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Proof of concept for a new battery sorting method based on
deep learning image classification

Fridolin Blum'? Nils Wieczorek! Peer Stelldinger?

Abstract: Battery recycling requires efficient sorting based on chemical composition. Traditional
methods like X-Ray or Electromagnetic Sensors lack automation, with X-Ray sorting 26 batteries
and electromagnetic sorting only 6 batteries per second. We propose using deep learning image
classification to detect battery manufacturer and product series. Our prototype includes a conveyor belt,
webcam, ring light, and Nvidia Jetson AGX Orin. With a dataset of 9 battery series, we achieved over
99% validation accuracy using a pretrained MobileNetV2 model. The model can classify 50 images
per second with limited hardware. This approach offers potential for automated sorting, significantly
improving recycling throughput and efficiency. Further research should expand the dataset and explore
applicability to other battery types, optimizing the model and hardware configuration.
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Addresses Sustainable Development Goal 12: Responsible consumption and production

1 Introduction

Battery recycling has gained significant importance due to the number of discarded batteries
and their adverse environmental impact. The German battery law, BattG2, mandates all
battery distributors to accept the return of batteries, irrespective of their manufacturer,
with a minimum requirement of 50% take-back quota. To facilitate efficient recycling,
accurate identification of battery chemical composition is essential. In this paper, we focus
specifically on mignon batteries (type AA), while other methods such as sewing and rotating
disks can be employed for sorting based on shapes and sizes [FM15].

Current state-of-the-art techniques for automatic battery sorting involve weighing plus
electromagnetic sensors or X-ray sensors. The weighing plus electromagnetic sensor achieves
a sorting performance of 6 batteries per second, while the X-ray sensor achieves 26 batteries
per second, both with a sorting accuracy of 98% [FM15]. More recently deep learning based
object detection is applied for battery recycling [Kal8, St21]. In this paper, we propose
leveraging the success of deep learning in computer vision applications [KSH17, Gil4]
and applying deep learning-based image classification to streamline the battery recycling
process. Our approach utilizes a convolutional neural network, specifically MobileNetV2,
for classifying battery images based on their manufacturer and product series.
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Since companies utilize the same components across product lines, the chemical composition
can be obtained by referring to online resources or the International Electrotechnical
Commission (IEC) code printed on the battery itself. We opt for image classification instead
of optical character recognition (OCR) to take advantage of color and pattern information
printed on the battery. It should be noted that manufacturers, product series, and IEC codes
are often printed only once per battery, making them not always visible in standard images.

2 Materials and methods

2.1 Hard and software

The neural network training for battery classification was conducted on a laptop with an
Nvidia T120 GPU and an Intel I7-11800H CPU. The training script was implemented using
the TensorFlow and Keras frameworks version 2.11. For image acquisition, a Logitech
C920 HD Pro Webcam was utilized to capture training and live images. The Rollei LUMIS
Mini Ring Light Bi-Colour was employed for lighting purposes during image acquisition.
Deep learning inference, on the other hand, was performed on the Nvidia Jetson AGX Orin
Developer Kit, running Jetson Linux with JatPack 5.1 installed.

2.2 Prototype construction

We constructed a small conveyor belt using toy build-
ing blocks and positioned the webcam and ring light
at a height of 10cm above it (Fig. 1). The conveyor

belt operated at a speed of 10cm/s. To minimize the Battery
influence of ambient light, both the light source and ~ Conveyor Belt
the webcam were placed within a plastic box. Ringlight G ety

Camera
All training, validation, and test images were captured
using this setup. Additionally, we utilized this setup
for our demonstration prototype, in conjunction with
the Nvidia Jetson Orin Developer Kit, to classify
batteries in a 30fps video stream. Fig. 1: Building block conveyor belt
where the battery classification is made
on.

2.3 Dataset

The dataset (Fig. 2) was generated using a webcam, ring light, and the building block
conveyor belt (see Section 2.2). A total of 27 different batteries, with 3 batteries per class,
were used to create the images. Videos of the batteries passing on the conveyor belt were



Proof of concept for a new battery sorting method 37

recorded, and subsequently, each frame from the videos was extracted, resulting in a dataset
of 2413 images.

In initial experiments, we achieved training and validation accuracies higher than 99%.
However, the battery classification performance on the live video stream was found to
be inadequate, which could be attributed to the similarity of the images extracted from
every frame of the video (Fig. 3). After the train-validation-split images in the training and
validation datasets are nearly identical, therefore overfitting could occur without reducing
the validation accuracy.

To address this issue, we extended our dataset by including 931 additional images from
new videos. During the extension process, we only extracted every tenth frame to avoid
generating highly similar images (Fig. 3 and Fig 4). Additionally, we generated a separate
dataset using different batteries, where we also extracted every tenth image. This dataset
was reserved solely for testing purposes after completing the training loop, allowing us to
simulate new real-world data.

Testing the model trained on the unextended dataset against the test dataset yielded an
accuracy of 62%. Train the model with the extended dataset yielded in an accuracy higher
99% (see Section 3) and resulted in an adequate classification performance on the live video
stream, with batteries that were not used in any previous dataset.

The final dataset comprises 3344 images distributed across 10 different classes, including 9
distinct battery series and a "no battery"class. For training purposes, the dataset was split
into training and validation sets, with 80% of the data allocated for training and 20% for
validation. The test dataset consists of 350 images, which is approximately 10% of the
combined size of the training and validation datasets.

Fig. 2: Sample images from the dataset. Because the images are made on the running conveyor belt
and made with a webcam the images are blurred.

Fig. 3: Similarity of images when using every Fig. 4: Similarity of images when using only
frame of the video as training image. every tenth frame of the video as training image.
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2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are deep neural networks used for image and video
recognition. They employ multiple convolutional layers to extract visual features at various
levels of abstraction, while pooling layers downsample the feature maps to retain vital
information. The model’s predictions are made using fully connected layers, which map
the extracted features to the desired outputs, such as class prediction scores. CNNs have
changed image classification by automatically learning filters and features, eliminating the
need for handcrafted ones. The typical architecture includes convolutional layers for feature
generation and fully connected layers for prediction [GBC16].

2.5 Model selection and adoption for transfer learning

Transfer learning involves initializing a model with
mage weights learned from a different, larger dataset instead
of random initialization, resulting in faster training and

— requiring less data [HBF19]. However, transfer learn-

Augmenataton ing may introduce unwanted features from the previous
dataset, which can be addressed by fine-tuning the entire
Noramlization network [Kil7].

In this early-stage prototype, only pre-existing models in
Mohmmoat Keras are considered for the base model, eliminating the
need for additional implementation or importing effort.

These deep learning models for image classification have
Bropout been pretrained on the ImageNet database [SVL23]. We
| used MobileNetV2 [Sal8] despite its lower accuracy

Llalalsl

- on ImageNet compared to ConvNeXtXlarge. Although
[ Pooling ConvNeXtXlarge achieves the highest score on ImageNet
! (86.7%), it is approximately 100 times larger than Mo-

[ Fully Comnecled bileNetV2, which is the smallest pretrained model.

Layer

\L Considering energy consumption as a concern in deep

sommar learning [SGM20], we aim to minimize energy usage by
selecting a smaller model, contributing to energy-efficient

battery sorting design. The choice of a smaller model

also leads to faster inference and training times, which is

advantageous for our limited hardware (see Section 2.1).

—_—

Fig. 5: Model architecture: Pipeline
from the input image to the final
prediction.

We made slight modifications to the head of MobileNetV2. After the pretrained model
backbone, we added a global average pooling layer, a dropout layer with a rate of 0.2, a
fully connected layer with 10 output neurons (one for each class), and a SoftMax activation
function as the new, untrained model head (Fig. 5). The dropout layer randomly sets 20% of
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the connections to zero during training to reduce reliance on specific neurons and prevent
overfitting. During inference and validation, dropout is disabled. Dropout serves as an
ensemble learning approach, where each training step trains a subnetwork, and the results
of the subnetworks are combined, leading to more reliable features [Sr14, Hil2].
exp(xi)

Xjexp(x;)’
input vector. SoftMax generates an output vector of the same size as the input vector, with
each element ranging from O to 1, and the sum of all elements equaling 1. Applying SoftMax
to the last layer of the CNN yields an output that represents the probability per class.

SoftMax activation is defined by the formula: SoftMax(x;) = where (x;) is the

Before feeding images into the neural network, we apply image augmentation layers and an
image normalization layer (see Section 2.6).

2.6 Image preprocessing

To enhance training data variability and
prevent overfitting [SK19], we incorporate
several image augmentation layers into the
model. First, a random flip layer is ap-
plied, which flips the image vertically or
horizontally. Next, a random rotation layer
rotates the image by up to 18 degrees. Ad-
ditionally, a random contrast and random
brightness layer adjust the contrast and
brightness by 40%. These data augmenta-
Fig. 6: Comparison between the input image (a) and  tion layers are combined to generate new
the augmented image with Dropout (b). images from the training dataset (Fig. 6).

(a) Input Image (b) Augmented Image

To further enhance generalization and prevent the model from relying on individual pixels,
a dropout of 0.2 is applied to the input images [Sr14, Hil2]. Following augmentation, all
pixel values of the images are scaled down to a range between 0 and 1.

2.7 Transfer learning the Network

The MobileNetV2 model was utilized with pretrained weights from the ImageNet dataset,
and its head was replaced with a customized one to suit our requirements (see Section 2.5).

During the training process, we explored the option of freezing some or all backbone layers.
However, the best results were obtained when training the entire network with a low learning
rate of 0.0001, a technique commonly known as fine-tuning (see Table 3 in Section 3).
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To optimize the model, we employed the Adam optimizer with a weight decay of 0.01 and
utilized the Sparse Categorical Cross Entropy loss function. The model was trained for 40
epochs, and the version with the highest validation accuracy was selected.

Upon successful training, we converted the model to a Tensor RT graph to enhance its
performance on the Nvidia Jetson Orin Developer Kit.

2.8 Evaluation with Gradient-weighted Class Activation Mapping

To further assess the model’s predictions,
we incorporated the Gradient-weighted
Class Activation Mapping (GradCam)
technique. GradCam identifies and high-
lights the most important pixels for class-
specific classification [Sel7]. By utilizing
GradCam, we can also detect biases in the
dataset. For instance, if the model iden-

tifies batteries based on ? light reflection Fig. 7: GRad-Cams, already focusing on battery
rather tl.lan .the battery lts‘?lf’ GradCam specific features, blue positive with silver ring (left),
WOuld hlghllght that reﬂeCtIOH. Copper_coloured positive (rlght)

The visualized GradCams in Figure 7 demonstrate promising results, with individual features
the batteries being prominently highlighted. However, there is still room for improvement
as the surrounding area should not be highlighted along with the batteries.

3 Results

The top-performing model achieves 99.21% accuracy on the training dataset and 99.85%
on the validation dataset (see Tabular 2). Furthermore, it attains an accuracy of 99.14%
(see Tabular 1) on the separate test dataset. In comparison, existing recycling technologies
currently achieve a sorting accuracy of 98%. While most of the batteries could be detected
with an accuracy of 100% in both datasets, in the validations dataset only Duracell and Tkea
batteries are confused and in the separately generated test dataset Duracell, Ikea, Engergizer
and High Quality batteries (see Tabular 1 and 2).

In terms of inference time, running the model on Nvidia Jetson AGX Orin takes an average
inference time of 0.001-0.002 seconds per image. This enables the classification of a
minimum of 50 images per second. Notably, this speed surpasses traditional methods such
as X-Ray sensors, which operate at half the rate, and electromagnetic sensors, which are
eight times slower. These results were obtained using a dataset consisting of only 3694
images.
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Tab. 1: Classification Results for the Test Dataset

Battery Precision Recall F1-Score #Images
Duracell 0.9722 0.9722 0.9722 36
Energizer 0.9487 1.0000 0.9737 37
High Quality 1.0000 0.9630 0.9811 27
Ikea 1.0000 0.9714 0.9855 35
No Battery 1.0000 1.0000 1.0000 27
Topcraft 1.0000 1.0000 1.0000 35
Vatra Alkaline 1.0000 1.0000 1.0000 57
Vatra High Energy 1.0000 1.0000 1.0000 27
Vatra Industrial 1.0000 1.0000 1.0000 38
Vatra Longlife 1.0000 1.0000 1.0000 31
Accuracy 0.9914 350
AVG 0.9921 0.9907 0.9913 350
Weighted AVG 0.9917 0.9914 0.9915 350

Tab. 2: Classification Results for the Validation Dataset

Battery Type Precision Recall F1-Score #Images
Duracell 0.9878 1.0000 0.9939 81
Energizer 1.0000 1.0000 1.0000 48
High Quality 1.0000 1.0000 1.0000 63
Ikea 1.0000 0.9868 0.9934 76
No Battery 1.0000 1.0000 1.0000 50
Topcraft 1.0000 1.0000 1.0000 67
Vatra Alkaline 1.0000 1.0000 1.0000 63
Vatra High Energy 1.0000 1.0000 1.0000 67
Vatra Industrial 1.0000 1.0000 1.0000 64
Vatra Longlife 1.0000 1.0000 1.0000 77
accuracy 0.9985 656
avg 0.9988 0.9987 0.9987 656
weighted avg 0.9985 0.9985 0.9985 656

However, it is important to note that the camera’s limitations affect the overall speed. The
current webcam utilized in the system can only capture 30 images per second, resulting
in slightly slower performance in terms of image acquisition. As such, the camera’s speed
becomes the limiting factor in achieving greater classification throughput.

Experiments on freezing subsets of the model’s backbone during training (see Table 3)
show, freezing the entire backbone results in a test dataset performance close to random
classification. With 98.28% and 99.39% accuracy on the test and validation datasets, freezing
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the first half of the model’s backbone performs nearly as well as training all layers. However,
training the entire model’s backbone leads to a 2.28% higher accuracy on the test dataset.

Tab. 3: Classification accuracy when freezing layers of the models backbone during training

#Frozen Layers Train Accuracy Val Accuracy Test Accuracy

154 (all) 0.4678 0.2348 0.1342
77 0.9828 0.9939 0.9686
0 0.9921 0.9985 0.9914

4 Future work

To fully harness the speed potential of the deep learning algorithm, our plan is to utilize a
high-speed industrial camera.

In the next phase of our project, we aim to expand our dataset from 10 to 50 different battery
series to examine the impact of dataset size on model accuracy. Additionally, we intend to
enhance the results of GradCams by not only increasing the number of different battery
series but also increase the number of images per battery series.

Due to the chosen image classification approach, the model cannot handle images with
multiple batteries. If the batteries are not separated beforehand, the model must be able
to handle multiple batteries simultaneously. Therefore, object detection models should be
tested for battery detection.

Furthermore, testing under various lighting conditions is necessary to assess whether the
model’s performance is affected by ambient light.

We have identified 190 distinct nickel metal hydride (NiMH) batteries available on Amazon,
representing one out of six chemical compositions for batteries introduced in 2021 [Um23].
Assuming that each of the six battery compositions consists of 190 different batteries, our
final dataset would encompass 1,140 unique batteries. Taking into account that NiMH
batteries only account for 3% of the market share [Um23] and assuming that the number of
different batteries per chemical composition is proportional to the market volume, our final
dataset would contain over 6,300 different batteries. Given the increased number of batteries
classes, there will be instances where visual features alone are insufficient to distinguish
them. Based on our web search we estimate this is only the case for the fewest batteries and
think their impact on the final result is negligible.

However if future results on bigger datasets show, that sorting batteries with standard
image classification isn’t feasible. We will utilize a line scan camera to inspect 100% of the
batteries surface for optical character recognition (OCR).

This approach allows us to read the IEC codes of the batteries. Therefore it has potentially a
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higher accuracy, but it’s also slower and needs a conveyor belt that transports and rotates
the batteries.

A combination of text recognition and image classification, where a classifier is trained with
the features of a CNN and the text recognition, also seems reasonable, since the manufacturer
information is printed on the batteries is an important feature for the classification.

As we expand the dataset not only in terms of the number of classes but also the number of
images per class, we anticipate that labeling all the images will become a time-consuming
task. Considering the ease of generating images in our use case, we aim to explore the
potential of convolutional autoencoders to pre-train a CNN, for image classification, on
unlabeled images.
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