Transforming XML Schemasinto Java Swing GUIs

Patrick Lay, Stefan Luttringhaus-Kappel
Institut fur Informatik I11, Universitdt Bonn
{lay,stefan}@iai.uni-bonn.de

Abstract: When designing an XML-based Web Content Management System (WCMS),
one usually has to define and maintain two separate entities just for the editorial part:
the database schemes (in form of XML Schema instances) on the one hand and the
graphical user interfaces (GUISs) for data maintenance on the other hand.

In this paper we present a method for generating the GUIs automatically from
the XML Schema instances, thus the GUI can be specified in a declarative, implicit
way. The target platform is Java Swing. Our transformation is based on compile-time
generated templates and the XML persistence feature of Java 2.

1 Introduction

The developer of a database application like an XML-based WCMS has to carry out two
separate tasks, i. e. define the data schemes for the data first and then create a suitable GUI
for inserting, editing and deleting the data. This comprises a large overhead, as Myers et
al showed in [MR92] where they found out that, statistically, an average of 48% of the
written code and nearly half of the design, implementation and maintenance time during
development is associated with GUI creation and maintenance.

Thinking of a book database, for example, one first has to define a XML Schema which
describes the fields (like author or title) and then implement a GUI which enables users to
work with that data. Furthermore, it should be possible to access a WCMS with various
clients like standalone applications, web browsers or PDAs. Therefore, in the straightfor-
ward approach, one has to implement many different GUIs.

In this paper, we show how to automatically generate a GUI from schema data, thus saving
the effort of creating the GUI manually. Another benefit is that if the schema changes
(e. g. when new fields are added to the schema), the GUI can be re-generated very easily.

XML-based languages are gaining more and more influence and XML-based GUI descrip-
tion languages like XHTML, XForms or WML are also understood by most clients. While
generating (X)HTML and WML GUIs out of the corresponding XML Schema can be ac-
complished in a relatively easy way using XSLT stylesheets, we show that more sophisti-
cated Java Swing GUIs can also be generated and that the XML serialization features of
Java 2 are useful towards that aim.

Simple XHTML GUIs offer easy access since no extra software is needed, while a Java
Swing GUI offers more flexible and sophisticated input capabilities that browser-based
forms can not provide. Furthermore, standalone GUIs offer immediate response (e. g. in

271

case of erroneous data entry) while browser-based GUIs often require the interaction with
the server, for example to display error messages. example. Obviously, both approaches
have their advantages and disadvantages.

We focus on GUIs for data maintenance, i. e. inserting, editing and deleting data, since
the generation of arbitrary complex GUIs requires the specification of various declarative
models (e. g. domain, presentation and task model, see [SE96]), thus it cannot be covered
in whole by automated processes based on just schema data.

The rest of this paper is organized as follows: Section 2 presents the basic idea behind
our approach, i. e. the generation of a Swing GUI from XML Schema data. In section 3
we extend this approach by introducing a template mechanism. The paper closes with an
overview of related work and final conclusions.

2 From XML Schematoa GUI

Since XML Schema itself is written in XML, it is easy to use XSLT stylesheets to trans-
form schema documents into other XML languages. By using different stylesheets, we
can generate XML-based GUIs for XHTML and WML in a straightforward way®.

But on some occasions the functionality of the above mentioned mechanisms (like XForms)
may not be sufficient for the input task at hand. These forms, for example, use a static lay-
out of input elements?. Many of these restrictions can be overcome by using a Java Swing
GUI, which can provide more functionality and more flexible input capabilities. In the fol-
lowing we present a way to automatically generate Java Swing GUIs from XML schemas
using XSLT stylesheets.

Sun’s Java JDK 1.4 introduced a new persistence scheme which allows the serialization of
arbitrary JavaBeans into an XML file. Such a file can, in turn, be deserialized into Java
objects in a Java application running in a different address space [Mi02].

The basic idea is that we generate the serialized XML representation directly from the
XML Schema using an XSLT stylesheet, i. e. we only use the deserialization functionality
of the JDK. This way, the serialized beans are sent to the client which, in turn, deserializes
them to display the GUI. The advantage is that the actual Java classes have to be transferred
to the client only once while the much smaller and most up to date GUI description can be
transferred, for example, once for every session.

When designing a Java Swing GUI, it is reasonable to split up the GUI into separate
communicating components. There can be, for example, several swing elements for one
XML element, accompanied by one or more instances of controlling classes. In particular,
we build three trees of different components:

e the content, i. e. the actual XML data, is managed in an XML DOM tree,
e the Swing GUI elements are stored in a swing tree, and

Iwith HTML forms, for example, or the more sophisticated XForms
2A commonly used workaround is to use JavaScript, but this solution is inadequate because it involves unex-
pected behavioural inconsistencies between different browsers.

272

o the controller objects, also organized in a tree, set up the various structures and keep
them synchronized.

So this is nothing but a straightforward application of the successful Model-View-Control
(MVC) design pattern [KP88]. Here the model corresponds to the DOM tree, the view to
the swing tree and the controller to the control structures, respectively.

Consider the following Schema, which is shown here in EBNF-like notation (for the sake
of simplicity and readability, since XML Schemas tend to get lengthy):

Books — Book*

Book — Title Authors Year Type
Authors — Author™

Type — Online | Printed

Year is of type xsd : integer while Title, Author, Onlineand Printed are of type xsd : str:

When generating the GUI, the system can use specialized input fields depending on the
data type. In our example, the input field for “Year” permits only numerical input. Since
the view is independent of the model, many different GUI elements could be generated
for every XML element, like progress bars, spinners, or sliders. The only requirements for
components are that they are JavaBeans, and that they implement the relevant interfaces.

In our example, every complex type has one the following three basic structures:

1. Sequence, e.g. P — abc, i. e. consecutive elements, denoted by the xsd : sequence
element

2. Repetition, e. g. B — b*, i. e. elements that occur n times (with 0 < min < n <
maxr < oo), specified by the minOccurs resp. maxOccurs attributes of the
schema.

3. Alternative, e.g. D — (e|f), denoted by xsd: choice elements

For simplicity, we restrict the following discussion to these basic cases, which cover many
real-world examples. The extension to arbitrary XML Schema particles, from which any
complex type can be assembled, is straightforward.

Sequences can be handled by simply concatenating the input fields while the other two
constructs require the insertion of additional GUI elements like “add” and “delete” buttons
to add and remove elements in a repetition, or selection buttons for alternatives.

All simple XML Schema types like xsd:integer or xsd:string are mapped di-
rectly to (possibly specialized) input fields like JTextField.

All XML Schema types, both complex and simple, are transformed into Swing compo-
nents by a regular XSLT stylesheet. In order to modify the generation process, e. g. replace
the default Swing elements (a JSpinner instead of a numeric text field) or add addi-
tional elements (a JLabel with additional descriptions), we could modify the stylesheet
directly. This is, however, not desirable since we wish to keep the stylesheet generic to
handle all cases. The solution is to provide an annotation system, i. e. the generation pro-
cess can be altered by adding annotations to the schema. For instance, consider the schema
entry for the Year element:

273

<xsd:element name="Year" type="xsd:integer"/>

Suppose we wanted a class named Widget instead of the default JTextField for this
element, all we would have to do is to add an annotation to the schema (gen: input):

<xsd:element name="Year" type="xsd:integer" gen:input="Widget

3 Templates

As the structure of the GUI can change at runtime, some components cannot be generated
statically at generation time. In our book example, it is unknown a priori how many author
fields will be needed. It is, however, not necessary to compute all components and their
interconnections at runtime. Instead we use templates computed at generation time, which
are instantiated at runtime, possibly many times. A template represents a single element
in the XML document and consists of:

model: a reference to a DOM node of the document being edited,

swing (sub)tree: represents the view, e. g. a JTextField, or a more complex assembly
of several Swing components,

controller: manages the business logic of the element, i. e. it knows about its content
model and has references to the relevant portions of both the DOM model and the
Swing tree. The controller also handles events like the user pressing add/delete
buttons.

At generation time, a template is generated for every element in the corresponding XML
Schema file and stored in a template library.

During runtime, the appropiate templates are instantiated from the template library. For
elements of type 2 (repetitions), minOccurs entries are generated, while the other types
are generated only once (since both minOccurs and maxOccurs default to 1)

Templates are also instantiated and inserted, for example, if the user presses the “Authors:
add” button. In this case a whole new book record is instantiated and appended. When
pressing a “delete” button, the corresponding components are deleted.

By default, templates are chosen by name and type of the XML Schema element, but a
different template can be specified via an annotation. In a similar fashion, help texts can
be encapsulated in templates and displayed at appropiate places in the GUI.

4 Related Work

Most GUI generation processes (see the Seeheim-Model in [Gr84] or other model-based
approaches in [SE96], [SSC*95] or [Ba93]) have in common that they expect a GUI model
explicitly, i. e. that a designer does this manually. Here lies the major difference to our

274

approach, where the GUI is only described implicitly through the XML Schema, so one
manual step in the implementation process becomes superfluous. The “fully” model-based
approaches mentioned have been proven to be too inflexible[Pu96]. An overview over
declarative models can be found in [dS00].

In [LCO1], Luyten and Koninx presented an XML-based approach for generating user in-
terfaces, which also lacks the fully automatic generation from schema but relies on writing
the GUI specification in an XML language explicitly.

An alternative to the XML serialization mechanism that we use in our approach is SwingML[C
Here, the Swing GUIs are described in a separate XML-based language. Like in our ap-
proach, such description files are usually generated by the server and then sent to the client
which renders it. An advantage of XML serialization is the generality, i. e. every Swing
element can be utilized while in SwingML any Swing element that is not covered in the
specification resp. the renderer cannot be displayed, for example user-defined GUI ele-
ments. On the other hand, SwingML documents are easier to read for humans. This is
not important for our use case, though, since the GUI descriptions are usually processed
automatically.

Several diploma theses written in our workgroup investigated related fields, e. g. the gen-
eration of GUIs elements for the web browser Mozilla ([Ko03])

5 Conclusions and future work

We presented an approach for automatic generation of GUIs for data maintenance in
WCMSs that makes the explicit specification and implementation obsolete. The main idea
behind this approach is that the GUI is generated from the XML Schema data, with the op-
tional addition of annotations. In a first step, this is pretty straightforward for XML-based
GUI languages like XHTML or WML, while the generation of more sophisticated GUIs
like Java Swing requires some more work. We achieved this goal by utilizing the XML
persistence for JavaBeans and implemented a template-based system to handle repetitions
and choices. These templates put the MV C design pattern into practice by separating the
model, view and controller in suitable Java classes.

Our system is capable of generating sophisticated editing masks for XML data just from
schema data automatically, thus saving the extra effort for explicitly designing them. Our
approach is very flexible because arbitrary XML Schemas can be transformed into a Swing
GUI for data maintenance, i. e. there is no restriction on the input. On the client side,
Swing GUIs provide a sufficient amount of input elements which could be easily extended
if needed.

There are some aspects that we will concentrate on in the near future: to begin with, we will
extend our collection of useful GUI component for various data types in different contexts
with some emphasis on ergonomic aspects (see, among others, [Ni93]). Secondly, we will
further refine the annotation system.

Finally, one of the topics we are currently investigating is the generation of XML Schema

275

from sophisticated object-oriented models, thus eliminating the need to write relatively
low-level XML Schema definitions manually.

References

[Ba93]

[Cu04]
[dS00]

[Gr84]

[K003]

[KP88]

[LCO1]

[Mi02]

[MR92]

[Ni93]
[Pu96]

[SE96]

[SSCT95]

Balzert, H.: Der JANUS-Dialogexperte: vom Fachkonzept zur Dialogstruktur (in Ger-
man). In: Doberkat, E.-E. (Hrsg.), Proceedings der Gl-Fachtagung Softwaretechnik 93.
S. 62-72. Dortmund, FRG. November 1993.

Cuellar, E. SwingML. 2004. http://swingml.sourceforge.net/.

da Silva, P. P.: User Interface Declarative Models and Development Environments: A
Survey. In: Palanque, P. und Paterno, F. (Hrsg.), Proceedings of DSV-1S2000. volume
1946 of LNCS. S. 207-226. Limerick, Ireland. June 2000. Springer-Verlag.

Green, M.: Report on dialogue specification tools. j-CGF. 3(4):305-313. December
1984,

Kohlhaas, C.: Pflegeoberflachen fiir Internet-Informationssysteme (in German).
Diploma thesis. Department of computer science 111, Rheinische Friedrich-Wilhelms
University Bonn. 2003.

Krasner, G. und Pope, S.: A description of the model-view-controller user interface
paradigm in the smalltalk-80 system. Journal of Object Oriented Programming. 1(3):26—
49. 1988.

Luyten, K. und Coninx, K.: An XML-based runtime user interface description language
for mobile computing devices. Lecture Notesin Computer Science: Interactive Systems:
Design, Specification, and Verification: 8th International Workshop, DSV-1S2001. Glas-
gow, Scotland, UK. 2220:1-15. 2001.

Milne, P. Long term persistence of javabeans components: XML Schema. Sun Mi-
crosystems Inc. 2002.
http://java.sun.com/products/jfc/tsc/articles/persistence3/.

Myers, B. A. und Rosson, M. B.: Survey on user interface programming. In: Proceed-
ings of SGCHI’92: Human Factors in Computing Systems. May 1992.

Nielsen, J.: Usability Engineering. Academic Press. 1993.

Puerta, A.: Issues in automatic generation of user interfaces in model-based systems. In:
Vanderdonckt, J. (Hrsg.), Proceedings of the 2nd International Workshop on Computer-
Aided Design of User Interfaces (CADUI’ 96) Namur, 5-7 June 1996. Proceedings of the
2nd International Workshop on Computer-Aided Design of User Interfaces (CADUI’96)
Namur, 5-7 June 1996. 1996.

Schlungbaum, E. und Elwert, T.: Automatic user interface generation from declarative
models. Workshop of Computer-Aided Design of User Interfaces. 1996.

Szekely, P. A., Sukaviriya, P. N., Castells, P., Muthukumarasamy, J., und Salcher, E.:
Declarative interface models for user interface construction tools: the MASTERMIND
approach. In: EHCI. S. 120-150. 1995.

276

