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Abstract: We work towards a system which can assist dactyloscopic examiners in
assessing the quality and decision value of a fingerprint image and eventually a finger-
mark. However when quality assessment tasks of datyloscopic examiners are replaced
by automatic quality assessment then we need to ensure that the automatic measure-
ment is in agreement with the examiner opinion. Under the assumption of such agree-
ment, we can predict the examiner opinion. We propose a method for determining the
examiner agreement on ordinal scales and show that there is a high level of agreement
between examiners assessing the ground truth quality of fingerprints. With ground
truth quality information on 749 fingerprints and using 10-fold cross validation we
construct models using Support Vector Machines and Proportional Odds Logistic Re-
gression which predicts median examiner quality assessments 35% better than when
using the prior class distribution.

1 Introduction

Fingerprint sample quality in the context of forensic applications where an examiner

following the Analysis, Comparison, Evaluation, and Verification (ACE-V) protocol is

part of the initial information gathering phase where the examiner studies the impression

to quantify the present discriminating information and assess the quality and complete-

ness [Exp12].

The quality assessment will among other factors such as the completeness of the fingerprint

have an impact on the decision value of the impression, which can be one of: Value for

Individualization (VID), which is used when the quantity and quality of the information

present is deemed sufficient to determine if the impression is from the same source as

another, yet unseen, impression; Value for Exclusion Only (VEO) is used when sufficient

information is present to determine that the impression is not from the same source as

another impression; No Value (NV) is used when the impression is deemed unsuitable.

The process of assigning VID, VEO, and NV is inherently subjective and requires training

and experience to perform accurately and consistently. Ulery et al. conducted a study

on the accuracy and reliability of 169 forensic examiners who assigned VID, VEO, and

NV decisions to 100 latents and found that VID decisions were unanimous in 48% of

cases for mated pairs and 33% for non-mated pairs [UHBR11]. In a related study on the
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repeatability and reproducibility of decision by individual examiners, it was found that

93% of VID, 85% NV, and 55% VEO decisions were repeated by individual examiners

when presented twice with the same impression after a 7 month interval [UHBAR12].

These findings, which indicate a high degree of accuracy with respect to VID, and lower

accuracy with respect to VEO mirror the findings by Langenburg [Lan09].

It has been demonstrated that when provided with extraneous contextual information,

an examiner might change the method of judging and comparing fingerprints [DCP05].

Additionally, the examiners are vulnerable to biasing information such as evidence of

confession of a crime, even in cases where the comparison of the impressions is non-

difficult [DC06].

Biometric sample quality has successfully been applied in the context of Automated Fin-

gerprint Recognition Systems (AFIS) to reject samples which are likely to contribute neg-

atively to False Non-Match Rates (FNMR). By rejecting those samples before they are

enrolled, a high level of biometric performance is achievable and with it higher levels of

satisfaction by the users interacting with the biometric system [WGW04].

We are motivated by the successful application of automated quality assessment in AFIS

and by the findings of Ulery et al. and Bradford et al., which highlight the subjective nature

of the ACE-V protocol, to determine methods which objectively assesses the quality of an

impression in the form of a fingerprint or a fingermark. This paper represents one step in

this direction and our main objective is to determine methods which predict the quality

assessment that a dactyloscopic examiner gives a particular fingerprint. To achieve this,

we leverage a dataset which contains ground truth quality labels on inked impressions

as assessed by dactyloscopic examiners from the German Federal Criminal Police Office

(BKA), and apply quality assessment algorithms identified or developed in the context of

NFIQ 2.0 [Nat14].

The rest of the paper is organized as follows: section 2 outlines state of the art methods for

objective quality assessment. In section 3 we propose a method for quantifying examiner

agreement, section 4 details the ground truth dataset on which we base our experiments that

are described in section 5. We discuss our results in section 6 and conclude in section 7.

2 Fingerprint quality

There exists a large number of fingerprint image quality assessment algorithms in the lit-

erature and several reviews have been made, e.g. in the context of optical and capacitive

sensors [AFRM+07, AFRM+08]; relation between quality assessed by human experts and

algorithms and comparison scores [FAMSAFOG05]; and more recently quality assess-

ment using no-reference algorithms have been investigated [EANCR13]; a comprehensive

review of biometric sample quality is provided by Bharadwaj et al. [BVS14] and a quality

metric for fingermarks has been proposed [YCLJ13].

We have selected a subset based on those features specified in the NFIQ 2.0 quality feature

definitions document version 0.5 [NFI12] which we summarize here: Frequency Domain

Analysis (QFDA) uses the magnitude of the dominant frequency as determined by discrete

Fourier transform fingerprint image as a local quality value. Local Clarity Score (QLCS )
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determines the clarity of the fingerprint image by estimating how well each block in the

fingerprint image can be segmented into ridge and valley region. Orientation Flow (QOFL)

measures the continuity of ridge flows in the fingerprint image by determining the domi-

nant ridge orientation agreement between one block and its neighbouring blocks. Orien-

tation Certainty Level (QOCL) is a measure of the strength of the ridge orientation within

a image block. A high score indicates that the ridge orientation within the block is well

defined. Ridge Valley Uniformity (QRVU) measures the consistency between ridge and

valley widths within each image block. The widths of ridges and valleys are expected to

be similar across the entire fingerprint image. Radial Power Spectrum (QRPS) quantifies

the energy concentration within a specified band in the Fourier spectrum. The limits of

the band are determined by the expected ridge valley frequency. Image mean (QMU) is

the mean value of pixel intensities across the fingerprint image. Image standard deviation

(QSTD) is the standard deviation of pixel values across the fingerprint image.

The features QFDA , QLCS , QOFL, QOCL , QRVU operate on 32 by 32 pixel non-overlapping

regions of the image and thus provide a vector of local quality values. QRPS , QMU , QSTD

work on the entirety of the image and provide a scalar value. Based on these two groups

we define two sets of features: Set A which contains the mean and standard deviation of

each of the local quality vectors of QFDA , QLCS , QOFL , QOCL , QRVU giving a total of 10

features; set B contains, in addition to the features in set A, QRPS , QMU , QSTD for a total of

13 features.

3 Quantifying examiner agreement on ordinal scales

To quantify examiner agreement, which is an essential task to determine to which degree

examiners agree on what quality means and to compare and judge how well automatic

quality prediction will perform against its human counterpart, the following requirements

are specified for an examiner agreement coefficient:

1. an unlimited number of assessments on a single fingerprint shall be considered

2. the agreement of assessments shall be weighted according to their distance

3. assessments that belong to the same decision categories shall be assigned with high

weights

4. when the assessment scale varies the measure results shall remain consistent

Ad 1 - the coefficient shall be capable of measuring agreement for fingerprints that were

annotated by a minimum of 2 examiners and for fingerprints that are annotated by more

than 2 examiners. Ad 2 - assessments that are “closer” to each other shall result in higher

agreement. Ad 3 - not only the “distance” of single assessments shall be measured, as-

sessments in equal decision categories shall be weighted higher than assessments that are

not in the same decision category. Ad 4 - quality assessments in varying assessment scales

shall result in the same agreement if the relative distance of the single ratings are the same.

For example, a quality assessment of x11 = 1, x12 = 2, x13 = 5 {x1x ∈ N|1 ≤ x1x ≤ 5}
and a quality assessment of x21 = 1, x22 = 25, x23 = 100 {x2x ∈ N|1 ≤ x2x ≤ 100}
shall result in the same agreement coefficient.

Several common statistical measures like the Percentage agreement P̄ [UHBR12], the

Interquartile Range IQR [ZK99, p.27], the Median Absolute Deviation MAD [HMT82,
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p.220] and the Standard Deviation SD [ZK99, p.26] were investigated to determine if they

fulfil the specified requirements. Table 1 displays how these measures perform on various

assessment examples. It is clear that none of the common measures are able to measure

examiner agreement sufficiently as they all violate one of the predefined requirements.

Assessment example

1 2 3 4 5 6 7 8

A
ss

es
sm

en
t excellent, 1 2 31 21 21 1 1 1 1 2 3 4 5 1 2

very good, 2 1 3 1 2 2 1 1 3

good, 3 1 1 3 3 1 2 1 4

fair, 4 1 1 1 1 1 1 1 5

poor, 5 1 1 1 1 3 3 6 6

A
g
re

em
en

t P̄ 1.000 0.333 0.333 0.000 0.000 0.000 0.667 0.067

IQR 0.000 1.000 2.000 2.000 4.000 4.000 0.000 3.000

MAD 0.000 0.000 0.000 1.000 1.000 2.000 0.000 1.500

SD 0.000 0.471 0.943 0.816 1.700 1.633 1.491 1.491

CMCA 1.000 0.839 0.689 0.422 0.166 0.125 0.765 0.208

Table 1: Examples of agreement values computed using P̄ , IQR, MAD , SD , CMCA for 8 cases
of examiner assessments where the number of experts and their assessments vary. In the top half of
the table, each dot represents an examiner assessment ranging from excellent (1) to poor (5). The
bottom half of the table shows the agreement value assigned by the 5 metrics for each assessment
example.

P̄ is equal for assessment examples 2 and 3, and examples 4, 5 and 6 thus violating require-

ment 2. IQR is equal for the assessment examples 3 and 4 violating requirements 2 and 3

as also for assessment example 5 and 6 which violates requirement 2. MAD is equal for

the first 3 examples thus violating requirement 2 and 3 and in the 4th and 5th example

requirement 2 is violated. SD violates requirement 3 in examples 2, 3, 7 and 8. Require-

ment 4 is violated by IQR, MAD , SD as the produced values depend on the range of the

scale.

None of the measures described above satisfy the task of measuring examiner agreement

as specified by our requirements, and hence we propose a new coefficient which does fulfil

the specified requirements: Closest-neighbour Median Cluster Agreement (CMCA).

CMCA consists of multiple parts which are calculated as follows. Let xj be the jth

ascending sorted rating on the fingerprint. The closest neighbour distance ND j ∈ [0, 1],
one part to fulfil requirement 2, of the jth rating on the fingerprint is:

NDj = min (|xj − xj−1| , |xj − xj+1|) (1)

Further, let max i the maximum possible rating on the rating scale, min i the minimum

possible rating on the scale, x̃ the median of ratings and r the number of ratings on the fin-

gerprint. The distance consensus D ∈ [0, 1] of the fingerprint made to fulfil requirements
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2 and 4 is:

D =

(

r
∑

j=1

(

1−
NDj

max i−min i

)

+
(

1−
|xj−x̃|

max i−min i

)

)

− 1

2r − 1

(2)

Let cj be the jth cluster (ratings in the same decision category) and let |cj | be its cardi-

nality. Let nc be the number of clusters on. The average cluster size difference CSD ∈
[0, r − 2], which compares the size of each assessment cluster against each other and cal-

culates the mean of their size differences is:

CSD =

nc
∑

j=1

nc
∑

k=j

||cj | − |ck||

(nc−1)·nc
2

(3)

To fulfil requirement 3, the distance consensus D is multiplied by the cluster size power

CSP ∈ [1, r − 1], which is calculated as:

CSP = nc−
CSD

r
(4)

The CMCA on the fingerprint is finally calculated by:

CMCA =























1.0 , nc = 1

1.0− |x1−x2|
max i−min i

, r = 2

DCSP , otherwise

(5)

The CMCA ∈ [0, 1] over a set of fingerprints I is calculated as the arithmetic mean over

the CMCA agreements of each fingerprint in I .

The measurement results of CMCA applied to the 8 assessment examples are shown in the

last row of table 1. Assessment examples 5 and 6, show that CMCA fulfils requirement

2 by considering the distance of between single assessments. It also fulfils requirement

3, heavy weighted assessments that belong to the same decision category. The example

shows that the CMCA fulfils requirement 1, measuring agreement for any number of as-

sessments on a single fingerprint.

After all, the CMCA was designed to measure examiner agreement per fingerprint, see

eq. (5). Other coefficients like Cohens Kappa [Coh60] or Fleiss Kappa [Fle71] were de-

signed to measure inter-rater agreement over the whole assessment population which is

expressed by the arithmetic mean of the set of CMCA. Nonetheless, Cohens Kappa has

the disadvantage that it can only measure pairwise rater agreement on nominal data. In

addition, Fleiss Kappa is able to measure inter-rater agreement for more than 2 raters, but

was also designed for nominal data, so additional information of the natural order of cat-

egories on ordinal data like it is present in our case of fingerprint quality, would not be

considered properly.
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4 Ground truth data

The ground truth data of this paper, representing the human examiner quality assessment

part, originates form the NIST special database 14 [Wat93], containing 54 000 finger-

prints from live-scan and scanned ink impressions and from the NIST special database

29 [Wat01], containing 4 320 fingerprints. In 2009, a team of 9 dactyloscopic examiners

from the BKA annotated for the purpose of a conformance testing study [BLTK09] several

fingerprint characteristics, like minutia points, singular points and the overall fingerprint

quality which is investigated in this paper. To establish an objective annotation, the exam-

iner team was equipped with a simple graphical user interface that omitted the support of

the automatic or semi-automatic minutia extraction functionality of the AFIS. To further

increase the objectivity and anonymity of the process, each examiner was assigned with

an ID that was not known to other examiners. The examiners rated the overall fingerprint

quality within 5 decision categories, ranging from excellent (1), very good (2), good (3),

fair (4) to poor (5). A total of 749 fingerprints were annotated by at least 2 examiners.

Figure 1 shows the logical partitioning of the annotated samples, where the first level con-

tains the set of 749 fingerprints; the second level shows how many samples were annotated

grouped by the number of examiners. The third level shows the number of samples each

distinct group of examiners annotated, e.g. there were 713 fingerprints annotated by 3 ex-

aminers, which came from two groups of 3 examiners annotating respectively 361 and

352 fingerprints (S2 and S3). Table 2 shows the number of images that were annotated by

each of the 9 examiners. We note that examiners 11 to 16 have each annotated nearly 400

samples, while examiners 17 to 19 have annotated fewer than 20 samples.

749 fingerprints with mark-ups by BKA examiners

2

1

S1

1

3

713

S2

361

S3

352

4

7

S4

7

5

9

S5

9

6

2

S6

2

7

4

S7

3

S8

1

8

4

S9

3

S10

1

9

9

S11

9

Figure 1: Examiner markup tree. The bold digits in the second tree level display how many exam-
iners annotated a specific number of fingerprints. The last tree level shows how many fingerprints
where annotated by distinct groups of examiners.

Examiner

11 12 13 14 15 16 17 18 19

Annotations 396 393 397 378 388 371 10 17 17

Table 2: The number of images annotated by each of the 9 examiners.

Table 3 summarizes the CMCA computed on median ground truth quality levels and for

all fingerprint images in the ground truth data set. The mean CMCA is .88 across all
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CMCA

Quality n min max mean median std

1 41 .69 1.00 .82 .84 .08

2 306 .42 1.00 .86 .84 .15

3 305 .42 1.00 .90 .84 .10

4 92 .42 1.00 .88 .84 .11

5 5 .84 .84 .84 .84 .00

All 749 .42 1.00 .88 .84 .13

Table 3: Summary statistics of CMCA at each median ground truth quality level and across all
samples.

fingerprint images, indicating that there is generally consensus between examiners when

subjectively assessing the quality level of a fingerprint image. At the individual levels we

note some differences in the CMCA, in particular that mean CMCA at quality level 1 is

.82 while for level 3 it is .90.

Figure 2 shows an example fingerprint for each median quality assessment. For median

quality levels 1 through 4 the examiners were in agreement with CMCA = 1.0 while for

the fingerprint illustrating level 5 where CMCA = 0.838. We observe that at level 1 (left

most figure) the ridge lines are clearly separated around the core, where the examples for

levels 4 and 5 appear without clearly defined ridge lines and with blurry or low contrast

regions.

Median examiner quality

1 2 3 4 5

Figure 2: Median examiner quality assessment with example fingerprints. All images are from the
NIST special database 14 [Wat93] (file names from left to right: f0000118, f0000109, f0000095,
f0000969, f0000968).

To assess whether human examiner quality assessments are indicative of the eventual gen-

uine comparison score of the fingerprint sample, we computed the genuine comparison

scores for all samples and grouped them according to the examiner who made the assess-

ment and the quality score that was assigned. Box plots showing the relation between

assigned quality and genuine comparison score [id314] for each of the 6 examiners who

annotated the most images (see table 2), as well as the median examiner quality are de-

picted in fig. 3. The plots show that generally a higher quality score is associated with a

higher comparison score, however, for some cases we note some irregularities. For Ex-

91



aminer 11 (left most plot), we note that no images were assigned quality level 5 and that

those samples which received a quality level of 1 were involved in comparisons resulting

in scores similar to those samples which were assessed as being quality level 2.

12345
0

1

2

3
·104

Examiner 11

G
en

u
in

e
co

m
p
ar

is
o
n

sc
o
re

12345

·104

Examiner 12

12345

·104

Examiner 13

12345

·104

Examiner 14

12345

·104

Examiner 15

12345

·104

Examiner 16

12345

·104

Median

Figure 3: Boxplots of genuine comparison score for each of 5 quality levels assigned by 6 examiners
and for the median of assigned quality levels.

5 Experiments

Our goal is to predict the quality level that an examiner will assign to a given fingerprint.

We note from table 3 that our proposed CMCA coefficient indicates a high degree of

agreement between examiners as to the assigned ground truth quality levels for the data

set.

We perform a series of experiments in order to assess to which degree the quality scores

assigned by individual examiners or the median quality score is predicted. From table 3

we note that the distribution of median quality levels is not uniform with the majority

of samples being assigned levels 2 or 3 and with only 5 samples in level 5. Due to the

low annotation count by examiners 17, 18, and 19 we do not attempt to predict their

assessments (see table 2) and instead only assess examiners 11 to 16 individually.

We train our predictive models using Multi-class Support Vector Machine (SVM) [CV95]

and Proportional Odds Logistic Regression (POLR) [MZ75] where the response variable

is the assigned quality level (either individual examiner or median of examiners), and the

explanatory variables are features in sets A or B (see section 2).

The experiments are performed using 10-fold cross validation, i.e., we divide the available

data in each experiment randomly into 10 disjunct partitions of equal size. Over the 10

possible permutations we perform training of SVM and POLR on the 9 folds and test the

performance on the remaining fold. In the case of SVM we use Radial Basis Function as

kernel and perform a grid search for optimal sample influence radius (γ) and cost (C) over

γ ∈ {0.001, 0.01, ..., 1000} and C ∈ {0.001, 0.01, ..., 1000} given the training folds. In

the case of POLR no parameter optimization is performed.

The predictive capability of the constructed models in each experiment setting is deter-

mined by calculating the mean and standard deviation of the F1 score and Cohen’s Kappa
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(κ) [Coh60] over the 10 permutations.

Cohen’s Kappa quantifies the class agreement between the model predictions and the

ground truth by taking into account the observed probabilities of the classes. When κ = 0
the agreement is equal to that which can be achieved by random chance based on the priors

- when κ = 1 then the agreement is complete. F1 is the harmonic mean of precision and

recall and the lowest score is achieved when F1 = 0 and highest when F1 = 1.

Experiments were performed using R [R C14] with SVM from e1071 [MDH+14]; POLR

from MASS [VR02]; cross validation and miscellaneous functions from caret [KWW+15]

and xtable [Dah14] packages.

6 Results

Our analysis of the ground truth data set (section 4) showed that there is a high level of

agreement in assessing quality levels across examiners, and that the higher quality levels

are associated with higher genuine comparison scores.

Following the protocol described in section 5 we performed a total of 14 experiments

and have summarized the mean and standard deviations of F1 and κ for each of them

in table 4. Each line in the table alternates between feature set A and B in Set column with

the Target column indicating what is being predicted where Median indicates that it is the

median of examiner quality assessments per fingerprint that is predicted, and Examiner

11 indicates that it is the quality assessments of Examiner 11 which are predicted. The

remaining columns are first grouped by F1 and κ, next by method SVM or POLR and

finally arithmetic mean (mean) and standard deviation (std) of testing results across the 10

fold cross validation.

F1 κ

SVM POLR SVM POLR

Set Target mean std mean std mean std mean std

A Median .58 .05 .59 .06 .31 .07 .33 .07

B Median .60 .08 .60 .06 .34 .12 .35 .07

A Examiner 11 .72 .05 .70 .03 .21 .17 .13 .10

B Examiner 11 .72 .05 .71 .06 .28 .14 .18 .16

A Examiner 12 .45 .06 .48 .05 .17 .07 .23 .07

B Examiner 12 .51 .05 .52 .07 .26 .08 .29 .08

A Examiner 13 .49 .07 .49 .08 .21 .09 .21 .12

B Examiner 13 .53 .08 .52 .08 .30 .10 .26 .09

A Examiner 14 .57 .10 .59 .09 .30 .14 .33 .13

B Examiner 14 .57 .09 .60 .09 .29 .14 .36 .13

A Examiner 15 .57 .06 .60 .09 .29 .08 .35 .14

B Examiner 15 .58 .07 .61 .08 .32 .09 .37 .12

A Examiner 16 .63 .11 .64 .09 .33 .21 .36 .16

B Examiner 16 .64 .12 .65 .11 .36 .21 .38 .19

Table 4: Results of experiments in predicting median and individual examiner quality assessment
using SVM and POLR on feature sets A and B.

The best prediction results when using Median as target is achieved with POLR and feature
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set B when considering either of F1 and κ as evaluation criteria. We see that the mean F1

is .60 for both SVM and POLR, but the standard deviation is smaller in the case of POLR

with .06 over .08 achieved with SVM. For κ we note a mean of .35 for POLR and .34 for

SVM, again with a smaller standard deviation favouring POLR.

We note that both F1 and κ spans a wide range when using individual examiner quality

assessments as target for the predictions. Examiner 12 appears to be hardest to predict

with a mean κ of .17 and .23 and F1 of .45 and .58 for respectively SVM and POLR when

using feature set A. Prediction of the scores assigned by Examiner 16 using feature set B

gives the highest mean F1 of .64 and .65 and κ of .36 and .38, however in both cases the

standard deviation over the 10 folds is the highest of the experiments performed.

Generally using the global features present in feature set B lead to marginal increases in

the mean F1 score while κ is increased further for both SVM and POLR.

In addition to SVM and POLR listed in table 4 we also used Recursive Partioning, however

that algorithm had difficulty working with the relatively small dataset with 10-fold cross

validation and was thus not able to complete all intended experiments.

7 Conclusion

In this paper we have made steps towards assisting dactyloscopic examiner in assessing

the quality of a given fingerprint or fingermark with the aim of determining its decision

value in the ACE-V protocol. We address the objective quality of fingerprints and relation

to examiner opinion with a continued goal to extend the quality assessment evaluation to

fingermarks which pose the greatest challenge in the forensic evaluation.

We proposed the CMCA coefficient as a general method for quantifying examiner agree-

ment on ordinal scales containing any number of categories. Using CMCA we have shown

that there is a high level of agreement between examiners as to what constitutes a high

quality fingerprint and further that the ground truth assessments made by dactyloscopic

examiners are indicative of genuine comparison scores.

On our limited dataset containing 749 finger images and using 13 quality features we

have constructed a model which predicts examiner quality assessments around 35% better

than random chance given the prior quality class probabilities as measured using Cohen’s

Kappa.

Our future work includes refinement of the quality feature set to improve the predictive

capabilities; evaluation of the importance of the individual features to gain insights as to

which image covariates are important to examiners; evaluation of the trained model to de-

termine the degree that the assigned quality levels are indicative of biometric performance;

and finally how the trained models can be incorporated in ACE-V protocol to assist the de-

cision making of dactyloscopic examiners when working with fingerprints or fingermarks.
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