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Developing a game Al for Murus Gallicus

Philip Wilson! Andrej Savinov? Annabella Kadavanich?

Abstract: The development of game Als has been a popular challenge in the last years. One of the
best game agents, AlphaZero, was developed by DeepMind in 2017 and superseded by MuZero in
2019. Both agents are based on algorithms that perfectly learn to play any game within not even
a day, given they are fed the game’s rules [Dal8]. The development of such game Als does not
necessarily require big computation centers like the ones Google has. In this work, we show how
to develop and implement a Murus Gallicus game Al using mainly GOFAI (Good Old-Fashioned
Artificial Intelligence) methods. We start with a comparison between different search tree algorithms,
including MiniMax, NegaMax, NegaScout (principal variation search) and show how transposition
tables can be used for optimization. Furthermore, we demonstrate the advantages of a dynamic value
function and time management while searching for the best move. Lastly, we evaluate the application
of Evolutionary Learning (EL), explaining how we trained specific parameters.
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1 Motivation

This project was part of a course at the Technische Universitéit Berlin called "Projekt KI:
Symbolische Kiinstliche Intelligenz"(Al Project: Symbolic Artificial Intelligence). This
means that we had no choice in the methods we implemented except for EL. Even though
Deep Reinforcement Learning methods are currently the best at playing board games and
even simple video games, it does not mean we should forget the old school methods that
went out of favor in the 1980s. MuZero still gets the same score as a random agent for some
Atari games like "Montezumas Revenge"where a combination of reinforcement learning and
symbolic representations may be needed to beat these games. In this project, we demonstrate
how to implement an Al for the game called Murus Gallicus (MG). MG is a board game
based on the walls of stone built by the Gauls against Roman aggressors in the Gallic Wars.
The game was invented in 2009 by Phil Leduc [Ph19]. We examine the advanced version of
MG, which also includes catapults in addition to walls and towers.
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MG is played on a 7 x 8 board. There are two players, each has 16 stones of their color,
where light represents the Romans and dark the Gauls. A tower consists of two stones
of the same color stacked on top of each other, while a single stone is called a wall. A
catapult consists of three stones of the same color, stacked on top of each other. At the start
of the game each player possesses a row of towers. The Romans start the game. On their
turn, a player may move a tower, capture with a tower or fire a catapult. Walls cannot be
moved. Towers can move to any straight direction, orthogonal or diagonal. Both stones
are removed from the starting square and placed, one each, on the next two squares of
the chosen direction. Destination squares may not be occupied by adversarial pieces or
friendly catapults. If a destination square is occupied by a friendly wall it becomes a tower,
and if occupied by a friendly tower it becomes a catapult. Towers can capture an adjacent
adversarial wall by sacrificing one of its stones. Both stones are then removed from the
board. Towers can downgrade an adjacent adversarial catapult to a tower by sacrificing one
of its stones. Two stones are removed in total, one of the attacking tower’s stones and one of
the defending catapult’s stones. Similarly, towers can downgrade a catapult to a wall, by
sacrificing two stones in total. Catapults can throw one of their stones two or three spaces
away in all five forward directions into an empty or opponent occupied cell. The player who
places a wall on the opponents home row wins the game. If a player cannot make a valid
move anymore he loses the game.
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Fig. 1: Exemplary game state (right) showing in which directions a tower can move (left) Source:
http://www.iggamecenter.com/info/de/murusgallicus.html, last visited on 15.07.2020

Even though an empirical analysis was not performed, our intuition is that the state and
action spaces are smaller than in chess. Unconstrained by the board all possible actions are:
a tower can move in eight directions or capture any adjacent enemy wall or downgrade a
catapult, and a catapult can fire towards six different locations. Every one of these moves,
except the tower move, are guaranteed to reduce the action space, as pieces are either lost or
walls are created which have no moves. As there are only seven types of states a square can
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have (empty or wall, tower or catapult of either colour) compared to 13 states in chess, and
as the board is 7x8 and not 8x8, we also believe the state space to be smaller.

2 Tree search algorithms

This paper is part of an university project at TU Berlin, consisting of different student
groups who developed their own game Al. In total seven groups participated. During three
milestones (MS), and one pre-milestone, all game Als competed against each other in a
contest simulation environment. During each contest each move had a time limit, therefore
the Al that made the smartest cutoffs (using alpha-beta pruning [BMO1]) and could search
the game tree the deepest, generally won the contest. Therefore, this chapter is dedicated to
introducing and comparing different search tree algorithms.

2.1 Minimax

MiniMax is the standard algorithm for two player perfect-information games such as MG. It
searches forward to a fixed depth in the game tree, limited by the amount of time available
per move. Then, a heuristic evaluation function is applied, which takes a board position and
returns a number that indicates how favorable that position is for one player relative to the
other. One player, called MAX, seeks to maximize this number, whereas the other player,
called MIN, seeks to minimize it. Finally, it recursively computes the values for the interior
nodes in the tree according to the maximum rule. The value of a node where it is MAX’s
turn is the maximum of the values of its children, while the value of the node where MIN is
to move is the minimum of the values of its children [Po89].

2.2 TIterative Deepening Negamax

NegaMax [A190] search is a variant form of the MiniMax search algorithm. We have
chosen it in order to simplify the implementation of the MiniMax algorithm. NegaMax
takes advantage of the zero-sum property of MG. In other words, the value of a position
for MAX is the negation of the value for MIN. Instead of MAX selecting the move with
the maximum-valued successor and MIN selecting the move with the minimum-valued
successor, they both look for a move that maximizes the negation of the value resulting from
the evaluation function.



4 Philip Wilson, Andrej Savinov, Annabella Kadavanich

2.3 NegaScout: Principal Variation Search

NegaScout is a directional search algorithm for computing the MiniMax value of a node in
a tree. It is said to be faster than NegaMax with alpha-beta pruning [BM99]. This is true
also for our MG Al (see Fig. 2). In our implementation we use a null window to reduce the
amount of nodes that need to be computed. We used move sorting and only searched the
best move with a full window, all other moves were searched using null windows. Though
this can be risky, theory shows [Ma86] that if the null window value is bigger than the alpha
value and smaller than beta then the move could possibly have a better value and therefore
should be searched using a bigger window. If such a situation appeared, another NegaScout
computation using a bigger window was calculated.

2.4 Transposition Tables with zobrist hashing

It is possible to arrive at the same game state through different combinations of moves
[BUHT70]. To avoid calculating the value of the state more than once, the values are stored
in Transposition Tables (TT) [BTWO0O]. To increase the search speed during lookups, we
also implemented zobrist hashing [JF16]. The depth, at which each value was discovered,
is also stored in order to give priority to states whose value was calculated with a larger
subtree (the ones with lower depth). When the table fills up, less-used states are removed to
make room for new ones.

Fig. 2 shows a comparison of the computed nodes using NegaMax, NegaScout without
TT and NegaScout with TT. The x-axis describes the tree depth that was used and the y-axis
the amount of nodes that were computed. Taking the average amount of nodes for several
different fen strings, we found that NegaScout generates on average almost twice as many
nodes as NegaMax and it only takes less than half of the time doing so. Using NegaScout
with TT we could decrease our computation time and therefore reach another speed up.
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Fig. 2: Comparison of NegaMax, NegaScout without TT & NegaScout with TT for 2 FEN Strings
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Comparing the computation time, using NegaScout is 1.5 times faster than NegaMax
in average. Furthermore, we noticed that on average NegaScout with TT is 2.9 times
faster than NegaMax. Also the direct comparison of NegaScout with TT and NegaScout
without TT showed, that not using TT almost doubled the computation time. These
calculations are based on measuring the time and amount of computed nodes for all three al-
gorithms for approximately 20 different FEN strings and then computing the arithmetic mean.

2.5 Value Function

Besides optimizing the search tree algorithm, our most challenging task while developing
the game AI was to design a good value function [RA10]. In our implementation we started
with a basic value function, only consisting of a Piece-Square Table [CP20] (PST) and then
progressively added the following five features:

1) Amount of towers > amount of walls, 2) amount of catapults > amount of walls, 3)
mobility 4) Dominance of the middle row and lastly, 5) giving or taking points, depending
on whether the amount of our towers is larger than the amount of enemy towers. We adjusted
the parameters by adding weights that could easily be changed. With this dynamic value
function we were able to win almost all games against the other groups at the second
milestone. Furthermore, we had implemented a better defense strategy that forced our Al to
build a row of defensive towers in the middle of the board using our PST. Once this position
was achieved we deactivated the use of PST and played more aggressively towards the
winning line of the opponent. Since each game only consisted of 120s we did not re-activate
the PST in case the defense border was destroyed as there was no time to rebuild it. In
addition, we implemented a panic mode that got activated once our time limit dropped below
a certain threshold. In panic mode the search depth was decreased and a more aggressive
play-style was activated.

2.6 Summary

We examined different features in order to develop a good MG Al. We started with very
simple features and core functions, e.g. the implementation of a move generator and bitboards
in MS1. Our value function at that time was only the PST and we used NegaMax with
alpha-beta pruning as our main search tree algorithm. Our time management was static and
we would always search depth five without any panic mode. Moving forward to MS2, we
implemented NegaScout with a null window, we adapted our static time management to a
dynamic one, added a panic mode and variable search depths. We also started implementing
TT with Zobrist Hashing which improved our computation time Most important for MS2
was also the change of our value function. Instead of only having two PSTs we added six
tables, three for each player and one table for each material (Materials: wall, tower, catapult).
In addition, our value function was changed to be a linear combination of seven parameters.
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The analysis of the contests in MS1 and MS2 showed that all Als played without any
variations, leading to two adversarial Als always playing the same game against each other
repetitivly. To create a more dynamic value function, some type of learning would be helpful.
Therefore, we tried using Machine Learning (ML) techniques of our choice to improve the
performance of our AI. We implemented Evolutionary Learning (EL) since there was no
MG training data available. In the next chapter we will explain, why we chose this technique,
how we trained our Al, which challenges we faced and how our Al performed in the last
MS3 contest.

3 Evolutionary Learning

EL [Ri01] is inspired by the evolutionary processes happening in nature. Therefore, every
evolutionary algorithm needs a fitness function. A function used to compare organisms in
order to decide which ones survive and which ones will pass their genes on to the next
generation. As we had no datasets to train this fitness function with, we had to establish
the fitness function by means of playing numerous games between the organisms in each
generation (SPC) regardless of its impracticality [Da09].

3.1 Parameter Adjustments

The first parameter we had to decide on was the population size. Our initial population size
for each epoch was ten. In the following, game Als are referred to as so called Individuals.
Furthermore, we decided to only train one parameter at a time. We chose to start with the
material values (wall, tower, catapult), since other values were more complex to train (e.g.
PSTs). Every Individual in the population had different material values in order to ensure
variation. Our contest Al from MS2 was also part of the population. We chose
Round-Robin (RR) as the tournament mode. We also considered K.O. tournaments as they
finish faster than RR and we hoped to speed up our training.

3.1.1 Crossover

We set the probability for a crossover to 10-15%. When we used these low values the
improvement of our population was very slow. Since we only had three weeks of training
time, until the next MS contest, we increased the value to 80%. This allowed us to create
more variance and speed up our training time.

The crossover was implemented in the following way: First, we determined the current
best Individual based on the win rate. This way of selection is called elitism [TD94]. We
perform a crossover on all Individuals, except our MS2 Al and the selected current best
Individual. The new material values were calculated as follows: we randomly chose four
Individuals of the whole population and select the best Individual from this group (again
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using the win rate). Next, this step was repeated. In this way, we selected two Individuals.
This type of selection is called tournament selection [Ge20]. It is possible — though rare
— that the same Individual is selected twice in this process. If this happens, we randomly
re-selected another Al. Next, we created a new Individual object by summing up the material
parameter of both Individuals from the tournament selection and dividing this number
by two. We did this separately for the wall, the tower and the catapult parameter. This
tournament selection process is repeated until a new population of eight Individuals is
created (assuming that the best Individual of the population was not our MS2 AI). Then we
added the best Individual and our MS2 Al to the new population and therefore had a new
population of ten Individuals again, used for training the next epoch.

3.1.2 Mutation

Our mutation process was similar to the crossover (see 3.1.1). The probability was set to
50%. Normally in EL this parameter is very low (< 5%) [Go89] but as we only had limited
time and needed to speed up the training process we increased the probability.

Again, we implemented a variation of elitism selection. For each Individual — except the
Individual selected by elitism and our MS2 contest Al — we randomly choose the material
value for mutation. We then overwrote this value by adding a random ranged offset to the
current value of the Individual. This step was repeated until all Individuals mutated.

3.2 Material Parameter

We spent about two weeks setting up our training environment (implementing the classes,
controlling our memory overflows, optimizing the parameter and the crossover, see 3.1.1 &
3.1.2) and in parallel, started training the weight parameters that are multiplied with the PST.
We noticed that after approximately 20 generations our population would start to converge
and no further improvements were made. Since this happened continuously for different
populations we decided to move on and train other parameters.

In summary, we did find three Individuals that were able to win against our MS2 Al. We
also tested these three Individuals in a local contest against the MS2 AI’s from the other
groups. We had slightly better scores than in MS2. In total, the results were not satisfying
and also did not mirror the effort and time we had spent on the training of the parameter.
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3.3 Piece-Square Table

We also decided to try training the PST parameter. Instead of just training the material factor
of the PST, we trained every index of the PST list. Mutation and crossover rate was the same
as in section 3.1.2 and 3.1.1. As we could not see any significant progress after one week,
we decided to stop training these parameters and moved on and implement Monte Carlo
Tree Search (MCTS) (see 3.4). We assume that the amount of parameters (3 x 56 indices, 3
PST per player) was too high and therefore much longer training time and a better GPU
infrastructure would have been needed in order to effectively train the PST parameter. The
value range of each index of the PST that we tried to train was also very large. Therefore
we had to limit the random mutation offset to be in between the range of [-200, 200]. This
limitation caused less variance and maybe prevented us from training more efficient PST,
but was a necessary trade-off regarding the lack of having a GPU cluster infrastructure for
the training. Furthermore, the probability of finding a good PST is very low as there are
dependence between the list parameters.

3.4 Monte Carlo Tree Search (MCTS)

We had expected to have more success with our SPC, so we decided to try an algorithm
which could improve performance without relying on a dataset. The MCTS is based on
playouts. In each playout a MG game is played until the very end by selecting moves
randomly. The final result of this game is used to weight the nodes so that better nodes are
more likely to be chosen in future playouts [JKR17]. Due to time limitation, we only used
MCTS for the first couple of moves as an opening book [NHI06] and then continued with
the NegaScout algorithm.

3.5 Summary

Overall the results were not as good as we would have expected. As there was no training
data we wanted to find out if SPC could lead to sufficient results. With a training period of
only four weeks — including setup and implementation — we discovered that for MG only
minimal improvement was possible. Furthermore, isolating and training parameters and
then putting them back together lead to strange results sometimes. We believe this was
caused by dependencies among the parameters. In total, none of the other groups was able
to significantly increase their game Al performance using EL.

Yet, EL has the potential to be used to increase the performance of game Als. Studies of
Omid et al. show that by using EL for chess, good value functions can be derived [Dal4].
In contrast to our work, they had an initial population of size 100, crossover rate was only
75% and mutation had a probability of 0.5%. They evaluated 200 generations. We believe
they had better results with EL than we did, because the initial evaluation function of the
population was derived from actuals moves of grandmaster-level games. As future work,
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we would spend more time on MCTS. Assuming there were MG datasets, Koppel et al.
[Da09] suggests to train a certain amount of Als with the help of a fitness function. This
fitness function was based upon the MG datasets. SPC was then performed on these Als to
determine the fittest one of them. This paper shows that SPC can be useful, if the initial
population has been selected or trained before hand (and not random as we did).

4 Performance & Contest Results

In this chapter we will compare our performance during all three MS contests. We will
mainly compare our results against the average performance of the other groups as a
benchmark. We will not only measure our Al by counting the games that were won, but also
have a look at the amount of rounds we were able to play and the minimum and maximum
computation time per move. All together we will then try to measure the quality of our MG
AL

4.1 Overall Contest Performance

Overall our Al continuously improved during all three milestones. Fig. 3 — left, shows the
amount of won games in percent (y-axis) relative to the total amount of played games for
each MS (x-axis). Our Al did improve about 30% in between MS1 and MS2. On MS3
we had several different contest settings (Tournament mode, time per move, loading / no
loading of opening books) and therefore a direct comparison is not possible.

Fig. 3 — right, shows the average amount of moves per game. In MS2 we were able to
play five more moves per game on average compared to the other groups. As shown in
chapter 4.1 the amount of won games was also improved in MS2. Therefore we conclude,
that not only did we play longer games, but also win more games and therefore improved
the performance of our Al

4.2 Minimum & Maximum Time per Move

We also compared our minimum and maximum time per move with the average time of
the other groups. Fig. 4 shows the minimum (left) and maximum (right) computation time
(y-axis) per MS (x-axis). We see, that our minimum time was 0 ms for every milestone
contest. In contrast, our maximum computation time was below average which means we
could have used our time more efficiently. In MS1 and MS2 we used approximately 5 ms
per move, in MS3 we were able to triple the move selection time to 15,162 ms. Further
improvements for our Al would therefore be the implementation of a more efficient usage
of the computation time.
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Fig. 4: Minimum (left) & maximum (right) time per move, MS1-3.

5 Conclusion

As shown in section 4.1 our Al was always performing on average or better than the other
groups. The Als we submitted at each MS were always competitive — they were able to win
at least several games in each tournament. All the features that we implemented showed
visible performance improvements. We reduced the amount of computed nodes using
a combination of NegaScout and TT. Also, we could show in 4.2, how we adapted our
time management to efficiently use the available time in each MS. For further work and
improvements we would suggest speeding up the computation time in order to search deeper
in the game tree. This could be realized by optimal selection of TT entries. For example,
recognizing which positions are more likely to appear again. In addition, we would debug
and complete our MCTS implementation in order to create more efficient opening book.
Regarding the dynamic time management, we would try using a heuristic by using the
branching factor to determine if we are able to search deeper.
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Overall, the project showed us how important, but also difficult, it is to design an efficient
value function. We also noticed that dependencies between different features can become
very ineflicient if there is a lack of computational power or time. The strongest game Als,
like AlphaZero, do not depend on manual value functions as they operate on zero game
knowledge. It is important to find algorithms that work without data sets because we can not
assume their availability in real life scenarios. Therefore, using AlphaZero on MG could be
a promising alternative to the approach we followed in this project.
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