
Offline Design Tuning for Hierarchies of Forecast Models

Ulrike Fischer, Matthias Boehm, Wolfgang Lehner

TU Dresden; Database Technology Group

Abstract: Forecasting of time series data is crucial for decision-making processes in
many domains as it allows the prediction of future behavior. In this context, a model
is fit to the observed data points of the time series by estimating the model param-
eters. The computed parameters are then utilized to forecast future points in time.
Existing approaches integrate forecasting into traditional relational query processing,
where a forecast query requests the creation of a forecast model. Models of continued
interest should be deployed only once and used many times afterwards. This however
leads to additional maintenance costs as models need to be kept up-to-date. Costs can
be reduced by choosing a well-defined subset of models and answering queries using
derivation schemes. In contrast to materialized view selection, model selection opens
a whole new problem area as results are approximate. A derivation schema might
increase or decrease the accuracy of a forecast query. Thus, a two-dimensional opti-
mization problem of minimizing the model cost and model usage error is introduced
in this paper. Our solution consists of a greedy enumeration approach that empirically
evaluates different configurations of forecast models. In our experimental evaluation,
with data sets from different domains, we show the superiority of our approach over
traditional approaches from forecasting literature.

1 Introduction

In many domains, gathered data constitutes time series, e.g., sales per month, system load

per hour, energy supply per minute. This is especially valid in data warehouse systems,

where the time dimension is virtually guaranteed to be present [KR02]. This data is often

used as a basis of decision-making processes. Forecasting is a fundamental prerequisite for

such decisions, otherwise all decisions rely on the history only and might not be valid. One

important use case is forecasting of energy supply. Many renewable energy sources (e.g.,

solar panels) pose the challenge that production depends on external factors (e.g., amount

of sunlight). Hence, available power can only be predicted but not planned, which makes it

rather difficult for energy distributors to efficiently include renewable energy sources into

their daily schedules. This problem addresses the MIRACLE project [BBD+10] that pre-

dicts the energy demand and supply of customers and suppliers and balances accordingly.

This poses the challenge of high query and update intervals (15-minutes or less), where

forecast queries need to be answered as fast and accurate as possible.

There are existing approaches that integrate time series forecasting into traditional rela-

tional query processing in DBMS [DB07, Ora10, Pre10]. In contrast to exporting the data

to an external statistical program, these approaches allow for joint query processing and

167

MM

M

DE

Selb Hof

Aggregation

Disaggregation

DWH

Query Interface

Forecast Queries Updates

Model Pool

Workload Preference

Direct

Analyze

Error + Cost

Configuration

Offline Design

Tuning

for

Forecast Models

Create

Configurations

Forecast Model

Parameters: �, �, � Hesse Bavaria

Figure 1: System Overview

exploit database specific optimization techniques. In this context, a forecast query is spec-

ified like a traditional query extended with a forecast horizon, which specifies the number

of values to forecast or a future point in time [DB07, FRBL10]. A forecast query uses a

model of the time series at hand to calculate the expected future behavior of the time se-

ries. In general, model-based forecasting involves two phases, model creation and model

usage. Model creation tries to fit a model (e.g., represented by the parameters of a contin-

uous function) to the observed data points of the original time series (Figure 1 left). Model

creation is typically computationally expensive, often involving numerical optimization

schemes to estimate the d model parameters that span a d-dimensional search space. In

contrast, model usage utilizes the parameters calculated in the first step to forecast future

points of the observed time series. It is cheap as only a few simple operations are neces-

sary. Due to the high model creation costs, query processing can be sped up if models are

only built once and kept in a model pool. Subsequent queries are answered by choosing a

fittable model from this pool [FRBL10, ACL+10, GZ08].

However, as a data-warehouse might contain a high number of individual time series,

building a model for each single time series is expensive. In addition, time series char-

acteristics change over time, requiring maintenance in form of parameter re-estimation.

Only a few forecast methods however allow updating the parameters analytically by using

just the new time series values, most approaches require access to the complete historical

time series for parameter re-estimation. Parameter re-estimation might be as expensive as

model creation. Therefore, in domains like energy supply, where minute-by-minute data

is stored and forecasted, we do not have enough time to keep all models up-to-date until

the next query arrives. One solution to this problem is to choose a well-defined subset of

forecast models. Forecast queries can then be answered by specific derivation schemes.

There are two main derivation schemes in the area of forecasting – aggregation and dis-

aggregation [Fli01]. Aggregation calculates the forecast values of a time series by using

168

forecast values of subset time series, while disaggregation uses the forecast values of an-

other time series representing a superset, e.g., by using the historical fraction. In the center

of Figure 1 a simplified hierarchy for forecasting energy supply in Germany (abbr. DE) is

presented. Here, the energy supply of single cities is recorded at level one. The supply is

then aggregated according to different regions (level two) and to the supply over the whole

country (level three). Now, the forecast values for the region Bavaria could be either cal-

culated by disaggregation from the forecast values of the total time series over Germany

or by aggregation over the forecast values of the single cities Selb and Hof.

However, the accuracy of a forecast value calculated from a model specifically created for

a given query might be different from the accuracy of a forecast value derived from models

at different aggregation levels of the time series. Interestingly, some derivation schemes

might even improve the accuracy. Therefore, in addition to model usage and maintenance

cost, we need to minimize the forecast error of queries using this model, resulting in a two-

dimensional optimization problem. However, the error of a model cannot be determined

without actually building the concerning model [DWD76, ACL+10]. As a result, any

solution to this problem requires the empirical comparison of alternative configurations.

In general, this problem seems similar to materialized view selection and usage. However,

model selection requires a second metric, the forecast accuracy, while materialized view

selection focuses on minimizing query and maintenance cost only. For model usage, fore-

cast queries always output approximated tuples, so we can exploit additional derivation

schemes, i.e., disaggregation. On the other hand, forecast models are always created at

instance level of the data, so we can not apply compensation queries, e.g., it is impossible

to calculate a selection on top of a model while this is a valid usage of materialized views.

To summarize, our offline design tuning algorithm takes as input a workload and a user

preference regarding execution time and accuracy. It creates different configurations of

models and empirically analyzes their forecast error and maintenance cost (Figure 1 right).

As a result, the best configuration for the given workload is provided to the model pool.

This configuration leads to a reduction of query processing times as models are already

present in the database, a possible higher forecast accuracy as aggregation dependencies

are taken into account and less maintenance costs as only necessary models are stored.

Contributions and Outline In summary, we make the following contributions:

• First, we introduce the fundamentals of physical design of forecast models in a data-

warehouse schema with multiple defined hierarchies (Section 2.1 and 2.2).

• We then define our two-dimensional optimization problem, i.e., increase forecast

accuracy and reduce maintenance cost (Section 2.3).

• Third, we present our greedy enumeration approach to reduce the space of possible

configurations (Section 3.1) and present heuristics, which might reduce the number

of forecast models considered (Section 3.2).

• Finally, we show the applicability of our approach in an experimental evaluation

(Section 4).

169

We will finish with related work in Section 5 and conclude in Section 6.

2 Multi-Hierarchical Forecasting

In this section, we first sketch the basics of a multi-hierarchical forecasting system. Subse-

quently, we explain the notion of physical design in such a context. We finish by discussing

conflicting optimization challenges and by formulating our general optimization goal.

2.1 Multi-Hierarchical Forecasting System

Hierarchical forecasting is based on grouping time series into groups, group families and

so on [Fli01]. Each level results from the aggregation of the child elements one level

below. The top level is the total aggregate of all elementary time series. If we transfer

the hierarchical forecasting approach to a data-warehouse environment, where multiple

hierarchies exists in parallel, merged by foreign keys to dimensions in the fact table, we get

a multi-hierarchical forecasting system. This generalization also contains different levels

of aggregation, where a parent element is calculated by aggregation of corresponding child

elements on an arbitrary level below. However, as we have multiple hierarchies, a child

might contribute to several parents. In addition, it might be possible to calculate parents’

values from multiple sets of child nodes on the same level.

Definition 1 Multi-Hierarchical System: In a multi-hierarchical system, the value Sij(t)
at time t of the time series Sij with index j at level i is calculated as follows:

Sij(t) = AGGl∈Gpij
S(i−1)l(t),

where Gpij contains a list of child indexes of group p at level i−1, which contribute to the

aggregate of element Sij . AGG is an aggregation function, e.g., SUM. Elements at level 1
are the elementary time series, while the element at level h is the total aggregate over all

time series. The total number of elements |S| is calculated by the Cartesian product over

the number of elements per hierarchy.

Example 1 An example multi-hierarchical forecasting systems is shown in Figure 2. Re-

call our running example of forecasting energy supply. The energy supply can also be dis-

tinguished according to different energy sources, e.g. solar energy. Therefore, in addition

to the location hierarchy (Figure 2 left), the energy supply can be aggregated according

to different products (Figure 2 right). In the center of Figure 2, these two hierarchies

are combined into a multi-hierarchical structure, where a single element represents an

instance from both hierarchies (e.g., the supply of wind energy in Hof). Child elements

are additionally annotated with an index p (at the top), where elements at level i with the

same index can be used to calculate the corresponding parent. For example, the element

S31 = R1 can be either calculated by aggregating elements S21 = C1 and S24 = C2 or

by aggregating elements S22 = R1P1 and S23 = R1P2.

170

C1P1 C1P2 C2P1 C2P2 C3P1 C4P1C3P2 C4P2

C1 C2 C3 C4

R1 R2

R1P1 R1P2 R2P1 R2P2

P1 P2

T
T

C1 C2 C3 C4

R1 R2

T

P1 P2

1 12 2 2 21 1

1 12 2

1 1 1 1 1 1 1 1

location hierarchy product hierarchylocation x product

region

citiy
product

solar wind

total

Hesse Bavaria

total

1

2

3

1

2

supply of

wind energy

in Hof

Fulda Lich Selb Hof

Figure 2: Multi-Hierarchical Forecasting Structure

Note that the multi-hierarchical structure is based on the instance-level of the data. In

contrast to the aggregation lattice on attribute level, we include additional functional de-

pendencies that might be given by information assurances (ORACLE) or derived from the

underlying data. For example, in Figure 2 instances of the grouping (R,C, P) are not

considered, as R directly depends on C and therefore (R,C, P) is equal to (C,P).

Forecasting Having this structure in mind, for each element Sij , we can calculate the

forecast value of the corresponding time series by three different ways:

Forecast Model: First, we can create a forecast model Mij directly from the time series

Sij . We can then use this model to directly calculate a forecast value for element Sij .

Aggregation: Second, we can create forecast models for all child elements with the same

group index p at level k, where k < i. We then forecast using each model in the group and

aggregate the forecast values to get the forecast value of the parent element. We denote

this strategy as Aij(kp). In addition, we can aggregate recursively.

Disaggregation: Third, we can create a forecast model for one parent element p at level k
and disaggregate the forecast value. The disaggregation strategy requires the calculation

of a disaggregation key Dij(kp). A simple, but quite successful disaggregation strategy

(assuming SUM as aggregation method), is an average over the fraction of the child series

and the parent series: Dij(kp) = 1/n ·
∑n

t=1 Sij(t)/Skp(t) [GS90]. Then, the forecast

values of the series element Sij are the product of the disaggregation key Dij(kp) and the

forecast value of Skp.

Each forecasting strategy allows different underlying methods. For example, we could

use exponential smoothing as forecast method, the summation as aggregation method and

an average over the fraction of child and parent series as disaggregation method. While

choosing a concrete method is independent from our approach, it might have a high impact

on the resulting physical design.

171

2.2 Physical Design

Conceptually, the user expects a forecast model for every time series queried. However,

based on the three possibilities to calculate the forecast values for a single element Sij ,

we can have different physical designs in a multi-hierarchical system. The benefit of a

physical design depends on the workload of the system. For example, a model at a higher

level might support long-term forecasts as the general trend of the data is captured. We

therefore consider a workload trace of forecast queries for a given period of time. A

workload W consists of elements Sij , their relative frequency f and the corresponding

forecast horizon h: W = {Sij , f, h}. An element Sij might be either described by point

queries or pure conjunctive queries, i.e., addressing multiple hierarchies. However, queries

might also address several elements Sij (e.g., disjunctive, join or group-by queries). In that

case, we only store the individual elements in our workload model.

Definition 2 Configuration: For a given workload W , a configuration CW is a valid as-

signment of forecast models to individual elements. An assignment is valid if each element

Sij in W can be calculated by either a forecast model, aggregation or disaggregation.

In order to make sure that we can calculate forecast values for each element Sij in W , we

always include the least common parent in our configuration, i.e., the element (might not

be part of W) at the smallest level that is parent of all (other) elements in W .

Example 2 Recall Example 1 and consider the workload W={(R1, 1/5, 1), (C1, 1/5, 1),

(C2, 1/5, 1), (C1P1, 1/5, 1), (C1P2, 1/5, 1)}, where the one-step ahead forecast for the

supply in the region Hesse (R1), the supply in the city Fulda (C1), the supply in the city

Lich (C2), the supply of solar energy in Fulda (C1P1) and of wind energy in Fulda (C1P2)

is requested. A first valid configuration is to create a model over the supply in the region

Hesse {R1} and calculate all workload elements by disaggregation. A second possible

configuration is {C1, C2} that calculates elements C1P1 and C1P2 by disaggregation and

element R1 by aggregation. Many more possibilities exist.

It is obvious that the number of possible configurations is exponential with the number of

possible models |CW |. For each element, we can decide if we create an individual forecast

model and we can choose an arbitrary combination of models.

2.3 Optimization Problem

Our goal is to find the best configuration for a given workload. Each configuration can be

described by two metrics, configuration error and configuration maintenance cost.

Intuitively one would think that a forecast value directly calculated from a model is always

superior than disaggregation from a higher level model. However, many studies in mathe-

matical and forecasting literature have shown that disaggregation (or aggregation) can be

superior to individual time series models [DWD76, Fli99]. Therefore, the forecast error is

172

not monotonic (related to a hierarchical system), as adding a new forecast model does not

automatically imply a lower forecast error.

Definition 3 Configuration Error: Given a configuration CW , the error EW is calculated

by the total error over all accessed elements in W using the best strategy:

EW =
∑

(Sij ,f,h)∈W

f · min
∀k1>i,k2<i

(

e(Mij , h),e(Dij(k1), h),e(Aij(k2), h)
)

(1)

where Mij denotes a forecast model, Dij(k1) denotes the disaggregation and Aij(k2) de-

notes the aggregation strategy. We use the time series of length |Sij |−h to train the model

Mij and calculate the disaggregation key Dij . Then, e(strategy, h) calculates the error

for the given strategy over the h-step-ahead forecast over the remaining time series.

The forecast error is calculated using the absolute value of the symmetric mean absolute

percentage error (SMAPE), which is a scale-independent accuracy measure. For both,

aggregation and disaggregation, the forecast error is determined by choosing the set of

child elements or the parent with the minimal forecast error. Note that we do not support

direction changes, i.e., a disaggregate cannot be calculated from an aggregate as this might

lead to an arbitrary result, not following the characteristics of the time series.

Maintenance of forecast models requires mainly parameter re-estimation, as maintain-

ing the state of a model (e.g., smoothing constants) is cheap. The costs of parameter

re-estimation depends on factors like frequency of re-estimation, time series length and

runtime of the parameter estimation algorithm. However, as we are in an offline context,

we assume a fixed estimation method and strategy leading to equal costs for each element.

In addition, we can assume that the time series are about the same length as aggregate

series at higher levels need all their child series to be of the same length. However, if a

series has a missing value, this value might even have a meaning (e.g., zero products sold

this month). Finally, we do not include the maintenance of disaggregation keys as these

are, similar to the state of the model, significantly cheaper than parameter re-estimation

of models. Following these considerations, we explicitly use a very simplified model to

estimate the maintenance cost of a configuration by using the number of created models.

Definition 4 Maintenance Cost: Given a configuration CW , the maintenance cost BW

are calculated by the number of forecast models in CW :

BW = |Mij ∈ CW | . (2)

Now, our optimization goal is twofold: First, we want to reduce the forecast error. Second,

we want to do as less maintenance as possible.

Definition 5 Optimization Goal: Our optimization goal is to find the configuration CW ,

which is minimal according to the configuration error EW and maintenance costs BW :

min
CW

(

α ·
EW

ET

+ (1− α) ·
BW − 1

Bmax − 1

)

with Bmax > 1 and α ∈ [0, 1], (3)

173

where Bmax as well as ET are used as normalization constants. Bmax is the maximum

number of models in CW and ET is the forecast error for the configuration, where only a

model for the common parent is used. For normalization purposes as well, we subtract 1
in the second part of the equation.

With parameter α we can weight the importance of both dimensions. If we set α = 0.5,

we give equal weight to maintenance cost and forecast error. If we set α = 1 we try to find

the best configuration according to the forecast error, without regarding maintenance. This

generalizes the problem of finding the best hierarchical structure in forecasting literature.

As the forecast error is not monotonic with respect to the number of models, the minimum

forecast error can result for any configuration. On the other hand, with α = 0, as we do

not consider disaggregation costs, we get the configuration where only one model is used

for the common parent and all other elements use the disaggregation strategy.

3 Offline Design Approach

In order to solve the optimization problem of Definition 5, our general approach works as

follows:

1. Create a forecast model for each element in the workload and the common parent.

2. Enumerate all valid configurations according to Definition 2.

3. Evaluate each configuration regarding the configuration error (Definition 3) and

maintenance cost (Definition 4).

4. Choose a configuration according to Definition 5 and drop all models, which are not

part of the solution.

However, this naive algorithm has unacceptable runtime, because we first need to create a

forecast model for every element considered in the workload. This is necessary to calcu-

late the model, aggregation and disaggregation benefit for each element. However, model

creation is expensive as parameters need to be estimated. Second, it is infeasible to enu-

merate all possibilities as the number of possible configurations is exponential with the

number of elements (on instance-level). Therefore, we present an approach to reduce the

number of configurations enumerated (Section 3.1). Then, we discuss some heuristics to

reduce the number of forecast models considered (Section 3.2).

3.1 Greedy Enumeration

As explained before, maintenance cost increase monotonically with each additional fore-

cast model while the behavior of the forecast error is unknown. A new model might lead

to an improvement but the error could also stay similar or get even worse. Thus, in the

174

Algorithm 1 Greedy Enumeration

Require: elementsConsidered

1: bestConf ← concat(1,repeat(0, numElements− 1))

2: bestEval ← α

3: repeat

4: stop ← true

5: currentConf ← bestConf

6: for i in elementsConsidered do

7: currentConf [i] ← 1
8: if (currentEval = evaluateConfiguration(currentConf)) < bestEval then

9: bestConf ← currentConf

10: bestEval ← currentEval

11: newModel ← i

12: stop ← false

13: currentConf [i] ← 0
14: elementsConsidered ← remove(elementsConsidered, newModel)

15: until stop = true

second case, we would never use this model as only maintenance increases. Therefore, we

propose a greedy enumeration approach, where we start with the configuration where only

a model for the top element is used. Thus, this is the valid configuration with minimal

maintenance cost. We then try to add additional models step-by-step, using most promis-

ing models first. As each model is described with equal maintenance costs, we always add

the model next, which results in the lowest overall configuration error.

Algorithm 1 outlines our greedy enumeration approach. First, our algorithm requires the

elements, which actually can qualify for a model. This could contain all elements in the

multi-hierarchical structure. However, the workload will reduce these elements signif-

icantly to only the queried elements. In addition, the heuristics introduced in the next

section will reduce the number of models considered further. To represent a configuration,

we use a vector where 1 stands for forecast model and 0 for no model. The entries are the

consecutive elements in the multi-hierarchy starting at the top and going down from left

to right. Therefore, in line 1 we create the configuration, where only a model is created

for the top element. According to Definition 5, the evaluation for our start configuration is

always α, which we use as our current best evaluation (line 2). Then, for each element in

our list of considered elements, we create a configuration where a model is used for this

element (line 7). We evaluate this configuration with Definition 5 and if it is better than

the current one, we store it (line 8-10). Then, we reset the current configuration (line 13).

Therefore, in each step we iterate over all elements and output a new configuration with

one additional element. In the end, we remove the new element from the list of considered

elements (line 14). We stop when we find no better configuration than the current one.

Note that we need to check the benefit of each single element in each iteration as a new

model might have an impact on every other element in the workload.

Example 3 To illustrate the greedy approach, an example is shown in Figure 3. This ex-

ample is created for the workload described in Example 2 with α = 0.5. A gray box shows

175

M

MM

MM

C1P1 C1P2

C1 C2

R1

0.5 · 18/18

+ 0.5 · 0/4

= 0.5

EM = 1

EA2 = 4

EM = 1

ED3 = 2

EM = 1

EA3 = 4

ED3 = 6

EM = 2

ED3 = 3

ED2 = 1

EM = 1

ED3 = 6

ED2 = 4

M

MM

MM

C1P1 C1P2

C1 C2

R1

0.5 · 11/18

+ 0.5 · 1/4

= 0.43

EM = 1

ED3 = 2

M

MM

MM

C1P1 C1P2

C1 C2

R1

0.5 · 6/18

+ 0.5 · 2/4

= 0.42

EM = 1

ED3 = 2

EM = 1

ED3 = 6

ED2 = 4

EM = 2

ED3 = 3

ED2 = 1

EM = 2

ED3 = 3

ED2 = 1

EM = 1

ED3 = 6

ED2 = 4

EM = 1

EA2 = 4

EM = 1

EA2 = 4

EM = 1

EA3 = 4

ED3 = 6

EM = 1

EA3 = 4

ED3 = 6

Start Configuration Final Configuration

Figure 3: Greedy Enumeration

that an evaluation model was created for the corresponding element, while a gray colored

node implies that the model is actually used and maintained in the current best configura-

tion. Each node is annotated with the errors when using a model EM , aggregation EAk

and disaggregation EDk, where k is level from which the forecast values are aggregated

or disaggregated. In the left part of Figure 3, the start configuration is shown in which

only a model for the top element is used. As explained before, the start evaluation equals

always α, which is shown in the box in the upper left corner (Definition 5). Note that we

use the total error to describe the configuration error as all elements in the workload have

the same frequency. Now, our greedy approach sequentially checks the benefit of a model

for each element. Elements C1 and C1P1 have the highest disaggregation error of 6.0 and

would both profit from a model equally as the model error is only 1.0. However, element

C1P2 would also profit from a model at element C1 as the disaggregation error using level

two is lower. Therefore, we would decide to use a model for element C1 (Figure 3 center).

The new evaluation drops down to 0.43. Second, the greedy approach would decide to use

a model for the element C1P1 as we get the best improvement regarding the forecast error

and the evaluation drops to 0.42. Although, the element C2 would also lead to a decrease

of the error, the algorithm is finished now. The improved error does not compensate the

increased maintenance costs. The evaluation would be 0.51.

For ease of illustration, we used a single hierarchy in this example. However, the only

difference in a multi-hierarchy is that a child node might benefit from the disaggregation

from several parents and a parent from the aggregation of several sets of child elements.

This approach might result in local sub-optima for two reasons. The first reason is that

models are never removed, although they might not be necessary anymore as the element

can be calculated by aggregation. Therefore we additionally analyze aggregation benefits.

Thus, whenever we evaluate a configuration, we also check if we can remove models,

which can now be calculated by aggregation. If so, we also evaluate the configuration with

the removed aggregate model. Second, we might miss optimal configurations because we

only consider single models with each step. However, a whole group might improve the

result as elements at higher levels can be calculated by aggregation. Therefore, we include

a second optimization, where we analyze groups in each step as well. In our case, a group

is a complete set p of elements at one level, which contribute to the same aggregate one

level above. Different strategies to build groups are possible. However, this can have the

drawback that groups are added too early in the process resulting in a different local sub-

optima. In addition, we still end in local sub-optima if adding more than one model (but

176

M

MM

C1P1 C1P2

C1 C2

R1

Disagg Disagg

(a) Decomposition

M

MM

C1P1 C1P2

C1 C2

R1

MC1 in

CW ?

(b) Recursive

�

C1P1 C1P2

C1 C2

R1

cor(R1, C1P2)

< �

cor(R1, C1P1)

< �

cor(C1, C1P2)

< �

cor(R1, C2)

< �

cor(R1, C1)

< �

cor(C1, C1P1)

< �

(c) Correlation

Figure 4: Model Creation Heuristics

not a whole group) would allow the removal of an aggregation model and lead to a better

overall forecast error. However, in most cases, aggregation benefits are less important as

they require many child models to be build.

The complexity of the greedy enumeration approach is O(n+n2) in the worst case. First,

we create n forecast models. Then, we evaluate for each element the benefit of a model

and add the element with the most benefit. We stop when we can not find a beneficial

model anymore resulting in a worst case evaluation of
∑n

i=1 i ≈ n2 configurations. In the

best case, we stop after one run as we did not find a better configuration, so we result in a

linear behavior. Note that the creation of a forecast model might be much more expensive

than the evaluation of one configuration.

3.2 Heuristics

In this section, we present heuristics to reduce the number of forecast models considered.

Each heuristic only creates a subset of possible models. If there is no model created for

an element, our greedy enumeration approach does never consider a configuration where

a model for this element is used (Algorithm 1, line 6). All heuristics can be used by

themselves in addition to the greedy enumeration approach, but an arbitrary combination

of these heuristics is also possible.

Decomposition The decomposition approach assumes that if we find a good strategy for

each single hierarchy, the combination of hierarchies, i.e., conjunctive queries, will also

result in a low error. Therefore, only forecast models are considered that address elements

from single hierarchies. For all combinations of hierarchies we always use the disaggre-

gation strategy (Figure 4(a)). This heuristic reduces the number of considered elements to

the sum over the number of elements in each single hierarchy.

Recursive The recursive approach has the underlying assumption that if disaggregation is

best for one level, it is also best for all underlying child elements. Initially, we only create

forecast models for the top element and the level underneath. Every time we decide to use

a forecast model, we create all models one level below (Figure 4(b)). In the best case, this

approach only creates models for the top two levels of the hierarchy. However, in the worst

case, all models are created. If we combine the recursive heuristic with the decomposition

177

heuristic, we might even get a higher reduction of forecast models created, as each child

node is only reachable through exactly one parent node.

Time Series Characteristics This heuristic analyzes the characteristics and the relation of

the time series to filter out forecast models to be created and considered. For this, we use

two different characteristics, correlation and disaggregation error. With both approaches,

forecast models are only created if a certain characteristic is fulfilled.

Correlation The core observation is that high correlated time series follow the same pat-

tern and thus could be calculated by the same model. Therefore, we calculate the cor-

relation between parent-child relations. For this, we also consider parent-child relations

over more than one level (Figure 4(c)). Then, we only create models for child series if

the correlation is below a threshold τ . The threshold τ defines the aggressiveness of this

approach. A low τ might filter out many models, but might also miss good configurations.

In contrast, a high τ is safer, but might only filter out a few models.

Disaggregation Error As we always create the top model, we can analyze the disaggrega-

tion error of each element in the workload. This approach only creates a model for an ele-

ment if the disaggregation error is above ω. To calculate ω, we use the median of the disag-

gregation error median(e(Dij(11), h)) over the elements in the workload and the weight

α of the configuration error. Then, ω is calculated by median(e(Dij(11), h))/(α+ 0.5).
Therefore, if we give equal weight to the configuration error and maintenance cost (α =
0.5), we create all models higher than the medium disaggregation error. This works as we

assume equal maintenance cost in this paper. If we give low weight to the configuration

error, we create less models as ω increases and vice versa. Therefore, we adjust the num-

ber of created models according to the weight of the configuration error as a lower weight

would result in a configuration with less models anyway.

4 Experimental Evaluation

We conducted an experimental study in order to evaluate (1) the performance of our ap-

proach on three data sets from different domains with respect to traditional approaches

from forecasting literature, (2) the performance and scalability of the proposed heuristics

and (3) the adaptability to different user requirements.

4.1 Experimental Setting

To implement the described offline design tuning approach we used the statistical comput-

ing software environment R. It provides efficient build-in forecast methods and parameter

estimation approaches, which we used to build the individual forecast models. All exper-

iments were executed on an IBM Blade (Suse Linux, 64bit) with two processors (each a

Dual Core Intel Xeon at 2.80 GHz) and 4 GB RAM.

In order to show the general applicability of our offline design approach, we use the fol-

178

electricity tourism energy

#elements level 1 1,568 32 86

#elements level 2 273 12 1

#elements level 3 14 1 -

#elements level 4 1 - -

series length 28 25 5,808

Table 1: Sizes of Data Sets

lowing three data sets:

• Electricity: Worldwide Electricity Generation The first data set was obtained from

the US Energy Information Administration and is public available at [US110]. This

data set includes metered world-wide electricity generation. It consists of two hi-

erarchies. The first hierarchy contains regional information from world-wide over

continental to individual countries. In the second hierarchy different categories of

electricity sources such as renewable or nuclear are distinguished. After merging

both hierarchies, we result in multi-dimensional hierarchy with four levels, similar

to Figure 2. The data is available from 1980 until 2008 in an annual resolution.

• Tourism: Australian domestic tourism The second data set consists of quarterly

observations on the number of visitor nights for the Australian domestic tourism,

which is an indicator of tourism activity. The sample begins with the first quarter

of 2004 and ends with the first quarter of 2010. The series are obtained from the

National Visitor Survey, which is managed by Tourism Research Australia [TRA10].

The data consists of two hierarchies, purpose of visit and state, resulting in three

levels of the final multi-hierarchical structure.

• Energy: EnBW MEREGIO Energy Demand The third data set was provided by a

partner from the MIRACLE project [BBD+10] and was obtained during the MERE-

GIO project [MER10]. This data set contains energy demand from 86 customers

ranging from November 1st 2009 to June 30th 2010 in a 1 h resolution. It therefore

consists of a single hierarchy with two levels, i.e., level 1 contains the individual

customer demand while level 2 contains the total aggregate over all customers.

Table 1 shows the sizes of the different levels and time series lengths for each data set.

For all three data sets we fixed the forecast, aggregation and disaggregation method. As

forecast method we use triple exponential smoothing. The class of exponential smoothing

methods is widely used in hierarchical forecasting and has proven to be very robust and

applicable in an automated fashion to a large set of time series [Cha00]. If we would use

a more complex forecast method, we would save even more execution time with our ap-

proach as parameter estimation gets more expensive. For the aggregation method, we use

summation. Gross and Sohl analyzed 21 disaggregation methods [GS90] and concluded

that a simple average of the elements’ proportion of the parent element over the entire his-

torical period worked best compared to other, partly more complex, methods. Therefore,

we will use this as disaggregation strategy.

179

In addition, we fix the workload. We assume that each element in the hierarchy is queried

once requesting a one-step ahead forecast, so W = {(Sij , 1/ |S| , 1)} for i=1 ... #lev-

els, j=1 ... #elements of level i and |S| is the total number of elements in the whole

multi-hierarchical structure. Therefore, we analyze the worst case, where every element is

considered equally. A different workload would only reduce the search space.

4.2 Performance Comparison

In the following, we compare our greedy approach with the three traditional approaches

”bottom-up”, ”top-down” [Fli01] and ”complete”. The bottom-up approach creates fore-

cast models for all time series at level one and calculates all other forecasts by aggregation

of elementary forecasts. The top-down approach creates only one forecast model for the

top element and calculates all other forecasts by disaggregation of the top forecast. Finally,

the complete approach creates forecast models for all elements in the hierarchy and calcu-

lates all forecasts using directly the model for the concerning element. In this experiment,

we use 80% of the data sets to learn the models for all approaches and to learn the config-

uration for our greedy approach. We set α = 0.3, so we give more weight to maintenance

time. Then, we use the remaining 20% to produce one-step ahead forecasts, where we

reestimate the model parameters after each forecast. Note that we also could use a more

sophisticated model maintenance method, where we trigger parameter reestimation time-

or threshold-based. However, this is not the scope of this paper and the effect would be

similar for all approaches. Figure 5 summarizes the results for all three data sets and ap-

proaches. In Figure 5(a), the average forecast error (using the accuracy measure SMAPE)

of each element over the evaluation period is illustrated. Here, the maximum forecast error

equals 1. In Figure 5(b), the relative maintenance cost compared to the complete approach

as well as the total number of used models is shown.

Our goal is to create as less models as possible while reaching a low forecast error. If

we take a rough view at the results, we see that our greedy algorithm produces the best

result considering both dimensions. Let us analyze each data set a bit more closely. For

the electricity consumption, the complete (C) and bottom-up (B) approach have a much

better forecast error than the top-down (T) approach. Therefore, our greedy approach (G)

creates 61 forecast models reducing the forecast error a lot but adding only little additional

maintenance time. In order to reduce the error even more and beat the complete approach,

we need to choose a higher value of α. We will analyze the effect of α more closely in

Subsection 4.4. For the tourism activity, the forecast error of the complete and bottom-

up approach is slightly better than the top-down approach. However, the forecast error

can actually be reduced a lot, if a few forecast models are created at level two and the

forecasts at level one are created by disaggregation from level two. Therefore, our greedy

approach decides to create some forecast models at level two, reducing the forecast error

even more than the complete approach but resulting in much less number of models to

maintain. For the energy demand, the top-down approach is similar to the complete and

bottom-approach. Therefore, our greedy approach decides to use the top-down approach,

creating no additional forecast models where we save a lot of maintenance cost compared

180

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

� � � �

�
��

�
�	

�
�

�
��

�
��

�
�

�
�
�
�
�

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

� � � �

�
��

�
�	

�
�

�
��

�
��

�
�

●

●

●

●

� � � �

�
��

�
�	

�
�

�
��

�
��

�
�

� � � � � � � � � � � �

����������� ������� ������

�
��

�
�	

�
�

�
��

�
��

�
�

(a) Distribution of Forecast Error

� � � � � � � � � � � �

��
��
��
�
�
��
�
��
��
�
�
�
�
�
��
�
�
�

�
��

�
�

�
��

�
��

�
�

	
��

����������� ������� ������

	
�

�	

�!

 "

	

(b) Maintenance Cost

Figure 5: Comparison of Different Approaches

to the complete or bottom-up approach (one instead of 87 models).

To summarize, on the one hand our greedy approach can find a better configuration than

the traditional approaches, even with a low value of α. On the other hand, maintenance

time is reduced by using only necessary models. The speed up we can achieve strongly

depends on the used hierarchy, i.e., the number of elements, and on the relationship of

the time series, i.e., weather bottom-up or top-down is superior in general. In terms of

total execution time, the benefit strongly depends on the used forecast method and the

time series length. For example, for the energy data set, we save about half a minute

in each maintenance step if we use triple exponential smoothing. The total maintenance

time is 3.4 h for the complete approach and 2.3 minutes for the greedy approach. If we

use an AR(12) model, which is an instance of the widely used class of ARIMA models,

we save 26 minutes in each single maintenance step. As we are in an offline context, we

did not explicitly measure the speed up of forecast queries. However, a low number of

forecast models implies lower maintenance cost and thus, a lower system load or lower

query processing times if deferred maintenance is used.

4.3 Comparison of Different Heuristics

In a second experiment, we take a closer look at the different heuristics introduced in Sub-

section 3.2. For each heuristic, we might get a slightly worse configuration compared to

the full greedy approach but we might save execution time. Figure 6(a) shows the evalua-

tion (= value of objective function according to Definition 5) of all heuristics compared to

the evaluation of the greedy approach. As all data sets exhibit totally different execution

times, Figure 6(b) shows only the relative execution time decrease to the full greedy ap-

proach. In this experiment, we set α = 0.75 so that the impact of the heuristics are higher

181

����������� ������� ������

�
�
�
��
�
��
�
�

�
��

�
�

�
��

�
��

�
�

#���

$��

���

���

���

(a) Evaluation

����������� ������� ������

��
��
��
�
�
��
%
�
�
�
��
�
�
��
��
�

�
��

�
�

�
��

�
��

�
�

	
��

$��

���

���

���

(b) Relative Execution Time

Figure 6: Comparison of Different Heuristics

as more forecast models are created.

The energy data set contains only a single hierarchy. Therefore, the decomposition heuris-

tic (dec) leads to the same accuracy and execution time as the full greedy approach (full).

For the other two data sets, it shows the lowest execution time but also increases the eval-

uation most for electricity and tourism data set. Therefore, it should only by used if very

little time is available. The recursive heuristics (rec) increases the evaluation only slightly

for the electricity data set but not at all for the other two data sets. However, it shows

the smallest improvement in terms of execution time. Therefore, it can be safely used to

save some of the execution time of the offline design approach. For the correlation heuris-

tic (cor), we set the correlation threshold to 0.75. This heuristic takes the third rank in

terms of execution time and only increases the evaluation slightly for the electricity and

tourism data set. As a result, it should be preferred to the recursive heuristic in order

to save more execution time. The disaggregation error (err) heuristics shows the second

best execution time and only increases the evaluation slightly for all three data sets. To

summarize, besides the decomposition heuristic, all heuristics only increase the evaluation

slightly compared to the full greedy approach. Most execution time can be saved when the

heuristics are used, which take time series characteristics into account.

In order to examine the scalability of our greedy approach and the different heuristics, we

vary the size of the electricity data set. For this, we increase the number of electricity

sources from one to seven and combine the resulting electricity source hierarchy with the

region hierarchy. If we use only one electricity source, we result in a single hierarchical

structure, which consists of 464 elements. With each additional electricity source, we

add 232 elements. The experimental results are displayed in Figure 7(a). The full greedy

approach (using no heuristic) has the longest runtime and shows a super linear behavior

with increasing number of elements. In general, all heuristics also increase the number of

considered models with increasing data size resulting in a super linear behavior as well.

However, the concrete outcome strongly depends on the data itself, e.g., how many time

182

��� 	��� 	��� 	 ��

�

�

	
�
�

	

�

�
�

���&����#���������

�
%
�
�
�
��
�
�
��
��
�
�'
�
(

#���

�����������

���������

$�������������������

$������������

(a) Scalability

���)�

�
�
��
��
�
�
�
�
�
��
�
�
�

��� ��
 ��� ��� �� 	��

	

�

�
!
!

"
�

!
!
"

�
��
�

�
��
!

�
�	
�

�
�	
"

�
�

	

�
�
�
��
�
�
�#
�
��
�
�
�
��
�
��
�
�

����

�����

(b) Adaptability

Figure 7: Scalability and Adaptability to User Requirements

series fall below the correlation threshold.

4.4 Adaptability to User Requirements

In this section, we take a closer look at the outcome of our greedy approach while varying

the parameter α. Recall that an α = 0 results in the top-down approach as this is the

configuration with the minimal maintenance cost. In contrast, setting α = 1 leads to the

configuration with the best overall forecast error regardless of the maintenance cost. In this

experiment, we execute our greedy approach using the whole electricity data set while in-

creasing α from 0 to 1. Figure 7(b) presents the average forecast error and the maintenance

cost of the final configuration. In the beginning, with only little additional maintenance

cost we get a high improvement of the average forecast error. The reason is that our greedy

approach always adds those models first that lead to the highest improvement. As α gets

higher the number of additional models increases but the error improvement decreases. To

conclude, with a small value of α we get the best improvement of the forecast error with

low additional maintenance cost. A very high α leads to the best overall forecast error,

however it might not be worse the maintenance cost. Nevertheless, for the energy data

set, a value of α = 1 leads to the creation of about 57% of the models where the average

forecast error beats the bottom-up and complete approach.

In addition, we examined different kind of workloads. For this, we varied the number of

distinct elements addressed by the workload, the forecast horizon and the frequency of

forecast queries. The higher the number of distinct elements, the larger the search space.

Therefore, with a higher number of distinct elements, we tend to a higher number of mod-

els but also to a higher accuracy as we can exploit more disaggregation and aggregation

possibilities. An increase of the forecast horizon of the queries leads to a higher average er-

ror and decreasing maintenance costs for all data sets. Longer forecast horizons are harder

to predict at single time series level. Due to more robustness, the greedy algorithm favors

183

models at higher aggregation levels leading to lower maintenance costs. Last, we varied

the distribution of query frequencies by increasing the parameter z of a zipf distribution.

A high parameter implies a high frequency of only a few elements in the workload (high

skew) while a low parameter results in equal distribution of the frequencies (low skew).

With a high skew, we strongly prefer a few workload elements leading to the creation of

models favoring only those. However, the overall forecast error stays roughly constant as

the error is weighted with the workload frequencies (Definition 3).

5 Related Work

Related work can be found in three main areas: (1) existing approaches to integrate fore-

casting in database management systems, (2) hierarchical forecasting studies in forecasting

and economic literature and (3) materialized view selection.

Forecasting in DBMS Forecasting has already been successfully integrated into DBMS.

For example, within the Fa system [DB07] an incremental approach is proposed to build

models for a multidimensional time-series in which more attributes are added to the model

in successive iterations. Furthermore, the skip-list approach for efficient forecast query

processing [GZ08] proposes an I/O-conscious skip list data structure for very large time

series in order to enable the determination of a suitable history length for model building.

However, all approaches investigate how to efficiently find the best forecast model for one

specific forecast query using database techniques. We consider the problem of efficient

forecast query processing from a different point of view by addressing the interaction of

queries, which allows the reduction of the forecast error and maintenance cost by reusing

models. Agarwal et al. address the problem of forecasting high-dimensional data over

trillions of attribute combinations [ACL+10]. They propose to store and forecast only a

sub-set of attribute combinations and compute other combinations from those using high-

dimensional attribute correlation models. However, they select the sub-set manually for

historical importance and seasonality, while we propose an automatic approach to deter-

mine the optimal set of models to store. Then, their correlation models can be used as

disaggregation method in our approach.

Hierarchical Forecasting In contrast to our work, hierarchical forecasting considers only

a single hierarchy. In this context, the majority of the literature has focused on comparing

the performance of bottom-up forecasting (individual item forecasts are made directly

and aggregated) and top-down forecasting (forecasts are made at aggregate level and then

allocated to individual items). Some favor the bottom-up approach [ZT00, DWD76], other

the top-down approach [Fli99, NMB94] and some found no method to be superior for their

specific data set [FM92]. In addition, influencing factors of the superiority of one approach

over the other were investigated, e.g., quality of forecast method, correlation between

variables and forecast errors [Bar80]. In a recent work, bottom-up versus top-down was

investigated when the subaggregate series follows a first-order univariate moving average

MA(1) process [WVP09]. They found no significant difference in the accuracy of the

two strategies when the correlation between the subaggregate series is small or moderate.

However, all research empirically analyzes one specific data set and conclude for one of

184

the two methods. In contrast, we propose an approach that quantifies different solutions

and also allows for mixed solutions. In addition, existing approaches focus on accuracy

only, while we take maintenance cost into account as well. This allows for faster query

processing and a lower system load as maintenance time of models is reduced.

Materialized View Selection There is a high amount of work in the area of materialized

view selection [ACN00, BPT97, SDN98]. For example, in [BPT97] two techniques are

proposed, which reduce the number of views to consider for materialization (based on

query benefit, dependent views and the size of the materialized view). The general problem

is the same – for a given workload find the optimal set of materialized views with minimal

query and maintenance cost. However, the model selection problem strongly differs from

the materialized view selection problem, as a second dimension – the forecast accuracy –

is introduced. In addition, different derivation schemes are used in model selection, i.e.,

disaggregation. Therefore, we cannot apply existing techniques directly.

6 Conclusion and Future Work

In this paper, we introduced the problem of physical design of time series forecast models

in a multi-hierarchical data-warehouse scenario. We defined the two-dimensional opti-

mization problem of minimizing the forecast accuracy and maintenance cost. On the one

hand, we generalized the problem of finding the best hierarchical structure addressed in

forecasting literature. On the other hand, we additionally include maintenance cost ad-

dressing evolving time series. Our solution consists of a greedy enumeration approach

and different heuristics, which might reduce the time consumption of the offline design al-

gorithm. In our experimental evaluation, we used three data sets to show that we can find

the configuration, which reaches a high accuracy while using as less models as possible.

This paper is part of an on-going research about physical design of forecast models inside

a database. We started to analyze the physical design from an offline point of view. How-

ever, an important question is how this structure should be maintained when time series

characteristics change, i.e., online physical design. In detail, we need to consider three

different types of maintenance. First, maintenance of the model state and disaggregation

keys, which is cheap and can be done incrementally every time a new tuple arrives. Sec-

ond, maintenance of model parameters, which is expensive and therefore could be trigged

either time or threshold based. Third, maintenance of the model pool itself. For the last

case, we need to monitor the real workload, maintenance cost and accuracy of different

forecast models. Depending on these statistics, we might decide to drop a model, which

has not been worthwhile or to create a new model to improve forecast accuracy.

Acknowledgment

The work presented in this paper was partially funded by the EU within the MIRACLE

project under the grant agreement number 248195.

185

References

[ACL+10] Deepak Agarwal, Datong Chen, Long-ji Lin, Jayavel Shanmugasundaram, and Erik Vee.
Forecasting high-dimensional data. In SIGMOD Conference, 2010.

[ACN00] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated Selection of
Materialized Views and Indexes in SQL Databases. In VLDB, 2000.

[Bar80] Amir Barnea. An analysis of the usefulness of disaggregated accounting data for fore-
casts of corporate performance. Decision Sciences, 11:17–26, 1980.

[BBD+10] H. Berthold, M. Böhm, L. Dannecker, F.-J. Rumph, T. B. Pedersen, C. Nychtis, H. Frey,
Z. Marinsek, B. Filipic, and S. Tselepis. Exploiting renewables by request-based bal-
ancing of energy demand and supply. In IAEE, 2010.

[BPT97] Elena Baralis, Stefano Paraboschi, and Ernest Teniente. Materialized Views Selection
in a Multidimensional Database. In VLDB, 1997.

[Cha00] Chris Chatfield. Time-Series Forecasting. Chapman & Hall, 2000.

[DB07] Songyun Duan and Shivanath Babu. Processing Forecasting Queries. In VLDB, 2007.

[DWD76] D.M. Dunn, W.H. Williams, and T.L. DeChaine. Aggregate Versus Subaggregate Mod-
els in Local Area Forecasting. Journal of the American Statistical Association, 71:68–
71, 1976.

[Fli99] Gene Fliedner. An investigation of aggregate variable time series forecast strategies
with specific subaggregate time series statistical correlation. Computers & Operations
Research, 26:1133–1149, 1999.

[Fli01] Gene Fliedner. Hierarichal forecasting issues and use guidelines. Industrial Manage-
ment & Data Systems, 101:5–12, 2001.

[FM92] Eugene B. Fliedner and Vincent A. Mabert. Constrained Forecasting: Some Implemen-
tation Guidelines. Decision Sciences, 23:1143–1161, 1992.

[FRBL10] Ulrike Fischer, Frank Rosenthal, Matthias Boehm, and Wolfgang Lehner. Indexing
Forecast Models for Matching and Maintenance. In IDEAS, 2010.

[GS90] Charles W. Gross and Jeffrey E. Sohl. Disaggregation methods to expedite product line
forecasting. Journal of Forecasting, 9:233–254, 1990.

[GZ08] Tingjian Ge and Stan Zdonik. A skip-list approach for efficiently processing forecasting
queries. VLDB, 2008.

[KR02] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit. Wiley, 2002.

[MER10] The MeRegio Project, 2010. http://www.meregio.de/en/.

[NMB94] S.L. Narasimhan, D.W. McLeavey, and P. Billington. Production Planning and Inven-
tory Control. Allyn & Bacon, 2 edition, 1994.

[Ora10] Oracle. Oracle OLAP DML Reference: FORECAST - DML Statement, 2010.

[Pre10] PredictTimeSeries – Microsoft SQL Server 2008 Books Online. http://msdn.

microsoft.com/en-us/library/ms132167.aspx, 2010.

[SDN98] Amit Shukla, Prasad Deshpande, and Jeffrey F. Naughton. Materialized View Selection
for Multidimensional Datasets. In VLDB, 1998.

[TRA10] Tourism Research Australia - National Visitor Survey, 2010. http://www.ret.

gov.au/tourism/tra/domestic/national/Pages/default.aspx.

[US110] US EIA - International Energy Statistics, 2010. http://tonto.eia.doe.gov/

cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=2.

[WVP09] Handik Widiarta, S. Viswanathan, and Rajesh Piplani. Forecasting aggregate demand:
An analytical evaluation of top-down versus bottom-up forecasting in a production plan-
ning framework. International Journal of Production Economics, 118:87–94, 2009.

[ZT00] Arnold Zellner and Justin Tobias. A Note on Aggregation, Disaggregation and Fore-
casting Performance. Journal of Forecasting, 19:457–469, 2000.

186

	Vorwort

	Inhaltsverzeichnis
	Eingeladene Vorträge
	SanssouciDB: An In-Memory Database for Processing Enterprise Workloads
	The Web as the development platform of the future
	The Power of Declarative Languages: From Information Extraction to Machine Learning

	Wissenschaftliches Programm
	Verarbeitung großer Datenmengen
	MapReduce and PACT - Comparing Data Parallel Programming Models
	Parallel Sorted Neighborhood Blocking with MapReduce
	PigSPARQL: Übersetzung von SPARQL nach Pig Latin

	Datenströme
	Koordinierte zyklische Kontext-Aktualisierungen in Datenströmen
	Tracking Hot-k Items over Web 2.0 Streams
	Flexible and Efficient Sensor Data Processing - A Hybrid Approach
	Feature-Based Graph Similarity with Co-Occurence Histograms and the Earth Mover's Distance

	Vorhersagemodelle
	Lightweight Performance Forecasts for Buffer Algorithms
	Offline Design Tuning for Hierarchies of Forecast Models
	Online Hot Spot Prediction in Road Networks

	DB-Implementierung
	Advanced Cardinality Estimation in the XML Query Graph Model
	Efficient In-Memory Indexing with Generalized Prefix Trees
	Stets Wertvollständig! - Snapshot Isolation für das Constraint-basierte Datenbank Caching

	Anfrageverarbeitung
	A generalized join algorithm
	View Maintenance using Partial Deltas
	Cloudy Transactions: Cooperative XML Authoring on Amazon S3

	Informationsextraktion
	Conceptiual Views for Entity-Centric Search: Turning Data into Meaningful Concepts
	A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
	Efficient Interest Group Discovery in Social Networks using an Integrated Structure/Quality Index
	Filtertechniken für geschützte biometrische Datenbanken

	Benchmarking & Simulation
	Benchmarking Hybrid OLTP&OLAP Database Systems
	Simulating Multi-Tenant OLAP Database Clusters
	SSD != SSD – An Empirical Study to Identify Common Properties and Type-specific Behavior
	HiSim: A Highly Extensible Large-Scale P2P Network Simulator

	Probabilistische und inkonsistente Daten
	Operators for Analyzing and Modifying Probabi listic Data - A Question of Efficiency
	Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases
	QSQL^p: Eine Erweiterung der probabilistischenMany-World-Semantik umRelevanzwahrscheinlichkeiten

	Maßgeschneiderte DB-Anwendungen
	Generierung maßgeschneiderter Relationenschemata in Softwareproduktlinien mittels Superimposition
	SIMPL – A Framework for Accessing External Data in Simulation Workflows
	Einsatz domänenspezifischer Sprachen zur Migration von
Datenbankanwendungen

	Dissertationspreis
	XML Query Processing in XTC

	Industrieprogramm
	Complex Event Processing und Reporting
	An Integrated Data ManagementApproach to Manage Health Care Data
	Involving Business Users in the Design of Complex Event
Processing Systems
	Fast and Easy Delivery of Data Mining Insights to
Reporting Systems

	Rund um OLAP
	Technical Introduction to the IBM Smart Analytics Optimizer for DB2 for System z
	Architecture of a Highly Scalable Data Warehouse Appliance Integrated to Mainframe Database Systems
	Interactive Predictive Analytics with Columnar Databases

	In-Memory und Cloud
	An In-Memory Database System for Multi-Tenant
Applications
	Available-To-Promise on an In-Memory Column Store
	Cloud Storage: Wie viel Cloud Computing steckt dahinter?

	Panel
	Panel: “One Size Fits All”: An Idea Whose Time Has Come and Gone?

	Demonstrationsprogramm
	Improving Service Discovery through
Enriched Service Descriptions
	StreamCars – DatenstrommanagementbasierteVerarbeitung von Sensordaten im Fahrzeug
	NexusDSEditor — Integrated Tool Support for the DataStream Processing Middleware NexusDS
	AIMS: An SQL-based System for Airspace Monitoring
	PROOF: Produktmonitoring im Web
	ProCEM Software Suite - Integrierte Ablaufsteuerung und -überwachung auf Basis von Open Source Systemen
	Demonstration des Parallel Data Generation Framework
	Measuring Energy Consumption of a Database Cluster
	Snowfall: Hardware Stream Analysis Made Easy
	MOAW: An Agile Visual Modeling and Exploration Tool
for Irregularly Structured Data
	Touch it, Mine it, View it, Shape it
	Metadata-driven Data Migration for SAP Projects

	Ende

