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Abstract: XQuery 1.0 and its sister language XPath 2.0 have set a fire underneath
database vendors and researchers alike. More than thirty commercial and research
XQuery implementations are listed on the XML Query working group home page.

Galax [FS] is an open-source, general-purpose XQuery engine, designed to be
complete, efficient, and extensible. During Galax’s development, we have focused on
each of these three requirements in turn, while never losing sight of the other two.
Our success or failure in satisfying these requirements depends entirely on the design
and implementation of Galax’s architecture. We describe Galax’s architecture in detail
and identify several key principles that guide our decisions on Galax’s design and
implementation.

1 Introduction

For the past four years, we have been actively involved in defining XQuery 1.0 [XQ04], a
query language for XML designed to meet the diverse needs of applications that query and
exchange XML documents. XQuery is a strongly-typed, compositional, and functional
language. XQuery is also a good “XML citizen”—it supports all of XML 1.0 [XML04]
and XML namespaces [XNS04], and its type system is based on XML Schema 1.0 [XS04,
XSD04]. Several books [Bru04, Kat04] and numerous articles provide excellent introduc-
tions to XQuery 1.0.

XQuery and its sister language XPath 2.0 are designed jointly by members of the World-
wide Web Consortium’s XSLT and XML Query working groups, which includes con-
stituencies such as large database vendors, small middle-ware start-ups, “power” XML-
user communities, and industrial research labs. Each constituency has produced several
XQuery implementations, which is unprecedented for a language that is still not standard-
ized. A current listing of XQuery implementations is on the XML Query working group
home page (http://www.w3.org/XML/Query).

Our implementation of XQuery 1.0, Galax [FS], is an open-source, general-purpose XQuery
engine, that has evolved to be complete, efficient, and extensible. Galax began as a plat-
form for validating the XQuery formal semantics [XFS04], which required implement-
ing the complete processing models for XML documents, XML Schema documents, and
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XQuery programs1. For this reason, our first and only requirement for Galax was com-
pleteness. Completeness distinguishes Galax from most other research implementations
of XQuery, which focus on novel query-evaluation algorithms and document representa-
tions [J+03] or that utilize existing database technologies.

Building a complete XQuery implementation has yielded several unexpected benefits.
First, we were able to use Galax in applications that had non-trivial query requirements
and quickly develop a user base that depended upon a complete XQuery implementa-
tion [VFS04]. Interestingly, our early users never demanded that Galax be the fastest
implementation, but instead required that queries always yield the right result. Second,
Galax is an ideal environment in which other researchers can evaluate their own tech-
niques for query analysis and evaluation, document storage and indexing, etc., without
having to build a complete implementation themselves. Third, we have been able to mea-
sure, identify, and address actual sources of inefficiency in a working query engine. For
example, moving from a fully interpreted evaluation strategy to a semi-compiled strategy
improved Galax’s performance by more than one order of magnitude [RSF04].

Completeness is the foundation of Galax, but as our actual and potential user base has
grown, Galax’s requirements have expanded to include efficiency and extensibility. As
users become familiar with XQuery, they write increasingly complex queries that may
include multi-way joins and re-grouping of document content, which require non-trivial
evaluation algorithms for acceptable performance. Current research in XQuery evaluation
focuses on applying known and new techniques for evaluating join and group-by queries
efficiently [MHM03, MHM04]. Galax incorporates and contributes to this research area.

Users always surprise implementors by using their tools in unexpected ways. Galax’s users
are no exception. Researchers often want to capture the output of a particular processing
phase, for example, a document after schema validation or a query after static typing,
and then consume that output in their own tools. For this reason, almost every phase in
Galax can consume and produce a particular representation of a document, query, or type,
making it possible for the architecture to be used by others in novel ways. Other exam-
ples of extensibility include adding new query rewriting rules and providing alternative
implementations of Galax’s data model.

Previous papers on Galax focus on specific technical issues [VFS04, MS03, FHM+04,
RSF04]. In contrast, this paper describes Galax holistically. In particular, we identify the
design and implementation principles that make it possible to satisfy simultaneously the
completeness, efficiency, and extensibility requirements, how these principles are applied,
and how they help satisfy our requirements. These principles include:

• The Galax architecture strictly separates the processing models for documents, schemata,
and queries;

• Each processing model is based on one or more formal specifications;

• Each phase within a processing model is strongly typed with respect to the represen-
tation of a document, query, or type it consumes and the representation it produces.

1The first IPSI XQuery processor [FGO02] was also designed for this purpose.
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These principles are good engineering and applying them consistently results in a flexible
architecture that is both a practical tool for end users and a viable experimental platform
for other researchers.

In the rest of this section, we give usage scenarios that illustrate each of the three require-
ments and the technical challenges in satisfying them. Sections 2 gives an overview of
Galax’s architecture and describes the XML and XML Schema processing models in de-
tail. The XQuery processing model is described in Section 3. Throughout, we identify
how the architecture meets each of our three requirements. In Section 4, we put all the
pieces together and share some of the lessons that we have learned in building a complete
XQuery implementation.

1.1 Completeness

Satisfying the completeness requirement for an expressive and sometimes complex lan-
guage like XQuery poses many challenges. XQuery’s numerous features include, for
example, functions, modules, and XML Schema types. Even implementing basic path
expressions completely and correctly is a challenge. For example, below is a simple path
expression that selects all books in a catalog that have a publication date greater than 2000:

$cat/book[@pubdate > 2000]

This expression has a deceivingly complex implicit semantics. First, whenever an arith-
metic or comparison operator is applied to a node, such as the pubdate attribute, the node
is atomized, which extracts its scalar or atomic content. Second, comparison operators dis-
tinguish between node content that has been validated against an XML Schema type and
that which has not. Assuming that the pubdate attribute is a validated xs:date value,
comparing it to an integer value raises a type error, however, if the pubdate attribute
is unvalidated, then its text content is cast to an integer before comparison. Third, when
comparing two numeric values, implicit rules of type promotion and casting are applied.
For example, when comparing a decimal and a float, the decimal is promoted to a float.
Last, all comparison operators are existentially quantified, so if multiple atomic values are
compared, then the predicate is true if any pair of values satisfies the comparison. For ex-
ample, if pubdate contained multiple integer values, then the comparison is true if any
one of those values is greater than 2000.

XQuery’s implicit semantics makes querying XML documents easier for the user—he
need not worry about whether an input document is validated or not, or whether a partic-
ular element occurs zero or more times. A complex implicit semantics, however, makes
implementation more challenging. XQuery’s implicit semantics is handled during query
normalization, which is described in Section 3.

1.2 Efficiency

XQuery supports recursive functions and is therefore Turing complete, so identifying ef-
ficient evaluation plans for an arbitrary XQuery program is as difficult as optimizing a
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for $c in distinct-values($auction/site/people/person/profile/interest/@category)
let $people :=
for $p in $auction/site/people/person
where $p/profile/interest/@category = $c
return
<personne>
<statistiques>
<sexe> { $p/profile/gender/text() } </sexe>
<age> { $p/profile/age/text() } </age>
<education> { $p/profile/education/text() } </education>
<revenu> { fn:data($p/profile/@income) } </revenu>

</statistiques>
</personne>

return <categorie><id>{ $c }</id>{ $people }</categorie>

Figure 1: Example of grouping and element construction in XMark Benchmark Query 10

program in a general-purpose programming language. To date, database researchers have
focused on efficient evaluation of the subset of XQuery that excludes functions. This sub-
set, however, is as expressive as SQL and includes multi-way joins and group-bys, possibly
over multiple documents.

Unlike in SQL, in which joins and group-by expressions can be identified syntactically,
syntactically distinct expressions in XQuery may express semantically equivalent joins or
group-bys. For example, the query in Figure 1 is a fragment of Query 10 from the XMark
benchmark suite [SWK+02]. The XMark benchmark suite contains queries about auction
items, bidders, and bids. The expression in Figure 1 re-groups all bidders in an auction by
the categories in which they have bid.

In a naı̈ve evaluation of the query in Figure 1, the input document might be scanned once
for each category value. Efficient evaluation of this query requires first recognizing that
the nested FLWORs express a group-by of people on categories and then producing an
un-nested evaluation plan in which each person in the input document is examined once
to determine the category groups to which the person belongs. The query compilation and
optimization steps that lead to an unnested evaluation plan are described in Section 3.

1.3 Extensibility

One requirement that we did not anticipate but that has become critical to Galax is exten-
sibility. In particular, Galax’s abstract tree data model supports both real and virtual XML
data sources. Galax provides two built-in implementations of the abstract tree data model:
one that supports random access to XML documents stored in main memory and one for
documents stored in Galax’s secondary storage manager, called Jungle [VFS04]. Both
these implementations can be used by applications that process native XML documents.

One custom implementation of the tree data model supports access to non-XML, semi-
structured data sources. The data sources are described by PADS [FG03], a declarative
data-description language that specifies ad hoc data formats, such as COBOL copy books
and variable-width records, among many other formats. From PADS descriptions, the PADS

compiler generates libraries and tools for manipulating data in the ad hoc format, including
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207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 -
anx-lkf0044.deltanet.com - - [15/Oct/1997:21:13:59 -0700] "GET / HTTP/1.0" 200 3082
152.163.207.138 - - [15/Oct/1997:19:17:19 -0700] "GET /asa/china/images/world.gif HTTP/1.0" 304 -

Figure 2: HTTP Common-Log Format Records

<http-clf>
<host><resolved>207.136.97.49<resolved></host>
<remoteID>unauthorized</remoteID>
<auth><unauthorized/></auth>
<mydate>15/Oct/1997:18:46:51 -0700</mydate>
<request>
<meth>GET</meth>
<req_uri>/turkey/amnty1.gif</req_uri>
<version>1.0</version>

</request>
<response>200</response>
<contentLength><unavailable/></contentLength>

<http-clf>

Figure 3: HTTP Common-Log Record in XML

parsing routines, statistical profiling tools, and an implementation of Galax’s tree data
model. The PADS compiler also supports a canonical mapping from any PADS specification
into XML Schema. This mapping is quite natural, as both PADS and XML are languages
for describing ordered, semi-structured data.

PADS, for example, can easily specify the HTTP common log format (CLF), which has
both syntactic and structural variability. Figure 2 contains three example HTTP CLF
records. From the PADS description of these records, we can derive a virtual XML repre-
sentation. Figure 3 contains the virtual XML representation of the first record in Figure 2.
The PADS description provides meaningful names for missing fields, e.g., “-” may denote
an unauthorized user or an unavailable content length, and by mapping virtually to XML,
we can examine and query those values. In Figure 3, we see that in the first CLF record,
the user was unauthorized and the content length unavailable. A user of the PADS-Galax
data model can then pose queries like the following, which selects the resolved hosts of
CLF records whose content length is unavailable:

$pads/http-clf[contentLength/unavailable]/host[resolved]

Galax’s extensible data model makes it possible for PADS users to perform simple querying
tasks that are tedious to express in an imperative language and to evaluate those queries
without materializing their non-XML data sources in XML. Galax’s tree data model is
described in Section 2.1.
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2 Galax’s Architecture

Galax’s architecture is closely aligned with the XQuery processing models, which are
defined in several formal specifications. From the designer’s perspective, this alignment
guarantees that the Galax architecture implements the entire language, and from the imple-
menter’s perspective, this alignment facilitates identifying the modules that require update
when the formal specifications change.

Figure 4 depicts the three mutually dependent processing models: XML document pro-
cessing, XML Schema processing, and XQuery program processing, and their relation-
ships. Processing models produce various representations of documents, schemas, and
queries, and their phases relate these representations. For example, XML Schema process-
ing takes XML Schema documents as input and produces a representation of schemata that
is used by document validation, which relates schema types to XML values, and one used
by static typing, which relates schema types to query expressions.

Satisfying the completeness requirement essentially forced us to design each processing
model top down and and to implement each one from scratch. In particular, we did not
begin with an existing technology, such as a relational storage system or an object-oriented
query engine, and implement bottom-up, centered on that technology. Because we had to
implement each processing model completely, we chose the simplest and most expedi-
ent implementation strategy and focused on designing the most semantically simple and
transparent representations of queries, documents, and types.

The remainder of this section examines each processing model and their phases in detail
and describes several of Galax’s representations of queries, documents, and types.

2.1 XML Document Processing Model

Figure 5 depicts Galax’s XML processing model. This processing model takes native
XML documents as input and produces native XML documents as output, and it imple-
ments four related specifications: XML 1.0, the XML Infoset [XIn04], the post-schema
validated infoset [XS04], and the XSLT 2.0 and XQuery 1.0 Serialization [XSe04]. Its
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Figure 5: XML document processing architecture

phases consume and produce two representations of documents: an XML token stream,
which provides sequential access to a document, and an instance of Galax’s abstract tree
data model, which provides random access.

The “in-bound” phases include document parsing, validation, and importing a validated
document into the tree data model. The “out-bound” phases are the duals of the in-bound
phases: exporting a data-model instance, type erasure, and document serialization. Note
that document validation is a required phase — for well-formed documents with no asso-
ciated schema, validation assigns default types. Importing into the tree data model is an
optional phase, however, because queries sometimes can be evaluated directly on a typed
XML token stream.

XML tokens are similar to SAX events but unlike SAX events, which are typically im-
plemented as call-back functions, XML token streams are consumed by phases that pull
XML tokens on demand from previous phases. Figure 6 contains a document fragment
and Figure 7 depicts its representation as a typed XML token stream after validation. A
startDoc token has no arguments, whereas a startElem token takes the resolved
qualified name (QName) of the element and a set of attributes. For example, the start-
element token corresponding to the ns:book element contains the resolved QName
ns{http://book.xsd}book and one pubdate attribute. Note that the representa-
tion of a resolved QName contains a prefix, a URL, and a local name. This representation
is independent of the scoped namespace declarations in the original document, which per-
mits the query processor to treat nodes and QName values as context-independent values.

Validation takes an untyped XML token stream and adds type annotations and typed
atomic values. Default types are added for documents that have no associated schema.
In Figure 7, the node’s type and its typed atomic value are in bold. For example, the
pubdate attribute has type xsd:integer and its typed value is the integer 1994. A
typed XML stream is consumed directly by the evaluation phase of the XQuery processing
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<ns:catalog
xmlns:ns="http://book.xsd">
<ns:book pubdate="1994">
<title>TCP/IP Illustrated</title>
<author>Stevens</author>

</ns:book>
...

</ns:catalog>

Figure 6: Example XML document fragment

startDoc
startElem ns{http://book.xsd}:catalog {} element(ns:catalog) ()
startElem ns{http:...}:book {({}:pubdate,"1994",xsd:integer,xsd:integer(1994))}

element(ns:book) ()
startElem empty{}:title {} element(empty:title) xsd:string("TCP/IP Illustrated")

text ("TCP/IP Illustrated")
endElem
startElem empty{}:author {} element(empty:author) xsd:string("Stevens")

text ("Stevens")
endElem

endElem
...

endElem
endDoc

Figure 7: Representation of fragment as typed XML token stream

model and/or by a data-model import phase, which produces an instance of the abstract
tree data model.

Figure 2.1 gives the functional interface for the abstract tree data model. Each node in
the tree data model (document, element, attribute, and text) have accessors that return its
name, base URI, type, typed value, unique node identifier, and global document order.
The axis accessors return cursors of nodes in document order, e.g., the children acces-
sor returns those nodes directly accessible from a node. Like XML token streams, node
cursors are materialized on demand when a phase consumes a node from the cursor. This
permits an implementation of the abstract data model to materialize nodes lazily. The
parent, children, and attributes accessors are virtual, meaning that an imple-
mentation must provide them. The other four axes have default implementations that may
be overridden.

The abstract tree data model is the minimum interface necessary to support XQuery, and
this minimality helped us easily meet the completeness and extensibility requirements.
Other implementations of XQuery have focussed on more complex data-model interfaces
by providing, for example, special-purpose axis indices. Special-purpose indices can im-
prove performance, but also propagate complexity throughout the engine, because the
query engine must be customized to take advantage of them. Moveover, complex data-
model interfaces make it more difficult for others to provide their own implementations,
which limits extensibility.

The XQuery processing model may consume either or both of the XML token stream or
tree representations during evaluation. The representation chosen depends in part on the
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virtual node : object inherit item
(* Infoset accessors *)
method virtual name : unit -> atomicQName option
method virtual base_uri : unit -> atomicString option

(* PSVI accessors *)
method virtual type : unit -> atomicQName
method virtual typed_value : unit -> atomicValue cursor

(* Node identity *)
method virtual nodeid : unit -> Nodeid.nodeid
method virtual docorder : unit -> Nodeid.docorder

(* Axes *)
method virtual parent : unit -> node option
method virtual children : unit -> node cursor
method virtual attributes : unit -> attribute cursor
method descendant_or_self : unit -> node cursor
method descendant : unit -> node cursor
method ancestor_or_self : unit -> node cursor
method ancestor : unit -> node cursor

Figure 8: Abstract tree data model
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Figure 9: XML Schema processing architecture

query optimizer’s ability to determine whether a query expression can be evaluated effi-
ciently on an XML token stream or whether the tree data model is necessary. Regardless
of the query evaluated, large XML documents (> 100MB) are typically imported into the
tree data model off-line and stored in Jungle. Smaller documents are typically imported
into the tree data model during evaluation if query evaluation requires full random-access
to the document.

2.2 XML Schema Processing Model

Figure 9 depicts Galax’s XML Schema processing model. This processing model takes
XML Schema documents as input and produces two representations of the schemata,
which are used by the XML document and XQuery processing modules. Although this
processing model has the fewest phases, it implements some of XQuery’s most com-
plex semantics, in particular, the formalization of XML Schema defined by Siméon and
Wadler [SW03]. The static type system defined in the XQuery 1.0 Formal Semantics [XFS04]
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<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://book.xsd"
xmlns="http://book.xsd">

<xsd:element name="catalog" type="CatalogType"/>
<xsd:element name="book" type="BookType"/>
<xsd:complexType name="CatalogType">
<xsd:sequence>
<xsd:element ref="book" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<xsd:group name="BookGroup">
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="author" type="xsd:string"/>

</xsd:sequence>
</xsd:group>
<xsd:complexType name="BookType">
<xsd:sequence>
<xsd:group ref="BookGroup"/>

</xsd:sequence>
<xsd:attribute name="pubdate" type="xsd:date"/>
<xsd:attribute name="isbn" type="ISBNType"/>

</xsd:complexType>
<xsd:simpleType name="ISBNType">
<xsd:restriction base="xsd:string"/>

</xsd:simpleType>
</xsd:schema>

Figure 10: Example XML Schema

is based on this formalism and is implemented in the static typing phase of the XQuery
processing model.

XML Schema has an XML syntax, so like any other XML document, the schema is parsed
yielding an XML token stream. The schema-import phase takes the XML token stream,
checks for syntactic and semantic correctness, and if the schema is valid, produces the
abstract-syntax tree of the XQuery types that correspond to the schema.

Like expressions in the XQuery language, type expressions in XML Schema have an im-
plicit semantics. Type normalization takes an XML Schema type and makes the implicit
semantics explicit in the simpler, orthogonal XQuery Core Type language. The orthog-
onality of the Core Type language simplifies static typing, because unique types can be
computed for each expression.

To illustrate type normalization, Figure 10 contains a simple XML Schema document,
and Figure 11 contains the corresponding Core type after normalization. The highlighted
reference to the group BookGroup in the complex type BookType is expanded in the
normalized type, because groups are purely syntactic constructs. The distinction between
complex and simple types (e.g., ns:CatalogType and ns:ISBNType) disappears in
the Core Type language: All types have a name, a derivation from another named type,
and a content type expression. The restrictions placed by XML Schema on type content
also disappear in the Core Type language. The content type expression is a regular tree ex-
pression over node types, which are combined with the sequence (,), choice (|), repetition
(*), and interleaving (&) operators.

During static typing, expressions are annotated with a Core type, because it is a useful
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declare namespace xs = "http://www.w3.org/2001/XMLSchema";
declare namespace ns = "http://book.xsd";
declare namespace empty = "";

declare element ns:book of type ns:BookType;
declare element ns:catalog of type ns:CatalogType;

declare type ns:CatalogType restricts xs:anyType {
element ns:book*

};
declare type ns:BookType restricts xs:anyType {
attribute empty:pubdate of type xs:date ? &
attribute empty:isbn of type ns:ISBNType ?;
element empty:title of type xs:string,
element empty:author of type xs:string

};
declare type ns:ISBNType restricts xs:string;

Figure 11: Representation of XML Schema in Core type language
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representation for reporting errors and easily permits others to consume the output of the
static typing phase. The Core type ast is also compiled into a compact representation used
during validation to annotate XML token streams. The compiled type representation is
space efficient and permits fast comparison of type values at runtime.

3 XQuery Processing Model

The XQuery processing model is the heart of Galax engine. Figure 12 depicts this model,
which takes as input an XQuery program consisting of one main module and zero or more
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fs:distinct-docorder(for $_c in $cat return
for $_b in fs:distinct-docorder($_c/child::ns:book) return
where
some $v1 in fn:data($_b/attribute::pubdate) satisfies
some $v2 in fn:data(2000) satisfies
let $u1 := fs:promote-operand($v1,$v2) return
let $u2 := fs:promote-operand($v2,$v1) return
op:ge($u1, $u2)

return $_b
)

Figure 13: Core AST of $cat/ns:book[@pubdate >= 2000] after normalization

library modules and produces one output value as an instance of the XQuery data model.
A library module contains a prolog (e.g., schema import and function declarations). A
main module contains a prolog and one expression, whose value is the result.

Because XQuery is both a functional language and a query language, Galax’s architecture
incorporates phases from functional-language compilers [App98] and query-language en-
gines [GMUW02]. The top half of Figure 12 is analogous to the front end of a functional-
language compiler, which annotates and transforms AST representations of a program
(query) before code generation and instruction selection (plan and code selection). The
bottom half of Figure 12 corresponds to the back end of a query-language engine, which
takes a Core AST and transforms it into an executable evaluation plan. The remainder of
this section describes each phase.

3.1 Parsing and Normalization

Parsing takes an XQuery program and produces an abstract syntax tree (AST) of the
XQuery language and is defined by XQuery’s grammar rules [XQ04]. Normalization
takes a query AST and rewrites it into a semantically equivalent AST in the smaller Core
XQuery language. As described in Section 1.1, normalization makes the implicit seman-
tics of the surface syntax explict in the Core language. Galax’s normalization phase is an
almost literal interpretation of the formal normalization rules.

Figure 13 contains the (slightly sanitized) normalized Core expression corresponding to
the example $cat/ns:book[@pubdate >= 2000]. The Core expressions in bold
capture some of the expression’s implicit semantics. The fn:data function applies
atomization to a sequence of nodes; the some-satisfies expression is existential
quantification; the fs:promote-operand function applies the appropriate type pro-
motion and casting rules; the overloaded, polymorphic comparison operator op:ge is
applied, because no type information is available during normalization; and, finally, the
fs:distinct-docorder function guarantees that the each step of the path expres-
sion and the final result is in document order with no duplicates.

If this expression were interpreted literally, it would be quite inefficient, nonetheless it cap-
tures the expression’s complete semantics. Subsequent phases prepare the Core expression
for compilation into an efficient query plan.
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fs:distinct-docorder(for $_c [element(ns:catalog)] in $cat [element(ns:catalog)] return
for $_b [element(ns:book)] in $_c/child::ns:book [element(ns:book)*] return

where
some $v1 in (fn:data($_b/attribute::pubdate [attribute(pubdate)]) [xs:integer]) satisfies
some $v2 in fn:data(2000) [xs:integer] satisfies
let $u1 [xs:integer] := fs:promote-operand($v1,$v2) return
let $u2 [xs:integer] := fs:promote-operand($v2,$v1) return
op:ge($u1, $u2) [xs:boolean]

return $_b [element(ns:book)?]
[element(ns:book)*]

)[element(ns:book)*]

Figure 14: Typed Core AST of $cat/ns:book[@pubdate >= 2000] after static typing

3.2 Static Typing

Static Typing takes a normalized Core AST, infers the static type of each expression in
the AST, and annotates each expression with its static type. Static typing is defined in
the XQuery Formal Semantics, and Galax’s implementation of each typing rule, like each
normalization rule, is a near-literal interpretation of the formal definition.

Figure 14 contains the typed Core expression of our example annotated with types from
the normalized schema in Figure 11. 2 Assuming that the $cat variable is bound to one
ns:catalog element, which may be inferred from a query prolog or provided by the
context of the programming environment, the types of other expressions are inferred by
applying XQuery’s static typing rules.

Given XQuery’s complex implicit semantics, static typing is especially important, because
it enables expression simplification and generation of more efficient evaluation plans in
later phases. Even the default types assigned to expressions when no input schema is
available can be useful during simplification. For example, the default annotation for the
variable $ b is a single element, because the child axis always yields a sequence of
elements and a for-bound variable is always bound to a single item, or element in this
case. Even without the knowledge that $ b is a book element, knowing that it is always a
single element can be useful.

3.3 Syntactic Analysis and Rewriting

The syntactic analysis and rewriting phase applies many simplification rules standard in
compilers for functional languages, such are removing unused variable definitions, inlining
of non-recursive functions, and applying type-aware rewritings. This phase also applies
analyses and rewritings that are unique to XQuery. One analysis detects when intermedi-
ate steps in path expressions always yield nodes in document order and with no duplicates,
and the corresponding rewrite rule eliminates redundant fs:distinct-docorder op-
erations [FHM+04]. Other analyses identifies the data source(s) to which each expression

2This is not valid XQuery syntax, but is just meant to illustrate the type annotations associated with expres-
sions.
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for $_b [element(ns:book)] in $cat/child::ns:book [element(ns:book)*] return
where (op:integer-ge(fn:data($_b/attribute::pubdate), 2000) [xs:boolean])
return $_b [element(ns:book)?]

[element(ns:book)*]

Figure 15: Simplified Core AST of $cat/ns:book[@pubdate >= 2000] after syntactic
analysis and rewriting

is applied and the paths applied to each data source [MS03]. The overall goal is to produce
the simplest Core expression that is semantically complete and to provide annotations that
can facilitate plan selection and optimization in subsequent phases.

Figure 15 contains the typed Core expression of our example after syntactic rewriting.
The type-aware rewrite rules make several simplifications. For example, the first for ex-
pression is eliminated, because its type ns:catalog is a singleton type and therefore
iteration is unnecessary. The two existential quantifications are eliminated because the
constant 2000 and the contents of a pubdate attribute are both singleton integers, and
the overloaded comparison operator op:ge is replaced by an integer-comparison opera-
tor. The document-order analysis determines that the path expression $cat/ns:book is
always in document order with no duplicates, so the fs:distinct-docorder opera-
tions are also eliminated.

3.4 Factorization and Plan Selection

The factorization phase prepares an AST for plan selection, which takes an AST and pro-
duces a naı̈ve evaluation plan in Galax’s algebra [RSF04]. Factorization reduces syntactic
variability so that plan selection can recognize common idioms that express, for example,
joins and group-bys. The factorized representation of our simple example is equivalent to
its simplified representation.

Galax’s algebra extends an existing algebra [MHM04] to support all of XQuery and in-
cludes, among others, operations on XML types and support for user-defined functions.
The algebra is described elsewhere [RSF04], but we note that the it includes operators on
tuples (e.g., MapConcat, Select), operators on XML items (e.g., Step, TreeProject) and
operators that convert between the two (e.g., MapToItem, MapFromItem).

Figure 16 contains the naı̈ve plan for our example expression. The plan is read “inside-
out”, beginning with the inner most operator. Given that syntactic analysis inferred the in-
put document to be “catalog.xml” and that it is validated against element ns:catalog,
the two inner-most operators parse and validate the document. Assuming that path pro-
jection was applied during analysis, plan selection can introduce the tree-project operator,
which takes a typed XML stream and a tree of paths and yields a typed XML stream
that only contains nodes on the specified paths. In this case, all book elements and their
descendants are projected. The two subsequent tuple constructors and concatenation op-
erator (++) create a tuple containing the catalog element paired with each book element.
The select operator applies its predicate to the input tuple, and the last operator maps the
selected tuples back to items.
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MapToItem
{Input -> (Input#glx:b_3)}
(Select

{Call{op:integer-ge}(
Call{fn:data}(
Step{attribute::pubdate}(Input#glx:b_3)),

Scalar{2000}())}
(MapConcat

{MapFromItem
{glx:comp2 -> Tuple[glx:b_3 : $glx:comp2]}
(Step{child::ns:book}(Input#glx:c_1)) ++ Input}

(MapFromItem
{glx:comp0 -> Tuple[glx:c_1 : $glx:comp0]}
(TreeProject

{./ns:book/*}
(Validate

{element(ns:catalog)}
(Parse{"catalog.xml"}()))))))

Figure 16: Algebraic plan of $cat/ns:book[@pubdate >= 2000]

3.5 Optimization and Code Selection

Query optimization follows plan selection and attempts to improve the default evalua-
tion plan. Common optimizations include query unnesting, which identifies group-bys
expressed by nested for-expressions (MapConcat operators) and produces a plan with
unnested group-by operators. Pushing selections early in a plan is another example. After
optimization, the Select operator in Figure 16 can be pushed inside the first MapFromItem
operator.

The last phase before evaluation is code selection, which takes a particular logical operator,
such as a Join, and selects a particular implementation for that operator, such as sort merge
or hash join. The result is a physical query plan in which every operator and function has
been realized by a concrete implementation.

3.6 Evaluation

Finally, evaluation takes a physical plan, evaluates the plan, and produces either a typed
XML stream or instance of the tree data model. The result value can be accessed and
navigated using Galax’s API to its tree data model from a C, Java, or O’Caml program, or
the result can be serialized into an XML document.

4 Lessons Learned

We conclude with several lessons that we have learned building Galax.

Our tour of Galax’s three processing models shows that most of its architecture is devoted
to transforming representations of documents, schemas, and queries. Of the 110,000 lines
of Galax’s source code written in O’Caml [OCa], only 9755 lines (11%) is devoted to

44



query evaluation. We found that implementing Galax in O’Caml was crucial to Galax’s
successful development. O’Caml is a member of the ML family of programming lan-
guages; ML means meta-language, that is, a language for defining and transforming other
languages, which is Galax’s central task. In particular, we use O’Caml’s polymorphic al-
gebraic types extensively—they implement every query representation from the original
AST to the physical query plan and the XML token representations of documents. We
also extensively use O’Caml’s higher-order functions and lazy evaluation of functions to
support delayed consumption of XML token streams and node cursors.

We found that a formal model is a good foundation for an initial architectural design. The
close alignment between XQuery’s formal specifications and Galax’s processing models
guaranteed that Galax satisfied the completeness requirement, even though early versions
were not particularly efficient or extensible. The close alignment also simplified keeping
Galax up to date as XQuery’s design changed continuously.

Focussing on completeness helped us attract early adopters of XQuery, which in turn, re-
quired us to focus on efficiency. Early adopters tend to be demanding, because existing
technologies are not addressing their problems satisfactorily. Our users write complex
queries that stress Galax in every way and help us identify real inefficiencies. These ob-
servations have lead to several interesting research problems on XML storage [VFS04],
document projection [MS03] and more recently query optimization [FHM+04, RSF04],
and resulted in lasting improvements to Galax’s architecture.

Satisfying the extensibility requirement has resulted, not surprisingly, in a more modular
architecture. A common mistake when building a large compiler is to coalesce phases that
are logically separate, in an attempt to reduce the cost of manipulating many representa-
tions of one program. For example, query parsing and normalization or document parsing
and validation could easily be coalesced with some reduction in code size. Coalescing
phases, however, results in a less modular and therefore less extensible architecture. A
strict separation of phases makes it possible for other researchers to co-opt parts of Galax’s
architecture, which increases its value to the research community.

We found that Galax’s completeness and extensibility requirements facilitated our ability
to work on novel research problems, such as designing an update language for XQuery [SHS04],
designing a Web-services programming language [OS04, FOS04] based on XQuery, and
implementing XQuery’s full-text search operators [AYBCF04]. Both the Web-services
programming language and the full-text extensions depended on XQuery’s schema import
and library import features, which are not widely implemented. We could not have worked
on these problems without access to a complete and extensible implementation.

Our most difficult lesson has been realizing and accepting that only 15-20% of our time
spent working on Galax involves genuinely novel research. Most of our time is spent on
project management, e.g., fixing bugs, writing documentation, porting to various archi-
tectures, and on long-term systems engineering, i.e, re-designing, re-implementing, and
refining the existing architecture as we encounter new problems and applications. Despite
the high “research cost” of working on Galax, we have found that the research problems
we do encounter are often original and their solutions have a practical impact, because we
are working with complex queries in real applications. Ultimately, access to real users and
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their XML applications motivates us to continue working on Galax.
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