Structured Peer-to-Peer Networks through
Distributed Nonmetric Multidimensional Scaling

Hauke Coltzau
Fernuniversitit in Hagen
hauke.coltzau @fernuni-hagen.de

Abstract: Multidimensional Scaling (MDS) is a technique for dimensionality reduc-
tion widely used in the field of data-mining. For P2P data networks, it holds the
potential to provide an intuitive way to browse and explore heterogeneous data dis-
tributed over the system. Current MDS approaches are dependent on a centralized
instance (controller) and can therefore not be used in decentralized environments. In
this article, a distributed algorithm for multidimensional scaling is discussed that does
not need any such centralized control.

1 Introduction

This article aims to show that a structured Peer-to-Peer (P2P) network can be built by
arranging peers in a 2-dimensional space in such a way that peers storing similar content
are located in the same area. The structure of the resulting P2P system provides intuitive
ways of navigation and browsing through it’s content. Users can search and explore such
a network without exactly having to know beforehand, what the result of their search will
be. For additional support of orientation and navigation, dynamic maps of such a system
could be generated in a distributed manner (see [CU12]), and thus even give an overview
of the type of objects stored in the system..

The relations between the objects stored in a peer-to-peer system usually can only be de-
scribed in a high-dimensional space. Therefore, some distributed dimensionality reduction
is needed to obtain the required 2-dimensional projection. In data mining, the term Multi-
dimensional Scaling (MDS) denotes a set of such techniques. But these techniques require
an omniscient (global) view on all objects, for which the dimensionality reduction shall
be done. Hence, to achieve the goal of building a Peer-to-Peer system based on MDS, a
distributed MDS technique is needed, which does neither need any centralized instances
nor a global view on all participating peers.

The structure of this article therefore is as follows: In section 2, an overview of multi-
dimensional scaling is given, including existing approaches for parallel and distributed
MDS. In section 3, an algorithm is proposed to perform distributed MDS and build a
structured P2P-system on the resulting configuration. Section 4 shows, how the algorithm
performs in an example network. The results gathered from this and other simulations are
described in the final section.

119

2 Multidimensional Scaling

MDS aims to visualize high-dimensional data in a low-dimensional (2D or 3D) target
space while preserving (dis-)similarities between the data points. The idea of multidi-
mensional scaling goes back to Torgerson [Tor52] and has been generalized by Kruskal
[Kru64a][Kru64b]. All current adaptions and also large-scale approaches like [CPHO6]
and [BBKYO06] are still strongly based on these works, so that a description of the basic
idea behind them seems appropriate in the context of this article.

2.1 General Approach for MDS

The input of any multidimensional scaling algorithm is a set NV of n = |N| objects, from
which the pairwise dissimilarities d; ; for (almost') all objects i, j € N are known. Often,
these dissimilarities are given in form of a dissimilarity matrix A:

5171 6171 . 51,1
5271 5272 e 52,71

A= . . : ()
5n,1 5n,2 e 5n,n

Approaches for executing an MDS can roughly be categorized as metric or non-metric.
Metric approaches expect the dissimilarity values to be in a (ratio-scaled) metric, such
that a scalar distance between any to objects can be specified. Non-metric approaches in
contrast only expect a rank-order of dissimilarities and any rank-order preserving function
to get a scalar representation of each dissimilarity. Hence, non-metric approaches can be
seen as generalization of metric approaches.

A configuration X constitutes a projection of NV into s-dimensional space (where s is very
often chosen to be 2 or 3), i.e. each object is assigned to an s-dimensional vector z;.

X:(Jfl,l‘g,...,xn),xiERs (2)

The distance d; ; between two vectors x; and x; in s-dimensional space is commonly
measured in euclidian metric, although in some cases, other Minkowski r-metrics as e.g.
the Manhattan metric are used.

Especially for non-metric MDS, dissimilarities have to be transformed into values that
the distances d; ; in target space can be compared to. These values are called disparities

d;,j, and can be interpreted as target values for the distances in low-dimensional space.
How the disparities are calculated from the dissimilarities, depends both on the goal of the
MBDS as well as the type of input data. In section 2.2, an example approach for finding the

Kruskal considers missing dissimilarity values as weighted with 0.0, and simply proposes to omit such values
in all calculations.

120

disparities in non-metric MDS is given. In metric MDS, the disparities often are identical
to the dissimilarities (i.e. d; ; = 9; ;).

To evaluate the fitness of a configuration X as a function of the disparities, a cost function
(referred to as stress) is used. This function iterates over all object pairs ¢, € N and
compares their disparity cfm» to the distance d; ; = |x; — ;| of their assigned vectors
x; and x; in X. The better the low-dimensional projection reflects the dissimilarities in
high-dimensional space, the lower is the stress and the better the chosen configuration
represents the original data. A commonly used stress function is given in section 2.2.

The core task of MDS now is to find a configuration X,,;,, which minimizes the stress.
In metric MDS, the minimum stress is achieved, when all distances in target space are
as close as possible to the disparities (and therefore to the dissimilarities). In non-metric
MDS, the stress is minimized, when the rank order of the distances in target space is equal
to the rank order of the disparities (and therefore the dissimilarities).

Due to the complexity of the stress function, the minimization can usually not be done in an
analytical manner. Instead, usually the method of steepest decent (i.e. gradient descent),
or the approach of majorizing the stress function with a less complex function (Scaling
by majorizing a complicated function, SMACOF [dL77]) are used, the latter being only
applicable in metric MDS.

Usually, when an optimal configuration shall be found, the MDS is executed several times
(up to 100) with different random initial configurations to avoid local minima. The one
configuration with the lowest stress value is assumed to be the global optimum.

2.2 Kruskal’s Approach for Nonmetric Multidimensional Scaling

Since almost all current approaches for MDS go back to the work of Torgeson and Kruskal,
and since Kruskal’s non-metric MDS can be seen as generalization of metric MDS, a brief
description of Kruskal’s approach is given. The main properties of the approach are the
following:

1. Disparities are calculated in such a way, that the rank order of distances in target
space is as close as possible to the rank order of dissimilarities. This is achieved
using monotonic regression.

2. A steepest decent is used to approximate the configuration step by step. To do so,
at each iteration a gradient is calculated, which is applied to the configuration. The
iteration stops, when the first derivative of the gradient is zero, i.e. when a minimum
is reached.

2.2.1 Disparity Calculation

A good solution (configuration) of the non-metric MDS is found, when the configuration
preserves the rank-order of the dissimilarities, i.e:

121

0ij < O0jk <Oy < ... = dij <djp <dp;<... (3)

In other words: When the dissimilarities ¢; ; are sorted in ascending order and the distances
d; ; are then plotted over the dissimilarities, the resulting curve should be monotonically
ascending (see Fig. 1). If this is not the case, then for each pair (d; ;,d; ;) two cases, in
which changes are necessary, can be distinguished

e The distance of the succeeding pair is lower than the current pair’s distance. The
current pair’s distance must be reduced, and the succeeding pair’s distance must be
increased.

e The distance of the preceding pair is higher than the current pair’s distance. The
current pair’s distance must be increased, and the succeeding pair’s distance must
be decreased.

In both cases, the target value (i.e. the disparity) for the two distances, which are not in
order, is calculated as the average value of the two distances. If more than two succeeding
distances do not fulfill the monotonicity constraint, the average over all these distances is
used.

Figure 1: Example scatterplot of distances over dissimilarities (source: [DMO0O])

With these disparities given, the stress of the current configuration can be calculated and
be used to determine the gradient necessary to perform the steepest descent.

122

2.2.2 Gradient for Steepest Descent

The raw stress over all distances d; ; can be calculated as the sum of the squared deviations
of each distance from the according disparity:

S'=> (dij—di;)’ 4)
j<i
This value can be normalized with the squared sum of all distances:
=Y, 5)
j<i

such that the normalized and square-rooted stress (see also Eqn. 3) is given by

o | 2eildi— dij)? [5 ©
Yl v

The gradient is determined using the partial derivatives dd/Ox; ; of the stress function:

Til — Tj1
S 1 dl ;i — dl d1 i Ti1 — Tj2
9= d [5T @
i.J ; Ui
(1,5),5<i
Lis — Tjs

This gradient is weighted with a smoothing factor (usually 0.2) and then added to the cur-
rent position of ¢ in target space. After applying the appropriate gradients to all positions
in the current configuration, the resulting stress of the new configuration is determined.
When a minimum is reached, the iteration stops and the current configuration is returned
as result of the non-metric MDS.

2.3 Parallel and Distributed Approaches

Some approaches exist to execute MDS in a parallel manner. For example, [PD10] pro-
poses a parallel MDS based on a heuristic from particle dynamics. To achieve good par-
allelisation, the participating nodes (processors) are structured in a stair-like structure as
shown in Fig. 2, each node communicating only with few other nodes.

Still, since the arrangement of nodes as well as the collection of results needs to be done
by a centralized instance, this approach cannot be applied to Peer-to-Peer systems. This
also applies to other parallel implementations as e.g. [CHK+09] and [BBKY06].

To the best knowledge of the authors, the only truly distributed approach for MDS is given
in [CPHOG6]. In this approach, the position of sensors in a sensor network of arbitrary size

123

3
6|7]8]9]

= W kR -
£4a
o

Figure 2: Node arrangement and information flow in [PD10]

is approximated using distance measurements of each single sensor to other sensors in its
reach. All other (unreachable) sensors are not considered. The authors show that, if some
sensors with fixed (known) positions exist, all other nodes can estimate their one absolute
location with good quality. Without having previously fixed positions, still the relative po-
sition of each node is found. But, when looking more detailed into the proposed solution,
it becomes clear that actually, no real dimensionality reduction is done, because the origi-
nal data gathered from the sensor can itself already be described in a low-dimension space,
even if some additional dimensions may occur due to measurement errors. In their article,
the authors assume that their approach could be applied to data of higher dimensions, but
provide neither proof nor example for that claim.

3 Algorithm for Distributed Nonmetric MDS

As shown in the previous section, executing an MDS requires global knowledge, i.e. the
distances and dissimilarities of all objects need to be known to determine the gradient for
each single position. In distributed systems, especially in Peer-to-Peer systems, no single
participant has such an omniscient view. It is therefore necessary to run the MDS with
only local knowledge.

The basic properties of the proposed approach are:

1. Each peer represents a single object in the high-dimensional space and is able to
calculate the dissimilarities to other objects (peers). Since a peer is only a logical
entity, a physical peer can still represent several objects.

2. Each (logical) peer is assigned to a 2-D coordinate, representing its position in the
current configuration.

3. A peer can only communicate with (and therefore calculate the dissimilarity to) its
neighbors. The neighbourhood of each peer is determined using a Voronoi tessella-

124

tion based on the 2D-coordinates. All peers sharing at least a single Voronoi edge
with another peer are set to be a direct neighbour of it. The tessellation is updated
locally, whenever a peer’s position is changed or a new peer enters the network.

A new Peer P, is added to the network by successively approximating its position x p, until
an optimum value has been found, at which the peer can be integrated into the network.
For the iterative position updates, only the 2D-positions of peers, of whose existence P,
has previously learnt of, are used (sample set). The peer, in whose Voronoi region P, is
currently located, is called the anchor peer P, and may change during iteration. At each
position update, P, gathers the dissimilarity-values and positions of all currently known
peers (including the anchor peer as well as P, itself) and updates its own position such
that it is optimal in matters of stress minimization. This can e.g. be done by executing a
standard MDS over all known positions, but applying the gradient only to P,’s position
and thus leaving all other positions unchanged. If the newly found position lies outside
of the Voronoi regions of the current sample set, P,, gets to know additional peers. The
positions of these peers are added to the sample set and then taken into account for another
update/refinement of xp. The iteration/refinement stops, when the newly found position
lies in the Voronoi-area of any of the already known peers. When this happens, P,, and
the current anchor peer reorganize their neighborhood such that P, is integrated into the
network.

The according algorithm goes as follows:

Initialization 1. Contact any random Peer P,
2. Setinitial (¢ = 0) anchor Peer P? = P,
3. Define initial sample set S° = {P,,, PO}UN (P?), where N (PY)
denotes the set of all direkt neighbors of PY.

Iteration ¢ 1. Find position xf{“ of P, such that the stress over all positions in
St is minimized.
2. Set new anchor Peer P!*! to be the one peer in the (whole) net-

work, which has the position with the shortest distance to z:%,"
If PIFL ¢ St

Add all Peers in direct line between P! and P:*! to S

Continue with next iteration step (goto 1.)
else

Final position found, reorganize neighbors with P!+1

® N kW

Send position update to all neighbors

It is important to point out that finding the anchor peer for any position can easily be
done using local algorithms e.g. by means of X-Y routing. This therefore also applies for
finding out, which peers are located in direct line between any two positions (see iteration
step 4.).

After the new peer has found its final position and has been integrated into the network,

125

it sends a position update into its neighborhood, so that the neighbors can refine their
positions by taking P,,’s position into account. This position update can be executed in
exactly the way as it is done when adding a new peer.

4 Simulation Example

The proposed algorithm has been tested against different dissimilarity matrices both from
publicly available questionnaires, and computer generated test-data. The outcome of these
simulations is now discussed using the example of a helix?> over 4.5 periods as high-
dimensional data, of which random points have been chosen and been assigned to the
peers. After each iteration, the overall stress has been determined.

b)

|
e
u

ot

c) " d)

Figure 3: Example network after 7, 11, 22, and 30 peers have been added.

For this example, the proposed algorithm has been run from the first peer on, i.e. no
initial global MDS has been executed. Fig. 3a-d) show the configurations after 7, 14, 22,
and 30 peers have been added to the network. Each cross represents a peer, while the lines
determine the borders of the Voronoi region of each peer. With fewer peers (see Fig3a) and
b)), the overall stress assumes values up to ~ 24%, such that the resulting configuration
does not allow an intuitive interpretation. Nevertheless, after more peers have been added,

The helix has only been chosen as example, because its projection into 2D is easily understandable, even
when a large amount of points are used.

126

the resulting configurations in c) and d) intuitively seem to be a good 2D-representation of
a helix. Indeed, the overall stress of these two configurations is < 1%.

Fig. 4a) shows the development of the stress, when peers are added to the network. It
can be seen that when adding only few peers, the stress assumes a large range of values.
Nevertheless, with more peers added to the network, good configurations with remarkably
low stress values are found.

a) . ; - b)

Figure 4: a) stress as a function of number of peers, b) number of peers considered in add operation

Fig. 4b) shows the number of peers, which have been taken into consideration by a newly
added peer to find its optimal position in the configuration. It can clearly be seen, that
only a small subset (sample) of all peers is necessary to find the position. In few cases
(e.g. when adding peer 12 or peer 19), larger portions of the network have to be explored,
until the final position is reached. Since for each considered peer, two messages have to
be sent to gather that peer’s dissimilarity values, the number of considered peers has the
same complexity as the number of messages needed to find the optimal position for the
new peer. Since the newly added peer can contact several peers at a time to gather the
dissimilarity information, the number of considered peers is also an upper bound for the
necessary time.

The simulations have also shown that optimal configurations are not always found. In-
stead, the resulting final stress strongly depends on the initial seed of the pseudorandom
number generator that has been used, and therefore both on a) the initial positioning of
a newly added peer, and b) on the results of the stress minimization process during each
position update. To demonstrate this effect, the algorithm has been executed on the same
dataset repeatedly with varying initial seeds for the pseudorandom number generator.

In Fig. 5 it can be seen that only 3% of all simulation runs actually lead to excellent stress
values of less than 1%, while another 15% of the simulation runs at least lead to good
results with stress values in the range from 1% to 10%. In all other cases, the algorithm
gets stuck in local minima when adding a peer to the network, such that a global optimum
cannot be reached. This is a well known problem also in globally executed MDS.

127

=

Range Ratio

< 1% 3%
1% to 10% 15%
11% t0 20% 13%

Ly

5%

[ot

- 21% t0 30% 6%

l . 31% 0 40% 10%

. = L . > 40% 53%
" P RIS MR e ¥

Figure 5: Distribution of final stress when varying the initial random seed

S Preliminary Conclusions and Future Work

The various simulations run so far indicate that the proposed algorithm is able to solve the
problem of distributed non-metric MDS with results of the same quality as a non-metric
MDS with global knowledge. Although further investigation of the algorithm is necessary
to provide a profound analysis, the following preliminary conclusions can be made:

1. A good starting configuration found by using a global MDS is necessary to achieve
good results and reliable behaviour. Otherwise, the algorithm tends to get stuck in
local minima when a single peer updates its position. This leads to unsatisfying
overall configurations, when new peers are added.

2. Several initial anchor peers should be used to avoid local minima. This is the dis-
tributed analogue to using different initial configurations in global MDS.

3. Position changes (updates) should only be propagated to neighbouring peers, if the
distance between old and new position exceeds some threshold. This avoids network
load and alternating position updates of neighboured peers.

4. The time and message complexity for add operations have been in O(+/n) for all
simulations.

After the preliminary conclusions have been strengthened through further simulations and
analysis, future work will focus on finding robust starting configurations that allow to find

globally optimal configurations as good as possible. Additionally, an estimation for the
number of bootstrapping peers necessary to find satisfying configurations, shall be found.

References

[BBKYO06] M. M. Bronstein, A. M. Bronstein, R. Kimmel, and I. Yavneh. Multigrid multidimen-
sional scaling. Numerical Linear Algebra with Applications, 13(2-3):149-171, 2006.

128

[CHK™09] Raimondas Ciegis, David Henty, Bo Kagstrom, Julius Zilinskas, and Julius Zilinskas.

[CPHO6]

[CU12]

[dL77]

[DMO00]

[Kru64a]

[Kru64b]

[PD10]

[Tor52]

Parallel Global Optimization in Multidimensional Scaling. In Parallel Scientific Com-
puting and Optimization, volume 27 of Springer Optimization and Its Applications,
pages 69-82. Springer New York, 2009.

Jose A. Costa, Neal Patwari, and Alfred O. Hero, IIl. Distributed weighted-
multidimensional scaling for node localization in sensor networks. ACM Trans. Sen.
Netw., 2(1):39-64, February 2006.

Hauke Coltzau and Bastian Ulke. Navigation in the P2Life Networked Virtual Market-
place Environment. In Herwig Unger, Kyandoghere Kyamaky, and Janusz Kacprzyk,
editors, Autonomous Systems: Developments and Trends, volume 391 of Studies in
Computational Intelligence, pages 213-227. Springer Berlin / Heidelberg, 2012.

Jan de Leeuw. Applications of convex analysis to multidimensional scaling. Recent
developments in statistics, page 133145, 1977.

T. Denoeux and M. Masson. Multidimensional Scaling of Interval-Valued Dissimilarity
Data. Pattern Recognition Letters, 21:21-83, 2000.

J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29:1-27, 1964. 10.1007/BF02289565.

J. Kruskal. Nonmetric multidimensional scaling: A numerical method. Psychometrika,
29(2):115-129, June 1964.

Piotr Pawliczek and Witold Dzwinel. Parallel Implementation of Multidimensional
Scaling Algorithm Based on Particle Dynamics. In Roman Wyrzykowski, Jack Don-
garra, Konrad Karczewski, and Jerzy Wasniewski, editors, Parallel Processing and Ap-
plied Mathematics, volume 6067 of Lecture Notes in Computer Science, pages 312-321.
Springer Berlin / Heidelberg, 2010.

Warren Torgerson. Multidimensional scaling: 1. Theory and method. Psychometrika,
17:401-419, 1952. 10.1007/BF02288916.

129

