M. Riebisch, M. Tropmann-Frick (Hrsg.): Modellierung 2022,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2022 93

Teaching the Use and Engineering of DSLs with JupyterLab:
Experiences and Lessons Learned

Joel Charles! Nico Jansen! Judith Michael! Bernhard Rumpe!

Abstract: Domain-Specific Languages (DSLs) are tailored to a specific domain which requires them
to provide domain-specific concepts and a sophisticated tooling for their engineering; aspects which
we address with the language workbench MontiCore. As we use MontiCore for research and teaching,
we are interested in reducing the entry barrier to use and engineer MontiCore DSLs. While there are
approaches for ready-to-use learning environments such as web-based editors, only a few provide a
tailored solution for specific DSLs. Within this paper, we present our experiences using JupyterLab in
combination with the infrastructure of MontiCore for teaching the use and engineering of DSLs in an
interactive manner. We have realized three practical courses and one conference tutorial applying this
technical approach. The front-end provides immediate feedback and includes supporting explanations
in an integrated manner. Initial feedback indicates that this approach can lower the entry barrier for
DSL use and engineering for students and practitioners.

Keywords: Education; Domain-Specific Languages; Model-Driven Software Engineering; Software
Language Engineering; JupyterLab; Jupyter Notebook

1 Introduction

Domain-Specific Languages (DSLs) become increasingly important in practice, e.g., the
German tax forms [Ru2l], in systems engineering [Gu21], architecture modeling for
safety critical automotive software systems [SBS20], cyber attacks in the automotive
domain [Wo21], TV program planning [Dr20], or simulation of marine ecosystems [JH17],
just to mention some published examples in addition to the reports from our industry
contacts. Thus, universities need to teach DSL engineering and usage. A domain-specific
language is tailored to the needs of domain experts [KRR18], thus, often adopting domain
terminology for its concrete syntax.

Reusing domain vocabulary within a modeling language mitigates entry barriers and enables
its users to create conform models without much familiarization effort. However, learning a
DSL is difficult for non-specialists since they first need to get familiar with the terminology
of the domain [GM18]. In addition, being able to engineer a high-quality DSL requires a lot
of practical hands-on experience [KRR18]. It requires the understanding of how to develop
a suitable syntax and the knowledge of using a language workbench [Ba20]. In our context,
the sophisticated language workbench MontiCore [HKR21] is used to engineer DSLs.

!'Software Engineering, RWTH Aachen University, Germany, www.se-rwth.de
{charles,jansen, michael,rumpe } @se-rwth.de

E@@®®@ doi:10.18420/modellierung2022-014

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/modellierung2022-014
mailto:{charles,jansen,michael,rumpe}@se-rwth.de

94 Charles et al.

Until now, there exists no integrated learning environment to teach MontiCore-based DSLs.
In the past, our teaching of the introduction to MontiCore DSLs separated the theoretical
concepts from their practical application. Furthermore, the initial setup of the IDEs required
manual steps by its users. This distracted them from their actual learning objectives.

In this paper, we present an interactive approach based on Jupyter Notebooks to improve
the teaching of Software Language Engineering (SLE) based on our experiences. We have
designed the architecture and realized the teaching infrastructure for MontiCore-based
DSLs with Jupyter Notebooks. Moreover, we present our lessons learned from concrete
labs using this infrastructure.

In Section 2, we explain the basics of SLE, as well as the language workbench MontiCore
we use to teach it. Section 3 addresses the requirements we specified for the solution and
how the introduction to MontiCore and the use of MontiCore-based languages has been
taught until now. In Section 4, we consider related work. Section 5 examines possible
approaches and Section 6 describes the selected solution. Section 7 explains the realization
in several practical courses and one conference tutorial, whereas Section 8 discusses our
lessons learned. The last Section concludes.

2 Preliminaries

Our work is based on the general notion of software language engineering and the particular
realization of the MontiCore language workbench, including its generated infrastructure.

Software Language Engineering. The discipline of SLE investigates the efficient de-
velopment, maintenance, and evolution of modeling languages. In general, modeling
languages consist of a concrete and abstract syntax, a semantic domain, and a semantic
mapping [Bul9, GRR09,He07]. The concrete syntax defines the possible sentences, while
the abstract syntax comprises its structural essence. The semantic domain of a language
describes the target application area, which typically depends on mathematical theory, such
as Petri nets [Rel2] or Focus [BS12] (i.e., formal modeling foundations for describing
behavior and processes). A semantic mapping provides a meaning for the sentences, i.e., it
maps sentences to the semantic domain, for instance, via formalized mathematical notation
or graph transformations [HR04]. We distinguish between two types of modeling languages,
General-Purpose Languages (GPLs) that are generally applicable and DSLs that correspond
to an application domain [C115,H519].

MontiCore. MontiCore [HKR21] is a language workbench for designing textual modeling
languages. It utilizes context-free grammars (CFGs) to define the abstract as well as
the concrete textual syntax of a language in a single effort. The grammars feature an
EBNF-like [Wi96] syntax and consist of multiple productions that declare the language.
MontiCore processes the grammar and generates abstract syntax classes that describe
the language’s structure. Additionally, infrastructure for advanced language development

Teaching DSLs with JupyterLab 95

is provided [HKR21], including a parser, a framework for context conditions (CoCos),
and a symbol table. The parser processes textual models and creates a corresponding
abstract syntax tree (AST) comprising instances of the abstract syntax classes. An AST
contains the information of the underlying model without syntactic sugar, which is used for
further processing. For a consecutive step, MontiCore provides a CoCo framework, which
are additional validation rules for the language. CoCos are constraints on the AST that
cannot be defined well within the CFG, such as context-sensitive restrictions. A common
example is checking whether a name starts with a capital letter. Furthermore, MontiCore
provides a symbol management infrastructure, enabling to derive a symbol table for an
AST. This symbol table lifts the tree structure of the AST to a graph structure, enabling
cross-referencing, easy type checking, and quick navigation. For further customizability
of the generated infrastructure, MontiCore provides the TOP mechanism [HKR21]. It is
a realization of the generation gap pattern and allows for overriding generated artifacts.
The mechanism automatically recognizes these handwritten artifacts and integrates these
seamlessly into the generated architecture. Finally, MontiCore uses template-based code
generators [Ad18] to process the AST and to transform the structured information into
artifacts of a target language. MontiCore also supports language inheritance, embedding, and
aggregation [Hal5], extending existing CFGs and thus reusing their concrete and abstract
syntax. These features support more sophisticated language development by leveraging
productions of existing languages for new DSLs, thus fostering reusability.

3 Challenges and Requirements for Teaching DSL Use and Engineering

The usage of a DSL and the engineering of a MontiCore-based DSL address different
target audiences, resulting in different requirements for its learning materials [St15]. We
show specific challenges of learning a DSL, the challenges of teaching the engineering
of a MontiCore DSL, and introduce the former teaching approach and its shortcomings.
The identified requirements are labeled within the text. While several publications report
about requirements for (the engineering of) DSLs [CMP18], our analysis directly relates to
teaching how to effectively create and use such modeling languages.

3.1 Using a MontiCore DSL

Since DSLs by their nature are tailored to a specific domain, a modeler must have a basic
understanding of the domain to create valid models. To support the progression towards
becoming a domain expert, this basic understanding of the domain should be taught as
part of the intended solution (Req. U1). Thus, according to Bloom’s Taxonomy [AKO1],
the learning goal of learning a new DSL is to apply gained knowledge concerning the
corresponding tasks. Generally, we cannot assume that students and tutorial participants
are already domain experts for every DSL they learn. Having internalized the essential key
concepts of the domain, a modeler can formulate semantic sound statements within the

96 Charles et al.

domain. In order to model these in a structured way in a DSL, he must familiarize himself
with the syntax of the language (Req. U2). Since no special prior knowledge is required for
the modeler, their knowledge level varies. Therefore, enabling continuous learning progress
requires an educational environment to provide immediate feedback on model validity and
potential improvements (Req. U3). A steep learning curve has to be managed to achieve
this level of knowledge, therefore no initial set-up effort should distract from the focus
on the learning process (Req. U4). In order to convey an understanding of the language
infrastructure, it is necessary to be able to integrate further language tooling, such as a
generator, into the solution in an executable manner (Req. US).

3.2 Engineering a DSL with MontiCore

The requirements for developing a DSL are partly similar to those for modeling, but in
the case of MontiCore, they are more sophisticated, as it contains various aspects (e.g.,
grammar, CoCos, etc.) that have to be implemented, often in different meta-languages. Thus,
fundamental language quality criteria, as well as the methods for creating a DSL must be
learned (Req. E1). To define the DSL, the characteristics of the used language workbench
must be considered. In our use case we assume that the language engineer has no prior
knowledge of MontiCore. Neither should a technical know-how be a prerequisite to get
started with DSL engineering (Req. E2). Furthermore, it should also be possible to use
sophisticated modeling features such as CoCo’s and the TOP-mechanism. Although they
are technically written in Java, they are an integral part of an advanced DSL development
with MontiCore. The TOP mechanism is a programmatic adaptation of the generated code,
accordingly a more in-depth understanding of the generation process is required in this case
(Req. E3). Based on these requirements and an analysis of existing learning and modeling
environments, we designed a solution tailored for our use case in MontiCore.

3.3 Previous Approach to Teach DSL Usage and Its Engineering

At RWTH Aachen, we teach DSL usage and engineering, e.g., in the corresponding SLE
lecture, which includes the presentation of theory with slides, smaller exercises, and a large
group project using MontiCore. The objective of the course is to learn to engineer a DSL.
The skills learned are applied in practice as part of exercises. Moreover, the fundamentals
of the language workbench are introduced. Weekly assignment sheets are given to students
as part of the exercise. They include descriptions of how students need to set up their
development environments. Furthermore, they are provided with projects as a starting point
for their task, which they work on in an IDE. Consequently, students not only have to
familiarize themselves with MontiCore, but also with an IDE that may be unfamiliar to them.
Its initial configuration effort obstructs them from achieving the actual learning objective.
For groups of people who do not attend the course, we provide them a website with an
introduction to the use of the language workbench. For details, we provide the students a

Teaching DSLs with JupyterLab 97

handbook [HKR21] which includes a getting started section explaining configuration steps,
and a detailed documentation of MontiCore’s features. Consequently, no setup-free access
to learn MontiCore was available for any target group.

Previously, we provided generated command line interface (CLI) tools for learning an
existing DSL. While CLI-access is arguably an easy and efficient way to use and chain
tools for experienced practitioners, it does not foster the initial learning of the language and,
thus, is less suitable for inexperienced users [St15]. Default editor features such as syntax
highlighting or autocompletion are not available.

In the case of teaching how to engineer a DSL, we generally provided a more sophisticated
Gradle project containing the required source files and dependencies for developing a new
modeling language. These projects were integrable into an IDE, such as IntelliJ2 or Eclipse?3,
which generally facilitates the engineering process. In MontiCore, generated artifacts (e.g.,
the parser), as well as handwritten artifacts (e.g., custom CoCos), are based on Java, for
which extensive support is automatically provided. While the use of an IDE closest reflects
the actual development of a language, it also comes with some issues, especially for novice
users. As not all students have a computer science or programming background, an IDE
might be quite overwhelming, resulting in practitioners spending more time getting used to
the intricacies of the environment than with the language engineering task itself. Thus, using
an IDE-based teaching method yielded issues such as dealing with different operating system
(OS) distributions, different improper Java or Gradle versions, flawed IDE configurations,
and general troubleshooting.

Our target group works with private hardware. Accordingly, a wide variety of OS platforms
are used. Due to a lack of resources, we are not able to fully support all systems such that
some distributions could not be used. Besides practitioners using incompatible Java or
Gradle versions, MontiCore relies on the Java Development Kit (JDK). Even though the
provided installation instructions explicitly guide towards the JDK, a common mistake is
that users only installed the Java runtime environment during setup, resulting in redundant
double-checking efforts for the teachers. Additionally, individual problems, such as reusing
IDE configurations from an unrelated project or access rights, require the attention of the
exercise instructors. For issues that did not occur during the pilot operation, a root cause
must be found in the short term. This is particularly problematic for cases in which the
origin of the error is outside of our area of responsibility. Generally, the accumulation
of errors and their various causes generated an increased, often unmanageable, support
effort resulting in a need for a solution independent of external factors such as hardware,
environment setups, and different levels of practitioner knowledge.

2 https://www.jetbrains.com/idea/
3 https://www.eclipse.org/

98 Charles et al.

4 Related Work

Other modeling tools are also faced with the challenge of learning them initially. For example,
the MetaEdit+ Workbench [KLR96] and ADOxx [FK13] offer workshop events and webinars
to help getting started. They are supplemented by videos, reference documentation, as well
as slides, and instructions. Furthermore, there are forums where frequently asked questions
can be answered and new questions can be posted.

With the Language Server Protocol (LSP) and its graphical extension (GLSP) [Ro18],
respectively, with editors that implement these protocols, potential tools are available
that can be used for modeling. The one-time implementation of the protocol makes it
possible to support all (G)LSP editors, which is an advantage over the AtoMPM [Sy13] and
WebGME [Mal4] approaches. Both are tools to create domain-specific editors.

All of the above approaches have in common that they do not take an integrated interactive
learning approach. Instead, they only offer solutions to facilitate tool-based modeling.
However, our use case considers the engineering and use of DSLs created with MontiCore.
Both the DSL engineering and the resulting DSL are purely textual. The goal is for learners
to be able to design languages with MontiCore and create textual models. This is not
achieved when the learner uses a Ul focused on diagram-based abstractions. Furthermore,
it does not solve the problem that the editor still has to be mastered by the user. The
extensive documentation of the above approaches shows that their use takes a similar time
of familiarization as an IDE. For the acceptance of a model-driven approach (in industry),
it is necessary to use suitable tools [TK16]. However, the features are often extensive and
distract from the actual learning objective.

Another paper [BVG18] analyzes teaching the Object Constraint Language (OCL) [RG02]
using different modeling tools (such as MagicDraw, Papyrus, etc.). This work aims at
analyzing different modeling tools for a specific language. It confirms that direct feedback
during modeling can positively affect the final result. Furthermore, their observations
support that immediate feedback in an integrated learning environment improves the overall
learning success.

Furthermore, [Te19] presents a browser-based modeling tool. Its main objective is to analyze
practitioners and their learning behavior during modeling. The application tracks interesting
events, such as interactions with an editor. The main goal of this approach is to gather data
about how novice modelers obtain knowledge about the modeling language and modeling
itself. While our platform focuses more on education than on gathering information about
the learning experience, it is notable that the presented solution also uses a web-based
application as a foundation for a proper learning environment. While future discoveries of
this research observatory will provide relevant information for our work, the described setup
already indicates that a directly functional application, without initial effort, is a suitable
foundation for learners.

In general, there are several approaches documented that focus on teaching modeling

Teaching DSLs with JupyterLab 99

languages or their convenient provision via corresponding tools. The sources range from
literature studies [RTS19] over DSL design guidelines [U113] to experience reports on the
transition to distance learning [Bo21], with special concerns on educating practitioners.
Our analyses indicate that providing extensive material in a self-learnable manner and an
integrated learning environment with immediate feedback has positive effects on the learning
results. Applications such as the bigER tool [GB21] suggest that integrated modeling with
different views, here presented on textual and graphical representations of entity relationship
diagrams, can additionally increase modeling efficiency and understanding of models
simultaneously. In summary, it appears that many of our requirements for learning a
modeling language or creating one, established in Section 3, is part of current research.
Recurring features include immediate feedback, minimal initial set-up effort, a convenient
look and feel for familiarizing with the language or modeling tool, and further integrated
functionality, such as well-formedness checks or code generation.

5 Learning Environments for Teaching DSL Usage and its Engineering

When choosing a development environment, many considerations must be taken into account.
First, a single cross platform IDE should be chosen to ensure a consistent user experience.
Furthermore, the focus is on learning a DSL or its engineering. Accordingly, the initial
setup process should be minimal. Only web-based solutions allow for a setup-free user
experience, so we limit the candidates to these only [LHO1, Ag00](see Req. U4).

One category of online environments are so-called playgrounds. The TypeScript Playground+
and JSFiddles are exemplary representatives of the category. Their main objective is rapid
prototyping (see Req. U3). Applications are for instance to showcase a reproducible minimal
example or to test a new feature of a programming language. Usually a collaboration is
possible, e.g., via sharing a link. Since this category of editors is more aimed at providing a
basis for discussions using small code snippets, it is not suitable for our use case [St15].

The next category is represented by online IDEs. Solutions like GitPod® and CodePen” are
designed to streamline the development process by providing an always configured online
IDE for developers (see Req. U4). They can be used to develop entire applications, while
facilitating collaboration between developers.

With the Meta Programming System (MPS) [VP12] is a tool from JetBrains available to
engineer DSLs. However, the tool is a editor only, which does not offer the integrated
learning approach (see Req. U1, U2) we are targeting [Pr21].

These approaches do not include introductions to syntax and therefore require a pre-existing
basic understanding of the respective language (see Req. E2). Additionally, they contain

4 TypeScript Playground, Microsoft: https://www. typescriptlang.org/play (accessed: 2022-03-08)
5 JSFiddle, JSFiddle: https://jsfiddle.net (accessed: 2022-03-08)

¢ GitPod GmbH, Gitpod: https://www.gitpod.io (accessed: 2022-03-08)

7 CodePen, CodePen: https://codepen.io (accessed: 2022-03-08)

https://www.typescriptlang.org/play
https://jsfiddle.net
https://www.gitpod.io
https://codepen.io

100 Charles et al.

more functionality than needed for our use cases. Therefore, they are less suitable for
newcomers. Furthermore, they fail to combine the code with the explanations for learning
the language.

Another option is to develop a tailored IDE ourselves, using the IDE Platform Theia®
for example. However, the development effort for this is high and involves long-term
maintenance costs.

The open-source project Jupyter [PG15, GP21] focuses on web-based interactive computing
for a wide variety of programming languages. It originates from the IPython project [PG07],
which has pushed interactive computing for python. The core concept of the approach are
so-called Jupyter Notebooks. The Jupyter Notebook is an UI which combines interactive
computing with additional annotations in a tutorial-based approach (see Req. U1, U2, U3,
El). In the Jupyter context, a tutorial integrates information and input fields on one screen
following the Read-Eval-Print-Loop (REPL) concept [Va20]. Figure 1 shows a sample
notebook. It is composed of a set of typed cells. Cells are executable and are either of type

Z Fle Edit View Run Kemel Git Diagram Tabs Settings Help

—1 - MONTILAB NOTEBOOK SETTINGS (7 Statecharts.ipynb ® = Automata.mcd X
Global Qualified name of the main grammar of this notebook (Include the B+ X OO » 8 C » Cde v @ git
oba package name here!):
: atechar AN
project — O statechart Statechart DSL Syntax /| _— Jupvter cell tvpe
Relative path to the language project, starting at this directory (without __—~ Py yP
. " as prefix or suffix): Statechart in this exercise consist of
settings | & Ll
o Check CoCos with symbol table « anon-empty set of states that contains a subset of initial states and a subset of final states,
P ioNTiLAR CELL SETTINGS o aninput alphabet, that is a non-empty set of symbols (also: signs or letters), and
* a transition relation
. @Cellis Editable _
(wc B's aMontiCore cell / \‘ More Details on statechart and automata theory can be found in the lecture slides.
\ Typeof the cell: £
\ Producton e Setti ngs Of As seen in the lecture, statecharts can be modeled i various syntaxes, that is the concrete repres
| J§ Which production should be parsed: [£ d ” we introduce a textual DSL to model statecharts with a finite set of states and without actions, hie
state e selected ce A
Access ‘
ALL EXISTING COCOS \ Rendered markdown cell
Head!
eaaer
to Our CLEAR ALL MONTILAB CELL SETTINGS OF THE NOTEBOOK
p [ug, n ErnE D A statechart model should always have a name so it can later be referenced. Comments in the staf

‘common in popular programming languages such as Java. In the Statechart DSL, models of statec
follows:

statechart SimpleStatechart {
// Body of the Statechart
¥

The body of the statechart contains a declaration of the statechart's state as well as its transitions

/) States

Selected cel In the Statechart DSL states have a unique name and may be marked as initial or final. For exampl

| o [state ons

If On is an initial state and let's assume there exists another state Off that is a final state, these are

Abb. 1: A Jupyter Notebook edited in JupyterLab.

code, markdown or raw. The latter two types allow to insert additional information before,
in between or after code cells. The execution of a markdown cell causes the markdown
to be rendered in the cell. The raw cell only becomes relevant when the notebook is
converted to another format, so this type will not be discussed in detail. Jupyter achieves the
notebooks’ language independence through the concept of kernels. The kernel contains all
language-specific functionality and runs independent of the client used.

Within the project, JupyterLab represents the latest client. It is a web-based development

8 Eclipse Foundation, Theia: https://github.com/eclipse-theia/theia (accessed: 2022-03-08)

https://github.com/eclipse-theia/theia

Teaching DSLs with JupyterLab 101

environment (see Req. U4). The user interface is highly customizable through so-called
plugins. Even the notebook itself in the right part in Figure 1 is such a plugin. The content
of a code cell in the notebook is transferred to the kernel when it is requested to be executed.
A kernel processes the request and transmits the result to the client. JupyterLab then renders
the output under the executed cell (see Req. U5, E3). In this manner, domain specifics are
separated from the language unspecific client. A notebook can be persisted in .ipynb format
(json) and re-uploaded into JupyterLab. Thus, an executable documentation of the working
process is available.

Compared to the previous solutions presented, JupyterLab is also suitable for less non-
technical newcomers, as the functions are tailored to an interactive learning process
[B119,Ma20]. In contrast, classic IDEs are tailored for the efficient development through
experienced engineers. Compared to a custom solution with Theia, project Jupyter offers
the advantage to build on an already established platform. At the same time, we benefit
from enhancements at no cost to ourselves. For these reasons, we decided to use project
jupyter for the realization. Table 1 summarizes the degree of requirements fulfillment of the
available alternatives.

Approach Ul | U2 |U3|U4|Us|ElI|E2|E3
Playground X 0 Y Y X | X 0 0
IDE X 0 Y | Y Y | X | X 0
Jupyter Y Y Y Y Y Y| Y |Y

Tab. 1: Fulfilled requirements by solution approach

6 Building the Jupyter Infrastructure

Jupyter Notebooks can be used both for engineering DSLs and for learning them. For the
editing of Jupyter Notebooks we rely on JupyterLab. To enable multi-user support we
use the JupyterHub which is part of project Jupyter. JupyterHub is a is a containerizable
solution that provides user authentication and serves the configured JupyterLab. It suggests
a deployment to an kubernetes cluster if more than 100 simultaneous users are targeted.
However, otherwise the use of a single machine is suggested. We use the latter option as we
initially assumed fewer than 100 users and could not justify the cost of a kubernetes cluster.
However, we did not want to miss out on the advantages of a containerized deployment.
Figure 2 shows the deployment we used. JupyterHub is executed inside a docker container,
which is accessible via Https from the internet. When a user successfully authenticates, a
container is created using JupyterHub’s docker spawner. The spawner uses the same image
for each user, which was created in advance on the host system. The image contains all
the materials needed for the exercises. If the users manage to set their environment to a
bad state while working on an exercise, the entire container can be restored. On the one
hand, this is possible for administrators with access to the host system, but also for the users
themselves, since communication of the user container with the JupyterHub container is
established via a docker network. In principle, it is possible to store the files of the user

102 Charles et al.

Docker Network

i
L _spawns
i

User
Authentication Docker Spawner

User

Abb. 2: The deployed JupyterHub architecture

containers via docker volumes. Then it is possible to remove the container in idle phases
and save resources. As soon as the user returns, his data can be restored by mounting the
volume. In our specific case, however, we have opted not to do so. On the one hand, we are
able to keep the containers running for the period of the exercise with our user counts. On
the other hand the files are no longer needed after the exercise is finished. However, if the
learner want to persist the data, he can do so using the export function of JupyterLab. To
avoid having to download individual files, a plugin is installed which downloads the files
bundled in a zip archive.

Our objective is to process different artifacts within a single notebook (e.g. MontiCore
grammars, handwritten Java classes). The fundamental idea is that JupyterLab orchestrates
a language project in the background. This task is performed by a custom kernel developed
by us. However, the code cell type is the only cell type that is passed to the kernel for
execution. By default, JupyterLab does not distinguish between different types of code cells.
Therefore a possibility had to be created either to send additional meta information about
the cell content or to interpret cell’s artifact type by the kernel. For some artifacts we need
additional meta information in any case, which the kernel is unable to compute. For example,
if a partial model is to be parsed in a cell, the kernel needs the meta-information which
production of the grammar it should try to parse. This information should not be visibly
included in the cell in advance, nor should the learner be forced to write it into the cell. For
this reason we decided to develop a front-end plugin instead for a more robust solution. The
plugin can be seen on the left in Figure 1 and ensures that the required metadata is sent to
the kernel in addition to the cell content. In this way, only internally necessary information
is hidden for the tutorial user.

Teaching DSLs with JupyterLab 103

7 Jupyter Notebook in SLE Teaching

By integrating explanations of concepts into an environment where they can be immediately
applied, JupyterLab unlocks new opportunities to teach SLE. The following sections explain
how JupyterLab was used to contribute to the teaching of SLE. Section 7.1 states details
on building Jupyter notebooks for learning a DSL. Section 7.2 takes it a step further by
explaining how engineering of DSLs can also be supported.

7.1 Using Jupyter Notebook for using a DSL

We have used Jupyter Notebook in the practical courses of the lectures Model-Based
Software Engineering, and Model-Based Systems Engineering in the winter semesters
2020/21 and 2021/22 with about 60 students in each course. Complex domains were already
modeled with MontiCore DSLs. It has been shown that expressive languages can result from
this process, whose domain should be introduced iteratively according to our experience.
For this reason, we have introduced the tutorial with markdown cells in which the domain
is motivated. Building on this, terminology was introduced gradually. By transferring
fragments of semantic statements of the domain into the syntax of the DSL via explanatory
texts, keywords of the language and the syntax in which they are applied was taught. In
code cells following the explanation, learners were able to immediately put the explanations
into practice. By running the cell, they got instant feedback on whether their partial model
conforms to the language. This procedure was repeated until the complete syntax was
learned.

At this point, the tutorial user was able to create syntactically correct models, but those
might be semantically invalid. Explanations in the notebook should point out this fact. By
configuring a CoCo check in the front-end plugin by the tutorial creator in the subsequent
cells, in addition to parsing the model, the semantic violations were experienced. The
creators had the possibilities to deactivate individual CoCos. After the tutorial user created
valid models, he was introduced to language tooling. Our plugin allows to configure a
number of different operations on cell execution. The operations were sequenced one after
the other. For example, if the parsing of a model was successful, CoCos were executed and
upon success, the cell contents was used as input for a script or other language tooling.
In this way, the generator generated artifacts based on the model. This can be multimedia
content that is rendered below the cell or other kind of files that could be inspected via
the file browser of JupyterLab. The notebook created during this process was saved by the
tutorial user (e.g., as a pdf) and served as documentation for his learning achievements.

7.2 Using Jupyter Notebook for the engineering of a DSL

We have used Jupyter Notebook in the practical course of the lecture Software Language
Engineering in the summer semesters 2021 with about 60 students and in a conference tutorial

104 Charles et al.

at the Modellierung 2020 [H620]. Teaching the engineering of a DSL is fundamentally
more challenging than using one (see differences in the cognitive processes for apply and
create [AKO1]). The language developer must consider not only the syntax of the resulting
language, but also its maintainability [FRO7, KRR18]. The language workbench MontiCore,
whose handling must be trained, contains concepts to accomplish such a DSL. We used a
similar approach as in Section 7.1 to getting started with MontiCore.

The learning process starts with a motivating introduction to SLE and the relevance of
tailored DSLs. The objective of developing a DSL with the help of the notebook is formulated.
A transition to the language workbench MontiCore follows. The MontiCore grammar is
introduced as a central artifact of the engineering process. Through further explanations, the
syntax of productions is introduced. To make the effect of a production experience-able, a
code cell follows in which a grammar with a simple production is already given. Using our
plugin it is possible to protect the cell from user modifications. When the cell is executed,
MontiCore generates the infrastructure associated with the grammar. In the cell output area,
a report appears showing the changes made to the underlying project by the generation step.
The generated files are inspected via the file browser on demand. The subsequent markdown
cell motivates the tutorial user to enter a partial model that matches the production. Upon
execution, the learner is informed whether the input is valid and otherwise faced with a
clear error message of the parser. In this way, the basic syntax of the grammar definition is
introduced iteratively. At the same time, the tutorial user understands the impact of grammar
changes on the generated infrastructure. The learner extends the given grammar with his
own productions. The user investigates the correctness of the user-defined grammar by
using predefined cells containing valid models. The underlying language project is in a
valid state at all time which is ensured by our kernel.

After the grammar definition is completed, context sensitive conditions are introduced.
The reason why these cannot be expressed in a context-free grammar is explained. In this
advanced part of the tutorial, one can refer to Jupyter Notebooks which explains Java in its
basics. Furthermore, inexperienced tutorial users can be supported by partially pre-filled
code blocks in the code cell. The level of support was adjusted to the experience of the
participants (see Req. E2). For example, our kernel is able to add package definitions or
imports on its own. Furthermore, syntax highlighting and an integrated Java parser is used
to communicate the source of errors. To avoid that a syntactically incorrect CoCo interrupts
the generation process, the kernel adds it to the language project only if the Java parser
accepts it. Handwritten extensions via the TOP mechanism are handled analogously. Finally,
predefined models are used to check whether all checks have been implemented correctly.
The language project created in this manner can be viewed by the tutorial user both in
JupyterLab and exported to an IDE of his choice.

Teaching DSLs with JupyterLab 105

8 Lessons Learned and Discussion

The concept of Jupyter Notebooks allows to introduce the domain alongside the associated
syntax of the DSL iteratively in markdown cells in an integrated manner. The insertion of
code cells allow the practitioner to get immediate feedback when applying the acquired
knowledge (see Req. U1, U2, U3). In the same manner language quality criteria can be
teached without the need for prior tool experience (see Req. E1, E2). The custom developed
kernel allows to respond upon a cell execution as needed and thus enables the integration of
further language tooling (see Req. US). For example, the kernel optionally outputs details
of the generation process. JupyterLab, in turn, allows the generated artifacts to be inspected
directly (see Req. E3). At the same time, the web-based approach eliminates the initial setup
effort for the learner (see Req. U4).

The approach presented has already been used in three practical courses and in a conference
tutorial. Lessons could be learned in the process of their realization. The lessons learned
can be categorized into the perspective of the tutorial creator and the tutorial user.

Lesson learned 1: Initial setup effort. On the one hand the initial setup effort is increased
for the tutorial creator. On the other hand, the setup process is completely eliminated for
the tutorial user (see Req. U4). A custom kernel and a front-end extension have been
implemented. An initial setup effort for the infrastructure is also required. However, once
the containerized environment is established, it can be immediately reused in other contexts.
This significantly reduces the effort required for follow-up courses which want to make use
of the Jupyter infrastructure.

In addition, the tutorial content also needs to be created. A tutorial creator needs to get
familiar with JupyterLab and the concept of interactive teaching of knowledge. However, a
strategy for communicating the topics must be found in any case.

Lesson learned 2: Effort during execution. The unified development environment has
resulted in significantly fewer inquiries from participants regarding the setup. In case
of technical problems, the tutorial user have either been able to reset their environment
themselves or have been able to ask an instructor to do so. The kernel ensures a valid state
of the language project, therefore this case generally rarely occurs.

In one case, we accessed a user’s container to reproduce his error pattern. It was caused
by a bug in the kernel, which could be fixed by a redeployment. Our software architecture
allowed us to apply the fix immediately for all users. In previous teaching units without
JupyterLab, this would have required active actions from users. Furthermore, it would have
been difficult to determine whether all participants had correctly applied the fix.

Lesson learned 3: Maintenance effort. The hosting of a server is accompanied by necessary
maintenance work. Updates for JupyterLab, JupyterHub and other packages have to be
installed. Since we want to provide the latest functionalities of MontiCore to the participants,

106 Charles et al.

the kernel has to be maintained as well. Accordingly, the tutorial content may need to be
extended in the future. However, this would also be the case in the traditional exercise mode.

Lesson learned 4: Required hardware resources. Developing models for a given DSL is
not very resource intensive. However, as soon as sophisticated language infrastructure is
used in the notebook, the CPU requirement increases significantly. Accordingly, the use
of the MontiCore generator leads to an increase in the load of the system. The format of
the exercise operation causes that at certain times a large number of users work on the
system simultaneously. However, in other time frames, the server’s capacity is idle. The
load scenario advocates the use of a scalable cloud infrastructure.

Lesson learned 5: Overall feedback. Feedback on the use of Jupyter has been positive, both
from tutorial creators and tutorial users. There are evaluations of the courses realized, which
indicate a positive acceptance of the Jupyter Notebooks. Nevertheless, a full evaluation of
the teaching approach has not yet been conducted by us. It has also been shown that at a
certain experience level of the tutorial users a migration to a real IDE is desired. This is
reasonable, for example, when complex language infrastructure is to be realized.

The availability of an interactive solution to teach SLE has prompted requests for more
tutorial content. Since the expected user base is growing, we decided to move the solution
to a kubernetes cluster.

9 Conclusion

Within this paper, we have shown how a technical infrastructure, namely JupyterLab, and
its usage to teach the use and engineering of domain-specific languages. We have presented
requirements for teaching DSLs and discussed them. Moreover, we have discussed lessons
learned from its application in several practical courses and one conference tutorial.

To sum up, we think that JupyterLab is well useable for teaching the use and engineering of
DSLs if one can cope with the increased need for server resources. The main advantages of
this approach for students are that they have less set-up of the technology and can focus on
the main teaching goals, they have information and input fields integrated on one screen, and
they get interactive response of their solutions. The main advantages for feachers are that
they need less technical supervision after the initial set-up and can focus on teaching DSL
engineering and use. Moreover, they can reuse the Jupyter tutorial for following instances
of the same practical course.

Literaturverzeichnis

[Ad18] Adam, Kai; Butting, Arvid; Kautz, Oliver; Pfeiffer, Jerome; Rumpe, Bernhard; Wortmann,
Andreas: Retrofitting Type-safe Interfaces into Template-based Code Generators. In: 6th Int.
Conf. on Model-Driven Engineering and Software Development (MODELSWARD’18).
SciTePress, S. 179 — 190, 2018.

Teaching DSLs with JupyterLab 107

[Ag00]

[AKO1]

[Ba20]

(B119]

[Bo21]

[BS12]

[Bul9]

[BVG18]

[Cl15]

[CMP18]

[Dr20]

[FK13]

[FRO7]

[GB21]

Aggarwal, Anil K: Web-based Learning and Teaching Technologies: Opportunities and
Challenges, Idea Group Publishing. Inf. Soc., 20(2):153-154, 2000.

Anderson, Lorin W; Krathwohl, David R: A taxonomy for learning, teaching, and assessing:
A revision of Bloom’s taxonomy of educational objectives. Longman, 2001.

Barash, Mikhail: Example-driven software language engineering. In: Proceedings of the
13th ACM SIGPLAN International Conference on Software Language Engineering. S.
246-252, 2020.

Blank, Douglas S; Bourgin, David; Brown, Alexander; Bussonnier, Matthias; Frederic,
Jonathan; Granger, Brian; Griffiths, Thomas L; Hamrick, Jessica; Kelley, Kyle; Pacer, M
et al.: nbgrader: A tool for creating and grading assignments in the Jupyter Notebook. The
Journal of Open Source Education, 2(11), 2019.

Bork, Dominik; Fend, Andreas; Scheffknecht, Dominik; Kappel, Gerti; Wimmer, Manuel:
From In-Person to Distance Learning: Teaching Model-Driven Software Engineering
in Remote Settings. In: 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). IEEE, S. 702-711, 2021.

Broy, Manfred; Stglen, Ketil: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer Science & Business Media, 2012.

Butting, Arvid; Eikermann, Robert; Kautz, Oliver; Rumpe, Bernhard; Wortmann, Andreas:
Systematic Composition of Independent Language Features. Journal of Systems and
Software, 152:50-69, June 2019.

Burgueiio, Loli; Vallecillo, Antonio; Gogolla, Martin: Teaching UML and OCL models
and their validation to software engineering students: an experience report. Computer
Science Education, 28(1):23-41, 2018.

Clark, Tony; Brand, Mark van den; Combemale, Benoit; Rumpe, Bernhard: Conceptual
Model of the Globalization for Domain-Specific Languages. In: Globalizing Domain-
Specific Languages. LNCS 9400. Springer, S. 7-20, 2015.

Czech, Gerald; Moser, Michael; Pichler, Josef: Best Practices for Domain-Specific Modeling.
A Systematic Mapping Study. In: 2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, S. 137-145, 2018.

Drave, Imke; Henrich, Timo; Holldobler, Katrin; Kautz, Oliver; Michael, Judith; Rumpe,
Bernhard: Modellierung, Verifikation und Synthese von validen Planungszustinden fiir
Fernsehausstrahlungen. In: Modellierung 2020. GI, S. 173-188, 2020.

Fill, Hans-Georg; Karagiannis, Dimitris: On the conceptualisation of modelling methods
using the ADOxx meta modelling platform. Enterprise Modelling and Information Systems
Architectures (EMISAJ), 8(1):4-25, 2013.

France, Robert; Rumpe, Bernhard: Model-driven Development of Complex Software: A
Research Roadmap. Future of Software Engineering (FOSE *07), S. 37-54, May 2007.

Glaser, Philipp-Lorenz; Bork, Dominik: The bigER Tool-Hybrid Textual and Graphical
Modeling of Entity Relationships in VS Code. In: 2021 IEEE 25th International Enterprise
Distributed Object Computing Workshop (EDOCW). IEEE, S. 337-340, 2021.

108 Charles et al.

[GM18]

[GP21]

[GRR09]

[Gu21]

[Hal5]

[He07]

[HKR21]

[H619]

[H620]

[HRO4]

[JH17]

[KLR96]

[KRR18]

[LHO1]

Gonnord, Laure; Mosser, Sébastien: Practicing domain-specific languages: from code to
models. In: 21st ACM/IEEE Int. Conf. on Model Driven Engineering Languages and
Systems: Companion Proceedings. S. 106-113, 2018.

Granger, Brian E.; Pérez, Fernando: Jupyter: Thinking and Storytelling With Code and
Data. Comput. Sci. Eng., 23(2):7-14, 2021.

Gronniger, Hans; Ringert, Jan Oliver; Rumpe, Bernhard: System Model-Based Definition of
Modeling Language Semantics. In: Formal techniques for distributed systems, S. 152-166.
Springer, 2009.

Gupta, Rohit; Kranz, Sieglinde; Regnat, Nikolaus; Rumpe, Bernhard; Wortmann, Andreas:
Towards a Systematic Engineering of Industrial Domain-Specific Languages. In: IEEE/ACM
8th Int. WS on Software Eng. Research and Industrial Practice (SE&IP). IEEE, 2021.

Haber, Arne; Look, Markus; Mir Seyed Nazari, Pedram; Navarro Perez, Antonio; Rumpe,
Bernhard; Volkel, Steven; Wortmann, Andreas: Integration of Heterogeneous Modeling
Languages via Extensible and Composable Language Components. In: Model-Driven
Engineering and Software Development Conf. (MODELSWARD’15). SciTePress, 2015.

Herrmann, Christoph; Krahn, Holger; Rumpe, Bernhard; Schindler, Martin; Volkel, Steven:
An Algebraic View on the Semantics of Model Composition. In: Conf. on Model Driven
Arch. - Foundations and Applications (ECMDA-FA’07). LNCS 4530. Springer, 2007.

Holldobler, Katrin; Kautz, Oliver; Rumpe, Bernhard: MontiCore Language Workbench and
Library Handbook: Edition 2021. Aachener Informatik-Berichte, Software Engineering,
Band 48. Shaker Verlag, May 2021.

Holldobler, Katrin; Michael, Judith; Ringert, Jan Oliver; Rumpe, Bernhard; Wortmann,
Andreas: Innovations in Model-based Software and Systems Engineering. The Journal of
Object Technology, 18(1):1-60, July 2019.

Holldobler, Katrin; Jansen, Nico; Rumpe, Bernhard; Wortmann, Andreas: Komposition
Dominenspezifischer Sprachen unter Nutzung der MontiCore Language Workbench, am
Beispiel SysML 2. In: Modellierung 2020. GI, S. 189-190, 2020.

Harel, David; Rumpe, Bernhard: Meaningful Modeling: What’s the Semantics of ”Seman-
tics”? IEEE Computer, 37(10):64-72, October 2004.

Johanson, Arne N.; Hasselbring, Wilhelm: Effectiveness and Efficiency of a Domain-
Specific Language for High-Performance Marine Ecosystem Simulation: A Controlled
Experiment. Empirical Software Engineering, 22(4):2206-2236, 2017.

Kelly, Steven; Lyytinen, Kalle; Rossi, Matti: Metaedit+ a fully configurable multi-user
and multi-tool case and came environment. In: International Conference on Advanced
Information Systems Engineering. Springer, S. 1-21, 1996.

Kautz, Oliver; Roth, Alexander; Rumpe, Bernhard: Achievements, Failures, and the Future
of Model-Based Software Engineering. In: The Essence of Software Engineering, S.
221-236. Springer, 2018.

Lin, Binshan; Hsieh, Chang-tseh: Web-based teaching and learner control: A research
review. Computers & Education, 37(3-4):377-386, 2001.

Teaching DSLs with JupyterLab 109

[Mal4]

[Ma20]

[PGO7]

[PG15]

[Pr21]

[Rel2]

[RGO2]

[Ro18]

[RTS19]

[Ru21]

[SBS20]

[St15]

[Sy13]

[Tel9]

Mardéti, Miklés; Kecskés, Tamas; Kereskéqyi, Roébert; Broll, Brian; Volgyesi, Péter; Juracz,
L4sz16; Levendovszky, Tihamer; Lédeczi, Akos: Next generation (meta) modeling: web-and
cloud-based collaborative tool infrastructure. MPM @ MoDELS, 1237:41-60, 2014.

Manzoor, Hamza; Naik, Amit; Shaffer, Clifford A; North, Chris; Edwards, Stephen H:
Auto-grading jupyter notebooks. In: Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. S. 1139-1144, 2020.

Pérez, Fernando; Granger, Brian E: IPython: a system for interactive scientific computing.
Computing in science & engineering, 9(3):21-29, 2007.

Perez, Fernando; Granger, Brian E: Project Jupyter: Computational narratives as the engine
of collaborative data science. Retrieved September, 11(207):108, 2015.

Prinz, Andreas: Teaching Language Engineering Using MPS. In: Domain-Specific
Languages in Practice, S. 315-336. Springer, 2021.

Reisig, Wolfgang: Petri Nets: An Introduction, Jgg. 4. Springer Science & Business Media,
2012.

Richters, Mark; Gogolla, Martin: OCL: Syntax, semantics, and tools. In: Object Modeling
with the OCL, S. 42-68. Springer, 2002.

Rodriguez-Echeverria, Roberto; Izquierdo, Javier Luis Cadnovas; Wimmer, Manuel; Cabot,
Jordi: Towards a language server protocol infrastructure for graphical modeling. In: 21th
ACM/IEEE Int. Conf. on Model Driven Engineering Languages and Systems. 2018.

Rosenthal, Kristina; Ternes, Benjamin; Strecker, Stefan: Learning Conceptual Modeling:
Structuring Overview, Research Themes and Paths for Future Research. In: 27th European
Conference on Information Systems - Information Systems for a Sharing Society, ECIS
2019, Stockholm and Uppsala, Sweden, June 8-14. 2019.

Rumpe, Bernhard; Michael, Judith; Kautz, Oliver; Krebs, Roland; Gandenberger, Sabine;
Standt, Janos; Weber, Uli: Digitalisierung der Gesetzgebung zur Steigerung der digitalen
Souverinitit des Staates, Jgg. 19 in Berichte des NEGZ. Nationales E-Government
Kompetenzzentrum e. V., June 2021.

Schlichthaerle, Stefan; Becker, Klaus; Sperber, Sebastian: A Domain-Specific Language
Based Architecture Modeling Approach for Safety Critical Automotive Software Systems.
In: Software Engineering Workshops 2020. CEUR-WS.org, 2020.

Staubitz, Thomas; Klement, Hauke; Renz, Jan; Teusner, Ralf; Meinel, Christoph: Towards
practical programming exercises and automated assessment in Massive Open Online
Courses. In: 2015 IEEE International Conference on Teaching, Assessment, and Learning
for Engineering (TALE). IEEE, S. 23-30, 2015.

Syriani, Eugene; Vangheluwe, Hans; Mannadiar, Raphael; Hansen, Conner; Van Mierlo,
Simon; Ergin, Huseyin: ATOMPM: A web-based modeling environment. In: Joint Proc. of
MODELS’13 Invited Talks, Demonstration Session, Poster Session, and ACM Student
Research Competition. S. 21-25, 2013.

Ternes, Benjamin; Strecker, Stefan; Rosenthal, Kristina; Barth, Hagen: A browser-based
modeling tool for studying the learning of conceptual modeling based on a multi-modal
data collection approach. In: Human Practice. Digital Ecologies. Our Future. 14. Interna-
tionale Tagung Wirtschaftsinformatik (WI 2019), February 24-27, 2019, Siegen, Germany.
University of Siegen, Germany / AISeL, S. 1984-1988, 2019.

110 Charles et al.

[TK16]

[Ul13]

[Va20]

[VP12]

[Wi96]
[Wo21]

Tolvanen, Juha-Pekka; Kelly, Steven: Model-driven development challenges and solutions:
Experiences with domain-specific modelling in industry. In: 4th Int. Conf. on Model-Driven
Engineering and Software Development (MODELSWARD). IEEE, S. 711-719, 2016.

Ulrich, Frank: Domain-Specific Modeling Languages: Requirements Analysis and Design
Guidelines. In: Domain engineering, S. 133-157. Springer, 2013.

Van Binsbergen, L Thomas; Verano Merino, Mauricio; Jeanjean, Pierre; Van Der Storm,
Tijs; Combemale, Benoit; Barais, Olivier: A principled approach to REPL interpreters.
In: ACM SIGPLAN Int. Symp. on New Ideas, New Paradigms, and Reflections on
Programming and Software. S. 84—100, 2020.

Voelter, Markus; Pech, Vaclav: Language modularity with the MPS language workbench.
In: 34th Int. Conf.e on Software Engineering (ICSE). IEEE, S. 1449-1450, 2012.

Wirth, Niklaus: Extended Backus-Naur Form (EBNF). Iso/lec, 14977(2996):2-21, 1996.

Wolschke, Christian; Marksteiner, Stefan; Braun, Tobias; Wolf, Markus: An Agnostic
Domain Specific Language for Implementing Attacks in an Automotive Use Case. In: 16th
Int. Conf. on Availability, Reliability and Security (ARES 2021). ACM, 2021.

	Introduction
	Preliminaries
	Challenges and Requirements for Teaching DSL Use and Engineering
	Using a MontiCore DSL
	Engineering a DSL with MontiCore
	Previous Approach to Teach DSL Usage and Its Engineering

	Related Work
	Learning Environments for Teaching DSL Usage and its Engineering
	Building the Jupyter Infrastructure
	Jupyter Notebook in SLE Teaching
	Using Jupyter Notebook for using a DSL
	Using Jupyter Notebook for the engineering of a DSL

	Lessons Learned and Discussion
	Conclusion

