
On Modularizing Triple Graph Grammars

with Rule Refinement

Anthony Anjorin, Karsten Saller, Malte Lochau, Andy Schürr

Real Time Systems Lab, Technische Universität Darmstadt, Germany

{surname}@es.tu-darmstadt.de

Abstract: A Triple Graph Grammar (TGG) is a set of declarative rules describing how
consistent triples of graph structures in a source, target, and correspondence domain
are to be generated. This generative and high-level specification of consistency can
be automatically operationalized and used to derive model generators for test case
generation, forward and backward translators, and incremental model synchronizers.
As with any domain specific language, a means to modularize TGG specifications
is an important requirement, especially for practical applications. We formalized an
extended concept of rule refinement for TGGs in previous work and now report on our
experience from using rule refinements intensively in a recent industrial project.

1 Rule Refinement for Triple Graph Grammars in a Nutshell

Restoring and maintaining consistency amongst multiple artefacts is an important chal-

lenge towards supporting concurrent engineering. This is a primary application of bidirec-

tional languages, which support incremental change propagation with a precise semantics.

Triple Graph Grammars (TGGs) [Sch94] are a prominent example for a bidirectional lan-

guage, with various implementations and success stories. In large TGG specifications, a

means of avoiding redundancy and enabling a reuse of rule fragments becomes crucial for

maintainability. In previous work [ASLS14], we formalized a flexible concept of rule re-

finement for TGGs, extending existing ideas from various authors. In this paper, we report

on our experience using rule refinement in practice. We describe usage patterns that have

evolved, and suggest possible improvements and extensions. As we can only provide a

high-level intuition in this paper, the reader is referred to [ASLS14] for further details.

TGG rules are essentially graph patterns describing how consistent triples of graph struc-

tures in a source, target, and correspondence domain are to be generated. The basic idea of

enabling a refinement of TGG rules is to (1) provide a merge operator with which multiple

basis rules can be combined, and (2) allow an overriding of certain parts of the merged

basis rules in a sub-rule. In our implementation of rule refinement, the labels of the nodes

and edges in each rule serve as identifiers. A merge of rules is realized as a union followed

by a gluing of elements with the same name. Repeating elements with the same name in

a sub-rule equates to overriding the corresponding element in the merged basis rule. All

restrictions required to guarantee a well-defined process are presented in [ASLS14].

95



2 Emerging Usage Patterns and Ideas for Future Work

We used rule refinement intensively in a recent industrial project with the goal of im-

plementing a synchronization tool for two textual languages. The reader is referred to

www.emoflon.org for a screencast providing an overview of the project.

Rule Refinement as Design or Refactoring? An unexpected process-oriented usage pat-

tern we have observed is that developers use rule refinement not only as an a posteriori

means to refactor TGG rules, but also increasingly as an a priori means of designing the

specification. The latter is, however, only possible with sufficient experience with TGGs,

a good understanding of the problem, and adequate training with using rule refinements.

Rule Composition via Multi-Refinement vs. Overriding in Sub-Rules: Supporting

multiple refinement enables a horizontal composition of often fairly independent patterns,

while sub-rules enable a vertical overriding of elements from merged basis rules. In our

case study, the refinement network consisted of 46 TGG rules with 42 refinement relations,

a maximum vertical depth of 3, and a maximum horizontal fanout of 3, implying that the

network was more flat than deep, i.e., that rule composition is preferred to overriding. This

is probably because understanding how sub-patterns are overridden becomes a substantial

cognitive challenge with increasing depth of the network, while rule composition is more

akin to a separation of concerns and can even aid understanding if applied suitably.

Ideas for Improvements and Extensions: Deleting nodes via overriding in sub-rules

leads to confusing refinements and was already forbidden in [ASLS14]. Based on experi-

ence and usage patterns, further restrictions can be imposed to ensure “good” refinement

networks. Maximum depth and fanout, as well as forbidding deletion/adding of links that

were already previously added/deleted in a basis rule are all ideas for such “good prac-

tice”. A current limitation of rule refinement is re-using patterns that remain exactly the

same structurally, but for which multiple types are to be replaced in a sub-rule. Although

this is possible with refinements, the sub-rule would be almost as large as the basis rule

as every node with a new type must be repeated explicitly. Possible extensions include

type replacement refinements or a complementary template concept. Finally, lifting rule

refinement to the level of grammars would enable a reuse and composition of entire TGGs.

References

[ASLS14] Anthony Anjorin, Karsten Saller, Malte Lochau, and Andy Schürr. Modularizing Triple
Graph Grammars Using Rule Refinement. In Stefania Gnesi and Arend Rensink, editors,
FASE 2014, volume 8411 of LNCS, pages 340–354. Springer, 2014.

[Sch94] Andy Schürr. Specification of Graph Translators with Triple Graph Grammars. In
Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors, WG 1994, volume
903 of LNCS, pages 151–163. Springer, 1994.

96


