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1 Introduction

Contemporary working environment is characterized by its mobility. Increased number of
people does not have a single work place, they are often using a variety of even remote
equipment while requiring seemingly permanent contact among themselves and with cor-
porate headquarters. This trend can be easily seen also at universities, where information,
computational and other services are to be available for people moving literally around
the globe. Increased number of people is being equipped with mobile devices, ranging
from small personal “wearable” devices like mobile phones and PDAs (personal digital
assistants like Palm or recent iPAQ from Compaq) to more powerful systems like note-
books. All these devices can be in some way connected to other and increasing number
of them provide ways to be connected directly to Internet, using some wireless connection
system (infrared, GSM or similar cellular telephone systems, wireless network protocols
like IEEE 802.11b etc.). When using such devices, people expect to be given the same
range of applications regardless of actual place of use-they expect support for applications
mobility.

By mobile computing in the broad sense we will understand any computing activity when
either users, computing elements or the computational processes are not bound to one
physical place and change it while performing same or similar sets of actions. We particu-
larly add the mobility of the computational process to the common definition of mobile
computing, as this completes the symmetry of the picture of mobile computing landscape
and also allows us to find parallels between mobile computing infrastructure requirements
and the GRID systems build to support ubiquitous computing environment. Many interest
is currently given to “always on” systems, which are always connected to larger network. A
typical example of such system is a mobile phone, which can be used virtually at any place
and at any time for a duplex communication (provided the area where the user is moving is
covered by the appropriate signal) and is even able to support such a communication while
the user (and device) is moving. Another example may be a PDA with a communication
card or even a portable computer with a cell-phone card. Also, all "wearable computer
systems” [1] belong to this category. However, the utility of such systems is restricted by
their size (they have to be truly “wearable”) and by the capacity of the wireless link and
they are in no way a replacement of desktop or large systems.

On the other hand, the computing, memory and permanent storage capacity together with
the capabilities of graphical subsystem of contemporary notebooks leads to replacing desk-
tops with such inherently mobility supporting devices. Users are expecting to have the
same (or, in fact, even larger) set of applications running on notebooks. They are also
expecting that these applications behave the same way regardless whether they are con-
nected to high speed (usually 100 Mb/s Ethernet) network at office, to much less powerful
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network (using analog, digital or cable modems or more advanced systems like DSL or
ADSL, with capacity from tens of kilobits per second to megabits per second), to nar-
row band wireless network (using cellular phones) or even when temporarily disconnected
from the network. The development of applications and infrastructure supporting such a
behavior is very challenging and far from finished task [2].

There is third kind of mobility, which lies in the mobility of computing processes. Peo-
ple are using shared remote computing systems and they initiate large scale computations
which should not be completed at the same place they were started. Also, as people are col-
laborating, the computation initiated by one person may be taken over by a different one,
from different location, or they may be even “looking over” such a computation together
[3]. While currently this is mostly area of large scale scientific computing experiments, we
can envision a not so distant future where this will be used by much broader commercial
and entertainment community. Even now, this kind of problems is investigated within the
area of large web servers. These are usually realized as farms of computers where process-
ing of end user requests is moved from heavily to lightly loaded ones without any notice to
the user.

Small step further from the computational mobility leads us to the GRID systems. As
GRID we will understand (physically distant) computers connected via high-speed net-
work and behaving as one large scale ubiquitous computer [4]. The primary goal of GRID
research is creation of an illusion of a computer with (almost) unlimited power available
from any place-but this is in fact the same behavior (although differently stated) as we
expect from mobile computing support. With only mobility in mind we focus to access
and connectivity, while with GRIDs we are interested in broader set of features of the
whole system [5].

In this paper we will try to look at mobility from a slightly different point of view-we will
try to hide the effect of mobility and discuss basic infrastructure and its features necessary
to create an illusion that user or computation did not move. We will also show in more
detail how this relates to the GRID technology. Much more ambitious approach to the
pervasive computing can be found in [6].

2 Infrastructure for mobility

The restricted mobility we are interested in covers situations where end user moves from
one location to another with the following expectations:

1. She will be able to work the same way, with the same applications, on all places.

2. She will be able to work while moving; however, shoe does not expects synchronous
communication (like event notification) to occur ’on the move”.

3. She will see no substantial difference on her work with respect to the quality of con-
nection (i.e., she expects the same application behavior regardless of the actual net-
work throughput).

The first and second expectation is trivially satisfied if all applications are local on the
portable device and do not use any external data. Also the third expectation can be trivially
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satisfied if the “usual” behavior is based on the lowest available (e.g., 9.6 kb/s) transmis-
sion rate. We are, however, not interested in such trivial solution as it severely restricts
potential utility of mobile devices-the collaboration between more people or between one
person and more computing systems is limited (but could be very important, as mobile
phones are perfect examples of such systems).

Let our ”base” system be a notebook connected to high speed network at users’ office
where applications and especially data are shared among different users and systems (ei-
ther as a result of licensing policy or due to the simplicity of support). The environment
we are moving in is “ordinary” Internet, i.e., we will not deal with virtual private networks
or other closed systems. On the contrary, we are interested in mobility to areas where
user can expect only publicly available services (no private pre-build systems should be
considered).

2.1 Connection

The first problem encountered when moving to a new location lies in establishing a con-
nection to the Internet and through it to the "home” servers and systems. The situation is
far more complicated than just finding an Ethernet or phone outlet and use it to connect the
computer to Internet. While increased number of hotels offers direct Internet connectivity,
and there are companies that provide global Internet connectivity, the problem lies in the
change of mobile system identity. Each device connected to the Internet has it unique iden-
tifier, the IP number. However, the currently used Internet Protocol (IPv4) does not have
provision for a service known from advanced telephone systems, the number portability”,
which means the actual number is a function of place and often also of time (in systems
like DHCP with dynamically assigned addresses). Unfortunately, many simple authenti-
cation systems still use the IP number as identification of the host accessing a particular
service. Large database providers (e.g., in university environment, many bibliography pro-
viding databases) usually license the use to a predefined set of IP numbers. This may not
pose a problem within the organization (even with the local use of DHCP protocol, it is
sufficient to specify all the dynamically assigned IP numbers), but it leaves out all users
outside the licensee premises.

Firewalls, widely used for security reasons, provide similar threat to the mobile users.
Firewalls are set to distinguish between “insiders” and “outsiders” (those behind and after
the firewall) and they do not grant outsiders” the same access rights to internal services.

Another example are e-mail systems (based on SMTP), which are increasingly set up in
such a way as to accept mail for outside delivery from only pre-defined set of machines,
specified again by their IP numbers (otherwise they can be easily used to deliver spam
messages). A mobile user can thus be easily disconnected from her mailing system and
may not be able to send e-mail completely or at least not under her usual identity (different,
usually local TP connectivity provider related identity will appear in the "From:” field).
While the consequences of the former are obvious, even the later may prohibit a use of e-
mail, as many electronic e-mail based conferences identify authorized users by the "From:”
e-mail field.
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A simple solution to both problems lies in authentication which does not rely on IP num-
bers nor simple notion of “outsiders” and “insiders”. A virtual secure channel must be
established between the mobile device and the service providing system, based on some
authentication protocol, and access to services should be granted to only authenticated sys-
tems or persons. In fact, a tunnel between mobile device and service provider (this could
be a firewall granting access) passing through the whole Internet will serve this purpose.
The SSL (Secure Socket Layer) is the most prominent example, allowing a secure con-
nection between web browser and web server regardless of their respective placement (the
authentication uses a shared secret, i.e., password, to authenticate the user). In the UNIX
world, ssh (secure shell) serves the same purpose.

More advanced systems, based, e.g., on the IPv6, does have support for IP number porta-
bility. In these systems, instead of authenticating to the services, the user authenticates her-
self to the network and, when the authentication is successful, is given the same identifier
which can be directly used by higher levels for user authentication. While very perspective,
such systems are not yet widely available on the Internet.

2.2 Application support

Providing local copies of applications is not enough to fulfill the same application” ex-
pectation. While many applications are compact and self-contained (e.g., text processors,
spreadsheets, ... ), increased number of applications has client and server sides. And even
the compact applications usually work with files or other potentially shared data obejcts.
While the client side can be easily copied, this can not be done with the server side without
additional support. Let as consider the following client-server applications:

1. Database system.
2. Web server and browser.
3. Distributed filesystem.

All these three examples have several important features in common:

1. The mobile device usually does not have enough capacity to store server side of the
whole application and associated data. There also could not be enough computing
power to support such complex applications.

2. There may be connections with other systems, e.g., there are more than just one web
server and the relevant information may be dispersed among them. Also, the database
may not be compact, and the same could apply to any advanced distributed filesystems.

3. The security implications are too serious. Even if the capacity allows, copy of corpo-
rate data on mobile device poses a serious security risk. This risk can be completely
removed only be forbidding the remote access, but a usual trade-off between utility and
security requires only necessary data to be copied (made available), as this approach
provides more control over the risk if the mobile device is lost or stolen.

4. The synchronization problem. Whenever a change in any stored data is made, user
expects to have such change propagated and available to other users of the system.

5. Some server functionality must be presented on the mobile system if we have to
support work in disconnected state.
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One possible solution of this problem may be based on creating applications that are
mobility aware, i.e., which detect the connection state and adapt to its changes [2]. This
solution has its own drawbacks, most serious being the necessity to create specialized
applications-the solution highly discouraged by software engineering recommendations.
Better approach is based on separation, where only some subsystems are mobility aware
and the rest simply relies on correct behavior (and extended semantics) of such subsystems.

We can use a cache model to support such functionality. This is relatively easy for state-
less servers used in, e.g., NFS distributed file system or http protocol, where caches are
already widely used to enhance their functionality. However, the mobility aware cache
has a different semantics. The ~ordinary” cache works as a proxy, i.e., it performs some
operations and/or actions on behalf of the user (towards the server) or on behalf of server
(towards the user). If the cache cannot fulfill the requirement, it simply sends it to the other
side that should be able to perform the desired action. No support for disconnected state is
provided, nor the caches adapt (beyond the obvious adaptation of the underlying transport
protocol like TCP/IP) to changes in network throughput.

On the other hand, the mobility aware cache must be able to work satisfyingly in the
disconnected state and must be able to adapt to the changes in connection quality. The
expected behavior should be supported by the following functionality:

1. Pre-loading data which could be used when the system is in disconnected state. This
can be either automatic (based on user behavior and habits observed in the past) or
manual (user must specify which data she probably will need).

2. Journalling (logging) all changes made to the data in cache when in disconnected state.
The local cache state should change as if these changes were propagated to the server.
System could be optimized not to perform redundant or useless operations when re-
connected (e.g., user creates a temporary file which is later on deleted-all operations
on such file, including its creation and deletion, are in fact null operations and should
not be repeated on the server). The journalling protocol should be network savvy, i.e.,
it should transfer as few data as possible. This is already default operations in database
journalling systems, but should be extended to other client-server system (e.g., in the
filesystem situation, after editing a large file transmission of actual operations per-
formed and repeating (“replaying”) them on the file stored on the server is usually
much more efficient than transmission of the whole file).

3. Prioritizing the logged operations when reconnected. Again, let us assume the filesys-
tem cache-operations on user own (non-shared) files should have the lowest priority
for synchronization, while any changes on shared files should be propagated as soon as
possible. The prioritizing scheme should include both directions of the synchroniza-
tion and propagate the most important changes first. This will usually require some
manual support and also an estimation of time the synchronization would take (based
on measured or reported (see GRID information service below) available network
bandwidth).

2.3 Connectivity illusion

Mobility aware caches inserted between clients and servers create an illusion of permanent
connectivity. In a properly configured system, there is no way how the user can distinguish
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on-line work from the off-line one for all applications that do not require synchronous
(real-time) communication. In fact, the cache system can increase the perceived efficiency
of application, as all operations are performed locally (on a mobile device) and the re-
sponse time does not rely on the state (connected or disconnected) nor its quality (e.g.,
low or high speed network connection).

Electronic mail

E-mail is a typical representative of asynchronous communication system, which has also
many features of database and document delivery systems. The basic scenario is as follows.

All incoming mail is stored in one mailbox on a mail server. The same mail server is used
to store all personal mailboxes, which are created and updates as a consequence of user
initiated actions. User accesses mailboxes on the mail server either directly or via POP3
or IMAP protocols. For the former, she simply logs into the mail server (using telnet or
ssh protocol) and uses some local mailing program (like elm or pine) to read, write, and
delete individual mails and to manipulate whole mailboxes. Sometimes, she uses IMAP
protocol to access incoming mail and to work on it locally. The main problem with IMAP
(and to even more extent with the POP3) protocol is its inability to support both local
and server based mailboxes [7]. Using IMAP, user can download a copy of any mailbox
to her mobile device, to read and write messages and to send them even in disconnected
state (the outgoing mail is simply stored by what we can consider a simple mail-cache
and forwarded to mail server when reconnected). However, any changes on a mailbox
are not directly propagated to the server, no synchronization between the locally changed
mailboxes and the server is provided. It is naturally possible to copy individual mailboxes
back to the server, but this approach has following drawbacks:

1. It assumes that user accessed the mail server via the mobile device only. If user (or
some automatic script on the server) modified any mailbox, the changes are lost.

2. The incoming mailbox cannot be copied back as there could be new mail that would
become overwritten.

3. The changes on individual mailboxes are usually very small compared to their total
size. Transmission of whole mailboxes is therefore very inefficient and time (and
money) consuming.

To support the mobile e-mail system the IMAP (or similar) protocol should be enhanced
with the cache-like behavior discussed above. At the beginning of use, the cache will
store all (relevant) personal mailboxes including the incoming one. Instead of making a
local explicit copy, all mailboxes will be simply cached. The content of mailboxes can
be changed only via a predefined API which understands their semantics and which is
responsible for logging all actions taken. When the system is on-line, all changes are
directly propagated to the server and replayed there to achieve real-time synchronization.
In disconnected state, the changes are performed locally and the log of all changes is
stored. After the reconnection, the log file is transferred (usually in chunks whose size is
a function of actual network throughput) to server and there replayed to synchronize the
server with the local state. Simple priority scheme will flush out the outgoing mail, then
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load new incoming mail (or vice versa) and only afterwards will synchronize individual
personal mailboxes. As only log file is actually transferred, the amount of transmitted data
is minimized. The protocol can be easily enhanced to support compression between cache
and server, reducing further the amount of data transmitted. Having the mailboxes in cache
only secures that no unnoticed changes are made (e.g., editing the appropriate file with a
file editor) which would not be propagated to server.

Connection between cache and server could be authenticated by any method (symmet-
ric, like Kerberos, or asymmetric, like PKI, cryptography protocols can be used and they
can even be replaced without any visible change to the application behavior), the connec-
tion itself can be tunneled via some secure channel and can even pass through firewall
(the authentication protocol could have several phases, the first one being responsible for
authentication to a firewall).

Filesystems

Filesystems provide access to files, data objects that are manipulated by the majority of
application programs. Network and distributed filesystems provide access to files stored
on remote server(s), using cache as a tool to increase user perceived efficiency of the
filesystem. However, these caches do not support work in disconnected state nor they
directly support change of IP identity (this is especially true for the common NFS protocol,
which uses IP based authentication). The filesystem caches should be enhanced to support
mobility by allowing IP-independent authentication and support for work in disconnected
state.

With the increased interest in journalling filesystems (like XFS from SGI or ReiserFS
in Linux) it will be rather straightforward to use the journalling facility in filesystem
caches, too. Any operation on a file is logged and replayed on the server whenever the
server becomes available. The log entry is cleared when server modification is confirmed
(committed). The log file can be continuously optimized and redundant (or null) operations
can be removed (we already presented an example of creation and subsequent deletion
of a temporary file, but this also includes opening a file in read-only mode, opening in
read/write mode without actually modifying the content of the file etc.). Entries in the
cache log file can be also prioritized and when the mobile device is reconnected, the
filesystem changes can be replayed in different order then they actually occurred (naturally,
the overall semantics must not be changed). It is also possible to enhance the server log
behavior in such a sense that all the files stored locally are known to the server and any
changes on the server (on any of these files) are kept in a permanent log (a kind of a copy
of internal log) and this log is replayed on the mobile device. This way the amount of data
transmitted between server and client is minimized.

The authentication of a local filesystem cache should fulfill the same conditions as dis-
cussed above for the e-mail cache, in particular it should not depend on actual IP of the
mobile device. Again, tunnels and staged authentication should be used to provide access
through firewalls.
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2.4 Discussion

Infrastructure support for “always-on” mobility is complex and requires deep changes both
in protocols and applications and also in hardware used to support them. On the other
hand, support for the after move” mobility can be based on an illusion of permanent
access, and this illusion can be created using system of mobility aware caches. These
caches should provide an API that mimics the API of the remote server. All operations
should be logged and the persistent log replayed on the server after the connection is
established. The log entries can be optimized (redundant and null operations could be
removed) and they also can be prioritized, i.e., the order they are executed on server is
different from the order they were issued locally. Further optimization can be achieved
sending compressed data between cache and the server. The cache can also take care of all
the necessary security, from authentication to the server (or to the firewall(s)) to providing
a secure communication layer.

Access to the cached data objects is allowed through the cache API only, which means
no modification can go unnoticed. As all the mobility awareness is delegated to the cache,
unmodified local (client parts of) applications can be easily used without any changes. The
server side may not be modified, either, as the cache logs the user issued commands and
can thus behave in exactly the same way as the user. Naturally, modification of servers
and making them aware of the existence of the cache system may further enhance the
efficiency (as was discussed within the filesystem support framework).

More advanced systems will require some interaction between caches to provide global
priority scheme and to avoid multiple authentication requests.

3 GRIDs and mobility

GRIDs are built with the purpose to support collaborative work and to enhance sharing
and combination of resources available on Internet. Providing power to tackle the most
challenging data storage and computing requests, GRIDs can be also seen as a computa-
tional infrastructure of tomorrow. Like nobody is building its own electric power plant and
uses the outlets available virtually in any place, GRIDs will provide us with similar access
to almost unlimited (and uninterrupted) computational and data storage power. In order
to fulfill this expectation, research in GRID development shares many problems with the
support for mobility:

1. Access to GRID should be ubiquitous, from any place. While within GRIDs this
requirement reflects the support for collaborative work (you do not know in advance
where will be people you would like to work with), the resulting infrastructure is
perfectly suitable to support users’ mobility as well.

2. The computational processes on GRID could migrate (either as a consequence of local
failure, expiration of local authorization or due to limited resources available on a
particular place) and user is expected to keep track of all such moves. Moreover, it
is expected that a continuous flow of data (e.g., for a real-time visualization) could
go to one or even more users regardless of the actual placement of processes creating
the flow. This is a symmetric situation to the end user mobility support, where the
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computation (e.g., servers) are immobile but users move, and it is not surprising that
the underlying support should be very similar.

3. GRID users are expected to move and to have access to ongoing computation after
(and more often even during) the relocation. This is especially important when large
scale computing is performed (which could last several days or even weeks) and users
must observe the progress and to modify parameters influencing the computation-the
so called computational steering. Here, the GRID and mobility requirements are the
same.

4. GRID systems are supposed to provide information about available resources (capac-
ity of computational and storage servers, network throughput etc.) and the state of the
GRID itself. Mobile users can use the same information to optimize use of network,
access to some resources (like availability of a neighborhood service server) and also
for resource discovery (e.g., access to local printers).

GRID computing goes beyond simple mobility support. It is focused on large-scale re-
source sharing and new distributed applications. The "GRID problem” is defined as flexi-
ble, secure, and coordinated resource sharing among dynamic collections of individuals,
institutions, and resources” [5]. However, as shown above, the challenges encountered
when providing such environment, especially authentication and authorization, resource
access and discovery are in principle equivalent (even if on larger scale) to those known
from the mobility support requirements.

GRID aware authentication protocol (e.g., GAA) can be easily used by mobile systems
to authenticate to their home services. Tunneling through firewalls, inter-domain security
issues are also common both for GRID and mobile environment.

GRID file transfer protocols (e.g., GRIDftp) can be used to transfer data between the
immobile server and the mobile device. The GRID information service (e.g., MDS) can
be used to find the closest resource (e.g., printer) or can provide information necessary to
estimate file transfer times.

Virtual organizations introduced within the GRID community [5] can be understood as
models of institutions together with their mobile users-they spans or shrinks in time as
mobile users move.

4 Conclusion

Powerful mobility support can be provided combining IP number independent authenti-
cation and authorization and the mobility aware cache system. This model uses illusion
of a permanent connection to allow applications work seemingly the same way (from the
user point of view) regardless they are on-line or off-line. The model requires powerful
mobile devices like notebooks with sufficient storage and computing power to create and
maintain such an illusion. It is well suited for applications and systems which are or can be
understood as asynchronous, like e-mail messaging systems, access to databases (at least
when there is no real-time requirement) or filesystems (again, when delayed file sharing is
acceptable). The further advantage of this model is its support of unmodified applications-
the caches can hide all the mobility dependency from both the client and server side of
an application.
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The model is not suited for applications requiring synchronous communication, where the
real-time behavior is imposed. It is, however, expected that increasing number of even such
applications will include also asynchronous alternatives. Telephone is a premium example
of real-time communication, but with the invent of memo-boxes the asynchronous com-
munication is also supported. Another example is scientific visualization, where we can
see a move from direct interactive graphical interactions (they are extremely demanding
on network bandwidth and graphical subsystem capabilities) to video streaming, which is
much less interactive but can be viewed from almost anywhere.

GRID computing, while having different purpose and heading from different direction,
shares many infrastructure related challenges with the mobility support. Combination of
GRID and mobility research, especially at the middle-ware layer, may lead quickly to new
and more usable systems.
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