking care of opened files,
dangerous process states, etc.

Remark, that CANCEL and POST should be called in that
order. Otherwise, a slight possibility exists, that a
new execution of task i will be initiated between
call of POST and CANCEL.

If the task to be aborted is in state SUSPENDED, it
generally does not generate any harmful operations. It
may remain there forever, though, waiting for a
condition that will never occur, because of some
malfunction. In this case, this task may occupy some
resources that are needed by the rest of the system.
Usually, the operating system is provided with some
mechanism to deallocate such resources, so this is not
covered any further here. For the purpose of taking
care of the case that the object task is PENDING, the

INDUSTRIAL REAL-TIME FORTRAN

(IPW/EWICS TC1, 2.2/80)

aborting statements include a CALL CANCEL in the
controlling task, whereby the object task transits back
to DORMANT immediately.

ANNEX D

FILE HANDLING

This document is based on the programming language
FORTRAN (ISO 1539 - 1980) [16]. In section four, file
handling, the access to file is assumed to be performed
by the standard FORTRAN input/output statements.

[1]

[2]

[31]
[4]

[51

[61

[71

(8]

[91

-[10]

[11]

ANNEX E

REFERENCES

IS0 Recommendation R 1539, Programming Language
FORTRAN. ISO, Geneva (Switzerland), 1972.

Hohmeyer, R. E.: CDC 1700 FORTRAN for Process
Control. IEEE Transactions on IECI, Vol. 15,
No. 2, Dec. 1968.

INDAC 8. Digital Equipment Corporation, 1969.

DDP-516 OLERT, Programmer's Reference Manual.
Honeywell Inc., Doc. No. 1300 72069 A, EM-602,
1969.

Bonnard, P.: PROCOL: A Programming System
Adapted to Process Control. IFAC Congress,
Paris, 1972.

ISA S61.1 (1972) Standard. Industrial Computer
System FORTRAN Procedures for Ececutive Func-
tions and Process Input-Output. Instrument
Society of America, 1972.

ISA S61.2 (1973) Draft Standard: Industrial
Computer System FORTRAN Procedures for Handling
Random Unformatted Files, Bit Manipulation, and
Date and Time Information. Instrument Society
of America, 1973.

ANS/ISA S61.1 (1976) Standard. Industrial
Computer System FORTRAN Procedures for Execu-
tive Functions, Process Input-Output, and Bit
Manipulation. Instrument Society of America,
1976. =

ANSI/ISA S61.2 (1978) Standard: Industrial
Computer System FORTRAN Procedures for File
Access and the Control of File Contention.
Instrument Society of America, 1978.

VDI/VDE 3556, Prozess-FORTRAN 75, eine Er-
weiterung von FORTRAN f#ir Prozessrechner-
Anwendungen. VDI/VDE-Richlinie (Entwurf).
VDI/VDE - Gesellschaft flir Mess- und Regelungs-
technik, DHsseldorf, 1978.

0. Pettersen: Management of Parallel Activities
in Real-Time FORTRAN. State Model and State
Transitions. 2nd edition. Minutes of the Purdue

~28

[12]

[13]

[14]

[15]

[16]

October 1980

Europe Spring Meeting 1977 at ISPRA CCR
Euratom, Vol. II. IRIA, Rocquencourt, 1977.

P. Brinch Hansen: Operating System Principles.
Prentice-Hall, 1973.

A. C. Shaw: The Logical Design of Operating
Systems. Prentice-Hall, 1974.

E. W. Dijkstra: Cooperating Sequential Proces-
ses. In "Programming Languages" (V. Genuys,
ed.), pp 43 - 112. American Press, New York,
1968.

ISA S61.3 (Aug. 1978) Draft Standard: Indust-
rial Computer System FORTRAN Procedures for the
Management of Independent Interrelated Tasks.
Instrument Society of America, 1978.

International Standard ISO 1539 -
Programming Languages: FORTRAN
(IS0 1539 - 1980)

