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Abstract: This paper addresses maintenance of materialized views in a warehousing
environment, where views reside on a remote database. We analyze so called Change
Data Capture techniques used to capture changes (also referred to as deltas) at the
source systems. We show that many existing CDC techniques do not provide com-
plete deltas but rather incomplete (or partial) deltas. Traditional view maintenance
techniques, however, require complete deltas as input. We propose a generalized tech-
nique that allows for maintaining a class of materialized views using partial deltas.

1 Introduction

Materialized views are used to pre-compute (intermediary) query results to speed up query

evaluation [GM95]. Upon updates to the base data, materialized views need to be main-

tained to regain consistency. Assuming that updates affect just a small part of the base

data, it seems wasteful to maintain a view by recomputing it from scratch. It is often

more efficient to compute only the changes required to update the view. This approach is

referred to as incremental view maintenance.

The concept of materialized views has been applied in distributed environments, where

base tables and materialized views reside on different machines connected by a net-

work [ZGMHW95, ZGMW98, AASY97, AAM+02]. A machine hosting materialized

views is usually called data warehouse (DWH). In a DWH environment, views are typi-

cally maintained in a deferred manner, i.e. deltas are gathered at the sources and propa-

gated periodically in batches.

It has been shown that traditional view maintenance techniques can be applied in DWH

environments. However, since global transactions are prohibitively expensive, special

care must be taken w.r.t. synchronization. Previous research focused on this aspect only

(cf. Sec. 6).

Our work addresses an orthogonal problem. In a DWH environment, so called Change

Data Capture (CDC) techniques are used to gather deltas at the source systems [KC04].

The captured deltas are often partial (or incomplete). Partial deltas may lack attribute val-

ues – the initial state of an updated tuple may not be available, for instance. Furthermore,

the type of partial deltas may be uncertain, i.e. inserted tuples may not be distinguishable

from updated ones.

The reasons for deltas being partial are twofold. First, there are CDC approaches that

cannot deliver non-partial (or complete) deltas due to principal restrictions. Second, the
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CDC process may become more efficient if partial deltas are acceptable. Traditional view

maintenance techniques, however, require complete deltas and cannot be used in such an

environment. In this paper we give answers to the following questions: Is it possible to

maintain materialized views using partial deltas? How can traditional view maintenance

techniques be generalized such that partial deltas can be propagated?

The remainder of this paper is organized as follows. In Sec. 2 we give an overview of CDC

techniques used in practice. We explain why many CDC techniques provide partial deltas.

Traditional view maintenance techniques presume the availability of non-partial deltas

and thus, cannot be applied in many DWH setups. Hence, we aim at generalizing these

techniques such that partial deltas can be propagated. To this end, we propose a formal

model for partial deltas in Sec. 3. This model will provide a basis for our generalized

update propagation approach. In Sec. 4 we discuss techniques to apply partial deltas to

materialized views. In Sec. 5 we first review a view maintenance algorithm by Griffin

et al. based on algebraic differencing, which provides the basis for our work. We then

discuss view maintainability in the context of partial deltas. As we will see, views cannot

be maintained using partial deltas in general. However, we will identify an important

class of views, which we will call dimension views, that is maintainable here. In the

remainder of this section, we show how the Griffin et al. algorithm can be generalized for

the propagation of partial deltas. We discuss related work in Sec. 6 and conclude in Sec. 7.

2 Change Data Capture

Change Data Capture (CDC) is a general term for techniques that gather change infor-

mation (or deltas) at source systems [KC04]. We analyzed existing CDC modules and

identified four main approaches, namely utilization of audit columns, log-based CDC,

change tracking, and computing snapshot differentials.

Audit columns: Source systems may maintain dedicated columns (so called audit

columns) to store timestamps or version numbers for individual tuples. Whenever a tu-

ple is changed, it is assigned a fresh timestamp. Audit columns can serve as selection

criteria to retrieve tuples that have been updated since the last CDC cycle.

In its most simplistic form, a single audit column is appended to each base table. A new

timestamp is assigned whenever a tuple is either inserted or updated. Hence, insertions

cannot be distinguished from updates when deltas are extracted. To work around this lim-

itation, two audit columns can be appended to base tables. The first audit column is used

to store the time of insertion while the second stores the time of the last update. However,

deletions remain undetected when tuples are physically deleted. Tuples can instead be

logically deleted by adding yet another audit column to store the time of the (logical) dele-

tion. However, CDC techniques backed by audit columns are generally unable to capture

the initial state of updated tuples. This is obvious considering that updates are performed

in-place and previous values are overwritten.
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Log-based CDC: Source systems may keep a log of changes that is appended in the

event of an update. Several implementation approaches for log-based CDC exist: If the

source system provides active database capabilities such as triggers, deltas can be written

to dedicated log tables. Log-based CDC can also be implemented by means of application

logic. Database log scraping is another common CDC approach. The idea is to exploit

the transaction logs kept by the database system for backup and recovery. Deltas can be

extracted using database-specific utilities.

Log-based CDC mechanisms are generally capable of providing complete deltas. How-

ever, their efficiency can be improved if partial deltas are acceptable. For view mainte-

nance the so called net effect of changes is required as input. To obtain the net effect, the

change log needs to be post-processed. When a tuple has been changed multiple times,

the effects of these changes are combined to produce a single delta tuple. If a tuple has

been inserted and subsequently updated, for instance, a delta tuple of type insertion with

the updated values is produced.

The net-effect computation is more efficient if partial output deltas are acceptable. The

following quote has been taken from the SQL Server 2008 documentation on the change

capture feature [Mic].

Because the logic to determine the precise operation for a given change

adds to query complexity, this option is designed to improve query perfor-

mance when it is sufficient to indicate that [...] the change is either an insert

or an update, but it is not necessary to explicitly distinguish between the two.

Note that not being able to distinguish between insertions and updates means that the initial

state of updated tuples is also not available.

Change Tracking: Change Tracking is an alternative change capture feature of SQL

Server 2008 built into the database engine [Mic]. Change tracking is being advertised

as light-weight change capture solution that offers better scalability than audit column or

trigger-based solutions.

Change tacking is done by making a note of the primary key of the tuple that changed,

along with the type of the change (insert, update, or delete) and a version number in an

internal table. To retrieve deltas, the change tracking table needs to be joined to the corre-

sponding base table, because it does not store any non-key attributes. More precisely, an

outer join needs to be used, because deleted tuples are no longer found in the base tables.

Thus, deltas produced by change tracking do not contain any information about deleted

tuples except for the primary keys. Furthermore, the initial state of updated tuples cannot

be reconstructed, because it has been overwritten in the base table.

Snapshot Differentials: Legacy and custom applications often lack a general purpose

query interface. However, it is often possible to dump a system snapshot into the file

system. Deltas can then be inferred by comparing successive snapshot files.
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Figure 1: Delta sets with decreasing Completeness

In summary, several CDC approaches are used in practice and many of them produce par-

tial deltas. Since there are CDC techniques that do not have this restriction, one could

argue that only these techniques should be used for view maintenance in DWH environ-

ments. However, partial deltas can be captured more efficiently. Furthermore, source

systems typically remain autonomous. Often, the system owners are reluctant to changes,

thereby limiting the choice of practicable CDC techniques.

3 A Model for Partial Deltas

This section introduces a formal model for partial deltas. The analysis of CDC techniques

in the previous section revealed different kinds of partial deltas that need to be captured in

this model. First, it may not be possible to distinguish insertions from updates. Second,

deltas may lack the initial state of updated tuples. Third, only the primary key of deleted

tuples may be known.

Definition 1 (Partial Deltas) Let R(pk, a) be a relation with primary key pk and a set

of attributes a. Let Rold be the state of R before it is changed and Rnew the state of

R hereafter. Partial deltas are a six-tuple of sets (Rins , Run/uo , Rdel , Rup , Rups , Rdelk )
where

• Rins ⊆ Rnew denotes a set of tuples inserted into R (referred to as insertions),

• Rdel ⊆ Rold denotes a set of tuples deleted from R (referred to as deletions),

• Run/uo(pk, aun , auo) with

πpk,aun
(Run/uo) ⊆ Rnew and πpk,auo

(Run/uo) ⊆ Rold

denotes a set of tuples updated in R (referred to as update pairs). The initial state

and the current state of updated tuples is given by (pk, auo) and (pk, aun), respec-

tively,

• Rup ⊆ Rnew denotes a set of tuples updated in R in their current state only (referred

to as partial updates),

• Rups ⊆ Rnew denotes a set of tuples either inserted or updated in R (referred to as

upserts),
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• Rdelk ⊆ πpk(Rold) denotes a set of primary keys of tuples deleted from R (referred

to as partial deletions)

such that each change at the tuple level from Rold to Rnew is reflected by exactly one tuple

in one of the delta sets Rins , Rdel , Run/uo , Rup , Rups , or Rdelk . That is, the primary key

values are pairwise disjoint across the delta sets and

πpk(Rnew −Rold) = πpk(Rins ∪Run/uo ∪Rup ∪Rups) and

πpk(Rold −Rnew ) = πpk(Rdel ∪Run/uo ∪Rdelk ).

Figure 1 depicts the connection between the six delta sets. For each change in R there is

a delta tuple in one of the delta sets. However, a delta tuple may appear in different delta

sets. The alternative placements are indicated by the arrows in Fig. 1. The completeness

decreases while moving from the upper to the lower delta sets. Decreasing completeness

means that either attribute values become unavailable (update pairs to partial updates and

deletions to partial deletions) or the type of the change becomes uncertain (partial updates

to upserts and insertions to upserts).

The CDC techniques introduced in the previous section, can be characterized using our

model for partial deltas. Figure 2 depicts the delta sets provided by different CDC tech-

niques.

4 Change Data Application

The purpose of change propagation is maintaining the (remote) materialized view to re-

synchronize it with the source data. In this paper we show that change propagation is

closed under the model for partial deltas (for a certain class of view definitions). That is,

given partial input deltas the process of change propagation results in partial output deltas

again, that comply with the model introduced in Sec. 3. The completeness of the output

deltas may however differ from the completeness of the input deltas. The output deltas

may contain upserts, for instance, even when none of the input delta sets did. Once the

deltas have been propagated to the DWH, they are applied to the view. Depending on

their completeness, different techniques can be used for delta application. An overview is

provided in the following.

ins del un/uo up ups delk

Audit columns � � �

Log-based CDC � � �

Log-based CDC (efficient net-effect computation) � �

Change Tracking � � �

Snapshot differentials � � �

Figure 2: Delta sets provided by different CDC techniques
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Insertions To apply insertions, the SQL interface provides the INSERT statement. Fur-

thermore many databases are equipped with bulk loading facilities to insert larger batches

of records in an efficient manner.

(Partial) deletions Assuming that the view has a primary key column, just key values

are required to apply deletions (whereas attribute values are not). Thus partial deletions are

sufficient for view maintenance in such cases. Non-partial deletions are however relevant

for change propagation. In general, the resulting deltas are less partial when non-partial

deletions are provided as input. The interrelationship will be examined in Sec. 5.

Partial updates Much like partial deletions, partial updates are sufficient for maintain-

ing views with key columns.

Update pairs In contrast to partial updates, update pairs include the old state of updated

tuples. To update a tuple in place, the old state is not required. However, the DWH

often keeps historical data. Data historization is typically done using the so called Slowly

Changing Dimensions technique [KR02]. To do so, it is important to understand which

attributes have been changed. Given an update pair this can be found out easily. Given a

partial update, however, a warehouse lookup is required to find out about the initial values.

The latter approach is obviously less efficient.

Upserts To apply upserts, one can either attempt an UPDATE first and issue an INSERT

if no rows were affected or else run an INSERT first and issue an UPDATE if the inserted

key violates the uniqueness constraint. This method has been criticized as being rather

inefficient [KC04]. In the latest SQL standard the MERGE statement has been introduced

to work around this issue. MERGE can be used to insert or update tuples depending

on whether a user-defined condition matches. While MERGE is more efficient than the

former approach, it performs worse than a sequence of INSERT and UPDATE statements.

However, the latter approach is only possible when inserts and updates are given in two

distinct delta sets (i.e. deltas are less partial).

It is interesting to understand the relation between change capture and change application

in the context of partial deltas: While more partial deltas can be captured more efficiently,

the application of more partial deltas is less efficient. Thus, there is a trade-off between

change capture and change application. Note that these steps are performed at distinct

systems. It is thus possible to shift workload from the source systems to the DWH (by

capturing more partial deltas) or vice versa (by capturing less or non-partial deltas).

5 View Maintenance using Partial Deltas

A number of approaches to incremental view maintenance have been proposed in litera-

ture (cf. [GM95] for an overview). Our work is based on an approach known as algebraic
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V ∆V ∇V

σp(S) σp(∆S) σp(∇S)

πA(S) πA(∆S)− πA(Sold ) πA(∇S)− πA(Snew )

S 1 T (Snew 1 ∆T ) ∪ (∆S 1 Tnew ) (Sold 1 ∇T ) ∪ (∇S 1 Told )

Table 1: Delta Rules by Griffin et al.

differencing that was introduced in [KP81] and subsequently used for view maintenance

in [QW91]. Some corrections to the minimality results of [QW91] and further improve-

ments have been presented in [GLT97]. The basic idea is to differentiate the view defini-

tion to derive expressions that compute the change to the view without doing redundant

computations.

The remainder of the section is structured as follows. In Sec. 5.1 we recall a conventional

view maintenance algorithm by Griffin et al. [GLT97]. We proceed with a discussion

on view maintainability in the context of partial deltas in Sec. 5.2. We will identify a

class of views, which we call dimension views, that are maintainable in this context. The

Griffin et al. algorithm uses so called delta rules to derive incremental expressions for view

maintenance from view definitions. We propose generalized delta rules in Sec. 5.3. These

rules allow for deriving incremental expressions to maintain views using partial deltas.

5.1 Algebraic Differencing for View Maintenance

In this section, we recall the algorithm proposed by Griffin et al. [GLT97] that provided the

base for our work. Objects of interest are relations and relational expression presented in

relational algebra. Relational expressions are used to define derived relations (or views).

Changes to base relations are modeled as two sets – the set of deleted tuples and the set

of inserted tuples. For a relation R the set of deleted tuples is denoted by ∇R and the set

of inserted tuples is denoted by ∆R. Updates are not modeled explicitly but represented

by delete-insert-pairs, i.e. for each update in R there is a corresponding delta tuple in ∇R

and in ∆R.

Given a relational expression that defines a view, incremental expressions are derived by

recursively applying so called delta rules. The delta rules1 defined in [GLT97] are depicted

in Tab. 1. From a relational expression V two incremental expressions ∇V and ∆V are

derived that compute the deletions and insertions to the view, respectively. To this end,

subexpressions in V that match the “patterns” shown in the left column of Tab.1 are re-

cursively replaced by incremental counterparts found in the middle column or the right

column to obtain ∆V or ∇V , respectively. Intuitively, the delta rules in Tab. 1 can be

understood as follows.

• Selection: An inserted tuple is propagated through a selection, if it satisfies the filter

1Since our work is focused on Select-Project-Join (SPJ) views, delta rules for union, intersection, and set

difference have been omitted.
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predicate. A deletion is propagated through a selection, if the tuple used to satisfy

the filter predicate.

• Projection: An inserted tuple is propagated through a projection, if no alternative

derivation existed before the change. A deletion is propagated through the projec-

tion, if no alternative derivation remains after the change.

• Join: New tuples appear in the join of two relations, if a tuple inserted into one

relation joins to tuples in the other one. Tuples disappear from the join, if a tuple

deleted from one relation used to join to tuples in the other one before the change.

The view maintenance algorithm by Griffin et al. requires complete change information.

Thus, it cannot be applied if deltas are partial as described in Sec. 3. We propose a gener-

alized view maintenance algorithm that gracefully deals with partial deltas for a restricted

(but important) class of view definitions.

5.2 Dimension Views

In general, materialized views cannot be maintained using partial deltas. Consider the fol-

lowing example. Say there is a base relation R(pk, a) with pk being the primary key col-

umn and a simple derived view V (a) := πa(R). Say we use a CDC mechanism that does

not provide the initial state of updated tuples (such as audit columns or change tracking).

Obviously, V cannot be maintained in case of an update to R. While it is straightforward

to add the updated tuple to V , it is unclear which tuple in V needs to be discarded (or

overwritten) in return. Similar considerations hold for the other kinds of partial deltas,

i.e. partial deletions and upserts.

Note, that V was maintainable if it included the primary key column pk. Including pri-

mary keys is thus a necessary condition for views to be maintainable using partial deltas.

However, not all primary keys from the source relations need to be retained in the view

definition. We will discuss the selection of keys in the following. At first, we define a class

of views, which we call dimension views, that has interesting properties w.r.t. maintenance

using partial deltas.

Definition 2 (Dimension View) Let V be a relational expression defining a view that con-

tains projections, selections, and joins only. V is called dimension view, if each join

R 1p S has a join predicate of the form (R.a = S.pk) where a is a (set of) attributes of

R and pk is the (composite) primary key of S.

In the subsequent sections, we will show that dimension views are maintainable using par-

tial deltas, if they include those primary key attributes that are not functionally dependent

on any other key attributes. With other words, all key attributes used in join predicates do

not need to be included in the view.

Dimension views are commonly found in DWHs. While they are usually called dimen-

sion tables here, they store derived data and can thus be seen as views. DWHs typically
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CID CName CDiscount CAddr

1 Adam 0% 1

2 Bob 0% 2

3 Carl 0% 3

Custold

CID CName CDiscount CAddr

1 Adam 5% 1

2 Bob 0% 4

4 Dave 0% 4

Custnew

AID ACity ACountry

1 Austin US

2 Berlin DE

3 Chemnitz DE

Addrold

AID ACity ACountry

1 Aachen DE

2 Berlin DE

4 Dresden DE

Addrnew

Figure 3: Sample base tables in the old and new state

use a star schema to store multi-dimensional data that consists of fact and dimension ta-

bles [KC04, KR02]. Dimension tables are used to join together data on business entities

that originates from multiple source systems. For improved query performance, dimen-

sion tables are typically denormalized. Dimension tables include a unique identifier for

business entities referred to as business key. Typically, no other keys originating from

the sources are stored here. Note that these keys would be functionally dependent on the

business key in the denormalized dimension table. Our work is thus directly applicable to

incremental maintenance of dimension tables.

Example 1 Figure 3 depicts two relations that are going to be used as a running example

throughout the paper. The Cust relation stores the ID, name, and discount of customers

and a reference to an address, which is stored in the Addr relation. The idea is to derive a

dimension table D from these base tables. Dimension tables are typically de-normalized.

Consider the sample view definition.

D := πCID,CName,CAddr (Cust) 1(Cust.Addr=Addr .AID) σACountry=′DE′(Addr)

The view is restricted to German customers, furthermore the customer discount column is

dropped. Note that the view is a dimension view w.r.t. Def. 2.

5.3 A Generalized View Maintenance Algorithm

We propose a generalization of the algorithm by Griffin et al. that allows for maintaining

dimension views using partial deltas. We proceed as follows: First, we explain how partial

deltas can be represented by means of delete-insert sets used by the original algorithm.

Second, we propose generalized delta rules for projection, selection, and join. We show

that these operators are closed under the model for partial deltas. Third, we conclude that

dimension views can be maintained by our algorithm.

View maintenance algorithms (including the one by Griffin et al.) model deltas by two

sets – the set of deleted tuples and the set of inserted tuples. We are going to refer to this

model as delete-insert delta model or delete-insert model for short. This model does not

directly match our model for partial deltas introduced in Sec. 3. The latter uses a six-tuple
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∆R(pk, a) := Rins ∪ πpk,aun
(Run/uo) ∪Rup ∪Rups

∇R(pk, a, flag) := πpk,a,comp(Rdel ) ∪ πpk,auo ,comp(Run/uo)∪

πpk,NULL,up(Rup) ∪ πpk,NULL,ups(Rups) ∪ πpk,NULL,up(Rdelk )

with flag ∈ {comp, up, ups}

Figure 4: Conversion from six-tuple model to delete-insert model

representation instead and we will therefore refer to it as six-tuple delta model or six-tuple

model for short.

While the six-tuple model allows for a natural representation of partial deltas, it is more

complex to handle six distinct sets during update propagation. We experienced that delta

rules become rather complex. In particular, the join delta rules require a large number of

joins to capture the interactions between the different delta sets.

Overly complex incremental expressions can be avoided by sticking to the delete-insert

delta model for the update propagation. To do so, partial deltas need to be transferred

to the delete-insert model. Furthermore, the result of the update propagation needs to be

converted back into the six-tuple model. The general idea here is to extend the schema

of the delta sets by adding a type flag column. This flag is used to indicate the type of

individual delta tuples. Unknown attribute values (of partial deltas) are padded with NULL

values. One could say that partial deltas are “encoded” as special kinds of complete deltas.

We proceed by describing the conversion from six-tuple deltas to delete-insert deltas, and

continue with the conversion in opposite direction.

Six-tuple model to delete-insert model The equations for converting from the six-tuple

model to the delete-insert model are given in Fig. 4. For a relation R it is straightforward

to express the delta sets Rins , Run/uo , and Rdel by means of the delete-insert model,

because these sets are non-partial. To distinguish complete delta tuples from partial ones,

they are assigned a type flag of value comp.

The remaining delta sets are treated as follows: Partial updates Rup and upserts Rups

are added to the insert set ∆R. Note that we need to distinguish them from “regular”

insertions and updates, however. To this end, we add tuples with the same primary key

value to the delete set ∇R. All other attribute values are padded with NULLs, because the

initial attribute values of these tuples are unknown. Additionally we add a flag to indicate

the type of the delta tuple. Note that the schema of ∇R is extended to accommodate the

type flag. The partial deletions Rdelk are also added to ∇R. Since Rdelk contains primary

key values only, the missing attributes are padded with NULLs. Note that a up flag is used

for partial deletions. Partial deletions can however be distinguished from partial updates.

While partial updates have a matching tuple in ∆R, partial deletions do not.

Example 2 Recall the running example introduced in Sec. 5.2. Fig. 3 depicts both, the old

and the new state of the base relations Cust and Addr. Assume that a log-based CDC tech-

nique is used for Cust providing insertions, update pairs, and deletions. Further assume
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CID CName CDiscount CAddr

1 Adam 5% 1

2 Bob 0% 4

4 Dave 0% 4

∆Cust

CID CName CDiscount CAddr flag

1 Adam 0% 1 comp

2 Bob 0% 2 comp

3 Carl 0% 3 comp

Cust

AID ACity ACountry

1 Aachen DE

4 Dresden DE

∆Addr

AID ACity ACountry flag

1 - - up

3 - - up

Addr

∆ ∆

Figure 5: Sample deltas converted to the delete-insert model

Rins := ∆R ⋉pk ∇R

Run/uo := ∆R 1pk σ(flag=comp)∇R

Rup := ∆R ⋉pk σ(flag=up)∇R

Rups := ∆R ⋉pk σ(flag=ups)∇R

Rdel := ∇R ⋉pk σ(flag=comp)∆R

Rdelk := πpk (∇R ⋉pk σ(flag 6=comp)∆R)

Figure 6: Conversion from delete-insert model to six-tuple model

that change tracking is used for Addr providing insertions, partial updates, and partial

deletions. The deltas converted to the delete-insert model are depicted in Fig. 5.

Delete-insert model to six-tuple model The equations for converting from the delete-

insert model back to the six-tuple model are given in Fig. 6. Note that the symbols ⋉ and

⋉ are used to denote a semi join and a anti join, respectively. The Rins delta set consists

of those tuples in ∆R that have a primary key value not existent in ∇R. The Run/uo delta

set consists of pairs of tuples in ∆R and ∇R having equal primary key values and being

“complete”. The completeness is checked by means of the type flag in ∇R. The Rup and

Rups delta sets consist of tuples in ∆R that join to tuples in ∇R having a up or ups type

flag, respectively. The Rdel and Rdelk delta set consist of tuples in ∇R having a primary

key that does not exist in ∆R and being complete or incomplete, respectively.

5.4 Projection

The original delta rules for projection depicted in Tab. 1 are repeated for the reader’s

convenience.

∆(πA(S)) ≡ πA(∆S)− πA(Sold)

∇(πA(S)) ≡ πA(∇S)− πA(Snew )
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The projection delta rules contain a so-called effectiveness test to prevent redundant up-

dates from being propagated. A set difference is used to discard insert delta tuples if an

alternative derivation of the same tuple existed in the old database state. Similarly, delete

delta tuples are discarded if an alternative derivation continues to exist in the new database

state.

We can represent the new and old relation states Snew and Sold using the so called pre-

served state So := Snew − ∆S = Sold − ∇S, i.e. the set of tuples that have not been

changed.

∆(πA(S)) ≡ πA(∆S)− πA(So ∪∇S)

∇(πA(S)) ≡ πA(∇S)− πA(So ∪∆S)

Recall that dimension views contain primary key attributes that must not be dropped by

a projection. Since primary key values are unique, πA(∆S) and πA(So) are obviously

disjoint. Similarly πA(∇S) and πA(So) are disjoint. Given this, the delta rules can be

simplified for dimension views as follows.

∆(πA(S)) ≡ πA(∆S)− πA(∇S)

∇(πA(S)) ≡ πA(∇S)− πA(∆S)

The effectiveness test in the above equations can be understood as follows. An alternative

derivation of a delta tuple must have the same primary key value. An alternative derivation

of an insert delta tuple can thus only be found among the delete delta tuples and vice versa

(recall that updates are represented as delete-insert pairs).

The aim of the effectiveness test is to discard so called ineffective updates, i.e. updates

that do not change the view. In the presence of keys, an ineffective update occurs when

all updated attributes are dropped by the projection. In this case, the initial state of the

propagated attributes is equal to their current state. Thus, the update is ineffective w.r.t. the

view.

We now discuss the implications of partial deltas w.r.t. the effectiveness test. In fact, the

test may not work as expected here. The reason is that the initial state of an updated tuple

may not be available. Hence, its effectiveness cannot be tested. Without having the initial

state available, we do not know which attributes have been updated. Hence, we cannot

know whether the update will affect the view2. However, propagating ineffective updates

is not problematic, because a view is not changed when an ineffective update is applied.

While ineffective updates cause some overhead, the view does not become inconsistent.

Delta rules for projection can be generalized to handle partial deltas. To this end, the

effectiveness test is only done for complete delta tuples and omitted for partial ones.

∆(πA(S)) ≡ πA(∆S)− πA(σflag=comp∇S)

∇(πA(S)) ≡ πA,flag(∇S)− πA,comp(∆S)

2Note that our notion of ineffective updates is related to the notion of safe updates studied mainly in the

context of integrity checking [Beh09]. Safe updates are an overestimation of true updates that can be computed

more efficiently. For integrity checking, safe updates are often sufficient. The computation of safe updates has

been proposed to improve efficiency. In contrast, our ineffective updates necessarily occur in the context of

partial deltas.
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CID CName CAddr

2 Bob 4

4 Dave 4

∆Cust’

CID CName CAddr flag

2 Bob 2 comp

3 Carl 3 comp

Cust’

∆

Figure 7: Result of the sample incremental expressions ∆Cust
′ and ∇Cust

′

In the second delta rule, the schema of ∆S is extended by adding a type flag column

which is assigned the value comp. Note that the effectiveness test may safely be omitted.

Doing so may result in a larger number of ineffective updates being propagated. However,

the rules become even simpler and may be evaluated more efficiently. Furthermore, note

that the delta rules are closed under the model for partial deltas. That is, the result of the

operation is again partial deltas.

Example 3 Reconsider the running example. The first term of the dimension view defini-

tion D is Cust ′ := πCID,CName,CAddr (Cust). We can apply the delta rules given above

to derive incremental expressions ∆Cust ′ and ∇Cust ′.

∆Cust ′ ≡ πCID,CName,CAddr (∆Cust)− πCID,CName,CAddr (σflag=comp(∇Cust))

∇Cust ′ ≡ πCID,CName,CAddr ,flag(∇Cust)− πCID,CName,CAddr ,comp(∆Cust)

The result deltas are depicted in Fig. 7. Note that the update to the customer tuple with ID

1 is ineffective and thus discarded.

5.5 Selection

The original delta rules for selection found in Tab. 1 are repeated here for the reader’s

convenience.

∆(σp(S)) ≡ σp(∆S) ∇(σp(S)) ≡ σp(∇S)

These equations need to be adapted to handle partial deltas. We will discuss each type of

delta separately in the following.

The inserted tuples in Sins are propagated if they satisfy the selection predicate and dis-

carded otherwise. The deleted tuples in Sdel are treated similarly. For the update pairs in

Sun/uo both, the initial and the current state have to be considered. If the initial and the

current state satisfy the selection predicate the delta tuple is passed on as an update, i.e. it

remains in Sun/uo . If neither the initial nor the current state satisfy the selection predicate

the update pair is discarded. If the initial state did satisfy the predicate but the current

state no longer does, the initial state is propagated as a deletion, i.e. it becomes part of

Sdel . Similarly, if the initial state did not satisfy the predicate but the current state does,

the current state is propagated as an insertion, i.e. it becomes part of Sins .

For partial updates Sup the initial state is not known. It could have either satisfied the

selection predicate or not. Thus, given that the current state does satisfy the predicate, the
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AID ACity ACountry

1 Aachen DE

4 Dresden DE

∆Addr’

AID ACity ACountry flag

1 - - ups

3 - - ups

Addr’

∆

Figure 8: Result of the sample incremental expressions ∆Addr
′ and ∇Addr

′

resulting delta is either an insert or an update. Since we cannot distinguish these cases,

the delta tuple becomes part of Sups , i.e. the delta tuple changes its type and becomes

an upsert. Given that the current state of an partial update does not satisfy the selection

predicate, a deletion needs to be propagated. Since the initial state of the updated tuple

is unavailable, a partial deletion (Sdelk ) is propagated. Note that this deletion may be

ineffective, i.e. the tuple to be deleted may not be found in the view, because it did not

satisfy the predicate in its initial state either.

The upsert delta set Sups is handled in a very similar way as partial updates. Again, the

initial state of delta tuples is unavailable. Given that the current delta tuple satisfies the

selection predicate, it remains in Sups . If it does not, it becomes part of Sdelk . Again, the

partial deletion may be ineffective.

Partial deletions contain primary key values only. Obviously, the selection predicate can

generally not be checked without having the non-key attribute values. However, tuples in

Sdelk may safely be propagated in all cases. If a tuple with the same primary key value

exists in the view, it is deleted. If no such tuple exists, the view remains unchanged, i.e. the

deletion turns out to be ineffective. Ineffective deletions occur, when the original tuple did

not satisfy the selection predicate and therefore never appeared in the view.

∆(σp(S)) ≡ σp(∆S) ∇(σp(S)) ≡ σp∨flag 6=comp(πa,s(flag)∇S)

with s(flag) :=

{

ups if flag = up

flag else

Given these considerations, the original delta rules for selection can be adapted to partial

change data. The rule to compute the insert set does not need to be changed. The rule to

compute the delete set needs some adaptations though, because the selection predicate can

only be checked for non-partial delta tuples (with flag = comp). All partial delta tuples

are simply passed on. As mentioned before, partial updates may become upserts and the

type flag needs to be changed accordingly. Note that the delta rules are closed under the

model for partial deltas.

Example 4 Reconsider the running example. The second term of the dimension view

definition D is Addr ′ := σACountry=′DE′(Addr). By applying the above delta rules the

incremental expressions ∆Addr ′ and ∇Addr ′ can be derived.

∆Addr ′ ≡ σACountry=′DE′(∆Addr)

∇Addr ′ ≡ σ(ACountry=′DE′)∨flag 6=comp(∇Addr)

The result deltas are depicted in Fig. 8. Note that partial updates are turned into upserts

and effective partial deletions into possibly ineffective partial deletions.
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S

pre ins del up ups delk

T

pre - ins del

ups ups delk

ins ins ins -

del del - del

un un ins -

uo uo - del

up up ins -

ups ups ins -

delk delk - delk

Figure 9: Join Matrix 1

5.6 Join

The original join delta rules found in Tab. 1 are repeated here for the readers convenience.

Note that both, the new and the old state of the base relations are required to incrementally

maintain join views.

∆(S 1 T ) ≡ (Snew 1 ∆T ) ∪ (∆S 1 Tnew )

∇(S 1 T ) ≡ (Sold 1 ∇T ) ∪ (∇S 1 Told)

In the DWH environment source systems are decoupled and base relations are usually

available in their new state only. However, the old state can be reconstructed using the

new state and the deltas. Given a relation R, the preserved state Ro can be computed by

subtracting the insert delta set from the new state (Ro := Rnew −∆R). The old state Rold

can then be computed by adding the delete delta set to the preserved state. In the light of

partial deltas, it may not be possible to fully reconstruct the old state, because delta tuples

in ∇R may be partial. Recall that a flag is used to indicate the type of delta tuples in ∇R.

We hence use a type flag in the old state Rold as well; the preserved tuples Ro are assigned

with the distinct type flag pre (Rold := π...,preRo ∪∇R).

In this paper, we focus on the maintenance of so called dimension views defined in

Sec. 5.2. All join predicates used in dimension views follow a common pattern. They are

equality predicates and involve the primary key attribute of at least one relation. In the fol-

lowing, we consider the join of two relations S and T with the join predicate (S.a = T.pk)
where S.a is an arbitrary attribute of S and T.pk the primary key attribute of T . It is im-

portant to understand that the type of the resulting (joined) delta tuples depend on the type

of both input delta tuples. To adapt the join delta rules, all possible combinations of delta

types need to be considered. The different combinations are represented by the matrices

in Fig. 9 and Fig. 10. Consider the matrix in Fig. 9. The column headings represent the

different delta sets of S participating in the join. From left to right, there are preserved

tuples, insertions, deletions, partial updates, upserts, and partial deletions. For the sake of

clarity, update pairs are shown in a separate matrix (Fig. 10). The row headings in the ma-

trix represent the different delta sets of R participating in the join. The cells of the matrix

indicate the delta type resulting from a join between the corresponding delta sets of S and

R.

Consider the matrix cell at the intersection of the Sins column and the Tup row, for in-
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S Tnew S Told result S Tnew S Told result

un - uo - - un un uo - ins

un - uo pre del un un uo pre un/uo

un - uo uo del un un uo uo un/uo

un - uo del del un un uo del un/uo

un - uo delk delk un un uo delk up

un - uo up delk un un uo up up

un - uo ups delk un un uo ups ups

un pre uo - ins un up uo - ins

un pre uo pre un/uo un up uo pre un/uo

un pre uo uo un/uo un up uo uo un/uo

un pre uo del un/uo un up uo del un/uo

un pre uo delk up un up uo delk up

un pre uo up up un up uo up up

un pre uo ups ups un up uo ups ups

un ins uo - ins un ups uo - ins

un ins uo pre un/uo un ups uo pre un/uo

un ins uo uo un/uo un ups uo uo un/uo

un ins uo del un/uo un ups uo del un/uo

un ins uo delk up un ups uo delk up

un ins uo up up un ups uo up up

un ins uo ups ups un ups uo ups ups

Figure 10: Join Matrix 2

stance. The cell indicates that the join result of these delta sets is to be propagated as

insertion. This is obvious considering that any tuple added to S has a key that is unique in

S. Thus, the key cannot be in the view yet. Hence, the result of the join is an insertions

w.r.t. the view.

Consider the three right-most columns in the matrix referring to partial updates, upserts,

and partial deletions in S. These deltas lack certain attribute values. They hence cannot be

joined to Told , because the join predicate cannot be evaluated. Consider a partial update

in S, for instance. Recall, that the initial state of the updated tuple is not available. Hence,

it is unclear whether the updated tuple used to find a join partner in T before the update.

The joined tuple is either an update w.r.t. the view (if it used to find a join partner) or an

insertion (if it did not). Since these cases cannot be distinguished for partial updates, an

upsert has to be propagated.

Upserts in S are propagated as upserts and partial deletions as (possibly ineffective) partial

deletions. Note that partial S deltas are handled for joins in a similar way than partial deltas

are handled for selections (see Sec. 5.5). The function s defined in Sec. 5.5 to translate

type flags can thus be reused in the generalized delta rules for joins.

The matrix in Fig.10 represents joins involving update pairs in S. Recall that the new

state of an updated tuple is joined to the new state of T (Tnew ) while the old state of an

updated tuple is joined to the old state of T (Told ) in the delta rules for update propagation.

The matrix shows all possible join combinations. Let s be an update pair in Sun/uo , sun
the new state of s, and suo the old state of s. The first two columns of the matrix indicate

where sun finds a join partner in Tnew . There are the following possibilities: A join partner

may not exists, it may be a preserved tuple, an inserted tuple, an updated tuple in its new
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state, a partial update, or an upsert.

The third and fourth column indicate where Suo finds a join partner in Told . A join partner

may not exists, it may be a preserved tuple, an updated tuple in its old state, a deleted

tuple, a partial deletion, a partial update, or an upsert.

The fifth column indicates the type of the delta resulting from the joins. As an example,

consider the second row of the matrix. It treats the case where sun does not find a join

partner in Tnew , while suo used to join to a preserved tuple (i.e. the join attribute of s was

updated). Hence, a tuple Suo 1 To used to be in the view and needs to be discarded now.

Thus, the resulting delta is of type deletion.

The matrix in Fig. 10 reveals a pattern. Whenever suo joins to a complete tuple in Told ,

namely a preserved tuple, an updated tuple, or a deleted tuple, the resulting delta tuple is

again complete, i.e. an update pair or a deletion. When suo joins to a partial update or

a partial deletion in Told , the resulting delta tuple is either an partial update or a partial

deletion. The distinction is made based on the existence of a corresponding delta tuple

in the insert set ∆(S 1 T ), when the deltas are converted to the six-tuple model (see

Sec. 5.3). When suo joins to an upsert, the resulting delta tuple is either an upsert or a

partial deletion. Based on these considerations and the considerations that lead to the first

join matrix, a function j is defined to derive type flags for joined tuples from the type flags

of the input tuples.

j(flags ,flagt) :=















flagt if flags = pre

comp if flags = comp ∧ (flagt = pre ∨ flagt = comp)
up if flags = comp ∧ flagt = up

ups if flags = comp ∧ flagt = ups

The join delta rules are adapted as follows to handle partial deltas.

∆(S 1 T ) ≡ (Snew 1 ∆T ) ∪ (∆S 1 Tnew )

∇(S 1 T ) ≡ π...,j(S .flag,T .flag)(Sold 1 ∇T )∪

π...,j(S .flag,T .flag)(∇S 1 Told)∪

π...,s(flag)(σflag 6=comp(∇S))

Once again, the delta rule for computing the insert delta set remains unchanged. The delta

rule for the delete delta set is changed in two ways. First, a function j is used to derive the

type of the resulting delta tuples from the type flags of joining tuples in S and T . Second,

an additional term is added to the rule to handle partial tuples in ∇S. In this additional

term the function s (defined in Sec. 5.5) is used to modify the type flag as needed. Note

that the join delta rules propagate partial deltas as defined in Sec. 3. The join operation is

thus closed under this model.

In Sec. 5.2 we have shown that views need to include primary key attributes to be main-

tainable using partial deltas. A simple join view includes the primary key attributes of both

base relations. As we will see, not all of these key attributes are required to maintain di-

mension views though. In dimension view definitions, all join predicates have a common

form. They are equality predicates involving the primary key of at least one base relation.

303



CID CName CAddr ACity ACountry

1 Adam 1 Aachen DE

2 Bob 4 Dresden DE

4 Dave 4 Dresden DE

∆D

CID CName CAddr ACity ACountry flag

1 Adam 1 - - ups

2 Bob 2 Berlin DE comp

3 Carl 3 - - ups

D

∆

Figure 11: Result of the sample incremental expressions ∆D and ∇D

Reconsider the join of S and T with the join predicate (S.a = T.pk) with S.a being an

arbitrary attribute of S and S.pk and T.pk being primary key attributes of S and T , re-

spectively. Obviously S.a is functionally dependent on its key S.pk. Thus, in the join view

T.pk is functionally dependent on S.pk. Thus each join view tuple is uniquely identified

by S.pk alone. Hence, partial updates, upserts, or partial deletions can be applied based on

S.pk only. In summary, dimension views remain maintainable when key attributes used in

a join predicate are projected out hereafter.

Example 5 Reconsider the running example. The sample dimension view was defined as

D := Cust ′ 1(Cust.Addr=Addr .AID) Addr ′. The incremental expressions ∆D and ∇D

can be derived using the delta rules given above.

∆D ≡ (Cust ′new 1 ∆Addr ′) ∪ (∆Cust ′ 1 Addr ′new )

∇D ≡ πCID,CName,CAddr ,ACity,ACountry,j (Cust′.flag,Addr ′.flag)(Cust
′
old 1 ∇Addr ′)

∪ πCID,CName,CAddr ,ACity,ACountry,j (Cust′.flag,Addr ′.flag)(∇Cust ′ 1 Addr ′old)

∪ πCID,CName,CAddr ,NULL,NULL,s(flag)(σflag 6=comp(∇Cust ′))

The result deltas are depicted in Fig. 11. When ∆D and ∇D are converted back to the

six-tuple model, one obtains an insertion (ID 4), an upsert (ID 1), an update pair (ID 2),

and a partial deletion (ID 3).

5.7 Putting it all together

In the previous sections, it has been shown that projection, selection, and join (with re-

stricted join predicates) are closed under the model for partial deltas. Furthermore it has

been shown that join views are maintainable if they include all non-functional dependent

key attributes. Recall that dimension view definitions are assembled from these opera-

tions. We can thus conclude that dimension views are maintainable using partial deltas if

all non-functional dependent key attributes are included.

6 Related work

View maintenance techniques have been adapted in several ways to deal with situations

where input data is not or only partially available (cf. [GM95] for a survey). Work on
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self-maintainable views aimed at maintaining a materialized view using just the deltas and

the view itself, i.e. without accessing the base relations. Partial-reference maintenance

considers only a subset of the base relations and the materialized view to be available.

The irrelevant update problem means to decide whether an specific update leaves a view

unchanged looking at the deltas and the view definition only, i.e. neither accessing the

view nor the base relations. Interestingly, previous work has not considered deltas to be

partial themselves, as we did here. This is probably because change capture is much less

of a problem in the non-distributed environment.

Previous work on view maintenance in a warehousing environment [ZGMHW95,

ZGMW98, AASY97, AAM+02] was focused on synchronization issues arising when base

relations and materialized views reside on distributed systems. So called maintenance

anomalies may occur when base relations are updated while view maintenance is per-

formed concurrently. To prevent maintenance anomalies the Eager Compensating Algo-

rithm (ECA) [ZGMHW95], the Strobe family of algorithms [ZGMW98], and the SWEEP

algorithm [AASY97, AAM+02] have been proposed for SPJ views.

Preventing maintenance anomalies is an orthogonal problem to our work. ECA, Strobe,

and Sweep make use of standard rules of algebraic differencing and tacitly assume non-

partial deltas to be available. However, as we have seen, many CDC techniques used for

warehousing provide incomplete deltas only. We believe that both, synchronization and

handling of partial deltas are very relevant in the DWH environment. Thus, we feel our

work is complementary.

We investigated view maintenance in the context of partial deltas in earlier work of ours

[JD08, JD09]. In our previous work, we analyzed the impact of partial source deltas on

view maintenance to understand which delta types (insert, update, delete, upsert) can still

be reliably propagated. Such an analysis could, for example, reveal that a given view is

maintainable w.r.t. insertions but not w.r.t. deletions for source deltas of a certain com-

pleteness. In our current work we took a different approach. We identified a restricted

class of views (dimension views) that can be fully maintained using partial source deltas

of any kind. We furthermore proposed a generalized algorithm for maintaining dimension

views using partial deltas.

7 Conclusion

Maintenance of materialized views is an established research topic. More recently it has

been proposed to use view maintenance techniques in the DWH environment where base

relations and materialized views reside on different machines. However, previous work

tacitly presumed that deltas captured at the sources are “complete”. We analyzed existing

change capture modules and discovered that this assumption does often not hold in prac-

tice. In fact, change capture techniques may be unable to provide complete deltas or may

provide partial deltas more efficiently. Thus, conventional maintenance techniques cannot

be used in common DWH environments.

In this paper we studied view maintenance using partial deltas. At first, we introduced a
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formal model for partial deltas. As we have shown, in general views cannot be maintained

using partial deltas but there is a class of view that is maintainable. We referred to this

class as dimension views, because of their close relation to dimension tables, which are

typically used in star schemas. Based on our formal model for partial deltas, we then

proposed a new view maintenance algorithm. To our knowledge, our algorithm is the first

that allows for maintaining (a class of) views using partial deltas.
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