
cbe doi:10.18420/sicherheit2018_08

H. Langweg, M. Meier, B.C. Witt, D. Reinhardt et al. (Hrsg.): Sicherheit 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 93

Source Code Patterns of Buffer Overflow Vulnerabilities in
Firefox

Felix Schuckert 1 2 felix.schuckert@htwg-konstanz.de,
Max Hildner 1 maxhildner@fastmail.com,
Basel Katt 2 basel.katt@ntnu.no,
Hanno Langweg 1 2 hanno.langweg@htwg-konstanz.de

Abstract: We investigated 50 randomly selected buffer overflow vulnerabilities in Firefox. The source
code of these vulnerabilities and the corresponding patches were manually reviewed and patterns were
identified. Our main contribution are taxonomies of errors, sinks and fixes seen from a developer’s
point of view. The results are compared to the CWE taxonomy with an emphasis on vulnerability
details. Additionally, some ideas are presented on how the taxonomy could be used to improve the
software security education.

Keywords: Buffer Overflow, Source Code Patterns, Vulnerabilities, Code Analysis

1 Introduction

The Common Weakness Enumeration (CWE) [Co17b] top 25 show buffer overflow
vulnerabilities (CWE-120) in third place. Buffer overflows have existed for a long time.
To discover the reason why buffer overflows still occur in code, we investigated source
code samples from the open source web browser Firefox [Fi17]. Different categories for
buffer overflow vulnerabilities already exist in CWE. These categories take a technical point
of view; they look at aspects such as which memory locations are involved. For example,
there are categories for accessing memory on the stack or on the heap. Such categories do
not help software developers to avoid buffer overflow vulnerabilities. Developers have to
know how vulnerabilities occur and what kind of source code patterns are common for
vulnerabilities. Additionally, developers have to know how vulnerabilities can be mitigated.
For example, it is important to check inputs carefully and to not misuse memory-critical
functions as memcpy() that is listed as on of security development lifecycle banned function
calls from Microsoft [Mi17]. To fill the gap in the current categorization approaches and
provide a structured body of knowledge for software developers to mitigate buffer overflow
1 HTWG Konstanz, Department of Computer Science, Alfred-Wachtel-Straße 8, 78462 Konstanz, Germany
2 Department of Information Security and Communication Technology, Faculty of Information Technology and

Electrical Engineering, NTNU, Norwegian University of Science and Technology, Teknologivegen 22, 2815
Gjøvik, Norway

cba doi:10.18420/sicherheit2018_08

H. Langweg, M. Meier, B.C. Witt, D. Reinhardt (Hrsg.): Sicherheit 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 107

https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/sicherheit2018_08
felix.schuckert@htwg-konstanz.de
maxhildner@fastmail.com
basel.katt@ntnu.no
hanno.langweg@htwg-konstanz.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sicherheit2018_08


94 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg

vulnerabilities, we reviewed 50 source code samples of buffer overflow vulnerabilities in
Firefox. In our review, we considered which types of errors the developers made, which
sinks were involved in buffer overflow vulnerabilities and how developers patched the
vulnerability. Categories were created based on the results from the reviews. These results
are compared to the categories from CWE to see the difference from a developer’s point of
view.

This paper begins with an overview of related work in section 2. The following section
explains how the source code was obtained as well as the review method. The categories
for buffer overflows are presented in sections 4, 5 and 6. The last two sections provide a
discussion of the results and suggestions for future work.

2 Previous and related work

SQL injection vulnerabilities in 50 source code samples from open source projects were
analysed by [SKL17] using a similar method. The reviewed programming language was
PHP. Classifications of source code patterns exist. Classifying source code into bad code,
clean code and ambiguous code was done by Lerthathairat; Prompoon [LP11]. Metrics in
source code like comments, the size of the function, et cetera. were analysed using fuzzy
logic to determine which category the source code belongs to. Bad and ambiguous code
are considered for refactoring. More security-related work is by Hui et al. [Hu10], using
a software security taxonomy for software security tests. The security defects taxonomy
was created based on the top 10 software security errors from authoritative vulnerability
enumerations. It is categorized into into induced causes, modification methods and reverse
use methods. Hui et al. [Hu10] suggested to use their taxonomy as security test cases.

Massacci; Nguyen [MN10] investigated different data sources for vulnerabilities, e.g.
Common Vulnerabilities and Exposures (CVE) [Co17a], National Vulnerability Database
(NVD) [Na17], et cetera. They checked which data sources were used by other research
projects. In their work, Firefox was used as database for the analysis. Semantic templates
were derived from the existing CWE database and are supposed to help understand security
vulnerabilities by Wu et al. [WSG11]. The authors did an empirical study to prove that these
semantic templates have a positive impact on the time until a vulnerability is completely
found.

The work by Bishop et al. [Bi12] [Bi10] presents a taxonomy of how buffer overflow
vulnerabilities occur, considering which preconditions are required to exploit a vulnerability.
These preconditions are not suited to teach software developers to mitigate vulnerabilities.
For example, taking into consideration the category that the program can jump to a memory
location in the stack. This is relevant for exploiting the vulnerability, but it will not help to
understand what kind of mistakes were done in developing the source code. Kratkiewicz;
Lippmann [KL05] used a taxonomy of buffer overflow vulnerabilities to create a data set of
291 small C programs. The data set was analysed with static and dynamic code analysis

108 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg



Source Code Patterns of Buffer Overflow Vulnerabilities in Firefox 95

tools. The tools were then evaluated regarding their detection rate, false positive rate, et
ceterea. Ye et al. [Ye16] analysed 100 buffer overflow vulnerabilities and the corresponding
patches, using the data to evaluate static code analysis tools. The evaluated tools were
Fortify, Checkmarx and Splint. Shahriar; Haddad [SH13] showed how to automatically
patch buffer overflow vulnerabilities, including a classification of different types of buffer
overflow vulnerabilities. For each of these categories, rules were offered to mitigate the
vulnerability. The SEI CERT coding standards [St16] provide an overview on how to
implement memory-critical parts in C. The standards are presented as necessary to ensure
safety, reliability and security. Non-compliant and compliant code examples help developers
to better understand the coding standards.

3 Method

To create the source code pattern categories, selected data sets are needed for the review
process. We focus on vulnerabilities which are tracked in the CVE database. We chose source
code samples from Firefox because it has many reported buffer overflow vulnerabilities - on
average about 30 buffer overflow vulnerabilities per year. Additionally, the Bugzilla [Bu17]
platform offers a public discussion about the bug fixes, which helps to identify the relevant
source code pattern for the vulnerability. 187 CVE reports are connected to buffer overflow
vulnerabilities and Firefox in the time frame from 2010 to 2015 (six years). We choose 2015
as a cut-off to ensure we would have access to a patch as well. We use 50 randomly selected
CVE reports which also provide a patch to fix the vulnerability. The patch is determined by
a CONFIRM flag in the CVE report which indicates the correct Bugzilla report. The bug
report contains a link to the patch which fixes the vulnerability. Firefox patches are managed
with a version control tool. For each of theses patches, the hash value of the parent version
is specified. That version is used as a source code sample containing the buffer overflow
vulnerability.

The vulnerable version was reviewed regarding the types of errors made by developers and
which sinks were used. A sink is the last instance where unchecked user input can exploit a
vulnerability. For example, the function memcpy() is a common sink for buffer overflow
vulnerabilities. In order to see which errors were made and which sinks were used, a data
flow analysis was performed. This was done manually because within the bounds of our
project, we could not find a proper tool that was able to analyse such a huge project like
Firefox. It is possible that types of errors appear several times because a combinations of
errors can also result in a vulnerability. The errors were considered from a developer’s point
of view. However, the sink is more focused on which critical functions and source code
parts are used. This helps developers to recognize critical functions. The patch was used
to see how developers fixed the vulnerability. The review of the patch was used to create
categories for the fixes.

Source Code Patterns of Buffer Overflow Vulnerabilities in Firefox 109



96 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg

4 Types of errors

Types of errors (59)

Logical Errors (3)

Unexpected Calculation
(CWE-682) (4)

Invalid Index
(CWE-606) (5)

Invalid Index Initialization (1)

Invalid Index Bound (1)

Invalid Index Update (3)

Unchecked
(CWE-120) (5)

Missing Return Value Check
(CWE-252) (6)

Mis-Matching Data Types
(CWE-681) (9)

int - long (1)

32bit - 64bit (2)

Unsigned - Signed
(CWE-195, CWE-196) (6)

Unexpected Input
(CWE-229) (9)

Unexpected Input Maximum (1)

Unexpected Input Minimum (2)

Unexpected Input Negative (2)

Unexpected Input Zero (4)

Variable Overflow
(CWE-190) (18)

Variable Overflow
Memory Access (1)

Variable Overflow in Check
(CWE-190, CWE-119) (2)

Variable Overflow Allocation
(CWE-680) (15)

Fig. 1: Taxonomy of errors developers introduced based on the data set.

Figure 1 shows an overview of the categories for the types of errors found in our data set. It
has more than 50 assignments because one type of error can lead to other types of errors
which then result in a buffer overflow vulnerability. The categories created for the data are
the following:

1. Variable Overflow: Many instances of buffer overflows in our review are correlated
to integer overflows or underflows. These over-/under-flowed variables are used to
check the input size (Variable Overflow in Check). Because of the wrong value, these
checks pass inputs resulting in a buffer overflow condition. This type of error can
be represented in a combination of the following CWE ids: The CWE-190 (Integer
Overflow or Wraparound) connected with the keyword CanProcede to CWE-119
(Improper Restriction of Operations within the Bounds of a Memory Buffer).

An overflowed or underflowed variable is used for allocating memory (Variable
Overflow Allocation). The allocated memory is smaller than the input copied into it.
This results in a buffer overflow. The related CWE id is CWE-680, which states that
a calculation result is used to allocate memory and an integer overflow causes less
memory to be allocated. The allocation of an insufficient amount of memory in our
data set occurred in the following sub-patterns:

110 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg



Source Code Patterns of Buffer Overflow Vulnerabilities in Firefox 97

a) Allocation too small: An integer overflow can either have a negative result
(signed int) or very small result (unsigned int). These integer overflows occur
because user data is included in a calculation. This can be a simple addition
to a static value or it can be methods computing a length. As an example, the
length of the user input could be the sum of multiple user inputs. If memory is
allocated from an integer overflow result, the later usage of the memory will
result in a buffer overflow vulnerability.

b) Existing buffer size check: Some data sets used already existing buffers and
checked if the buffer size had to be increased. An integer overflow in such a
check also results in a buffer that is too small.

2. Unchecked: The review shows vulnerabilities where user input reaches methods that
are vulnerable for buffer overflows. Source code samples without any checks fall into
this category. The corresponding CWE id (CWE-120) explains it as follows: “The
program copies an input buffer to an output buffer without verifying that the size of
the input buffer is less than the size of the output buffer, leading to a buffer overflow.“
Accordingly, this is the classic buffer overflow where input is not checked and then is
able to reach critical functions like memcpy().

3. Unexpected Input: This category covers unexpected user inputs. Usually, all of the
error types could fall into this category, but it covers inputs that the developers
did not expect to occur. For example, the parameter of a method is the size of a
file. Accordingly, the parameter must not be negative (Unexpected Input Negative).
Another example would be a parameter that has a minimum size, thus, falls into the
category Unexpected Input Minimum. Nevertheless, the parameter can be outside
of the expected range because of some other preconditions or special inputs. For
example, a specially crafted file would return a negative result as the content length. If a
developer uses such premises for memory-critical parts, a buffer overflow vulnerability
could occur. One sample also had expected a maximum input (Unexpected Input
Maximum) of a value. This vulnerability was related to shaders programs which are
programs running on the graphics processor. Developers did not think that the value
of the input could be higher than the number of existing shaders. CWE-229 (Improper
Handling of Values) is best suited to our Unexpected Input category because the
inputs are not handled properly. The CWE category covers multiple variants like
missing values or undefined values. It does not cover numerical values which are too
small, too high or in an unexpected range.

4. Mis-Matching Data Types: This category covers vulnerabilities where values of
different data types are assigned to each other which is presented in CWE-681
(Incorrect Conversion between Numeric Types). A common example is the assignment
from unsigned int to signed int. These assignments are also covered by CWE-119
(Signed to Unsigned Conversion Error) and CWE-196 (Unsigned to Signed Conversion
Error). This type of error occurred in our data set in combination with Unexpected
Calculation or just as a simple conversion with the outcome of a buffer overflow
vulnerability. Also, some samples contain assignments of different variable lengths,

Source Code Patterns of Buffer Overflow Vulnerabilities in Firefox 111



98 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg

for example, assignments between 32 bit and 64 bit variables. C/C++ does allow the
assignment of variables with different data types. It will interpret the bits according
to the new variable type. For example, if a negative value is assigned to an unsigned
variable, the first bit will be interpreted as the highest value bit. If such an interpretation
is unwanted, subsequent checks and the usage of the variable will be problematic. In
our sample, this results in buffer overflow vulnerabilities.

5. Missing Return Value Check: These are vulnerabilities where developers do not
check the return value. In our data set it was common that the return value of a
memory allocation function was not checked. If the allocation is not possible, the
allocation functions returns an error code. If the return value is ignored, the pointer
will point to a random memory address. Using this pointer to access memory will
likely result in a buffer overflow vulnerability. Usually such a situation only happens
when the system or program is out of memory. CWE-252 (Unchecked Return Value)
is the related category in the CWE list.

6. Invalid Index: These error types include the usage of an invalid index for a loop. It is
split into three subcategories. The first is the Invalid Index Bound where the bound is
invalid. This can happen because of previous errors like an Unexpected Calculation.
Samples where such a bound is invalid and the index is used to access memory are
counted in this category. Another error is that developers did not update the index
correctly (Invalid Index Update) which also results in a buffer overflow. One sample
had an index initialized to an invalid value (Invalid Index Initialization). The best
fitting CWE category is CWE-606 (Unchecked Input for Loop Condition) because
the Invalid Index category is related to loops.

7. Unexpected Calculation: This category covers source code samples where unexpected
results are obtained during calculation. All the samples had a negative result. The
developers did not expect the result to be negative and the values were used in
memory-unsafe functions. Another example is assigning a negative result to an
unsigned integer. The unsigned integer will interpret the highest bit which is a 1
as a very large value because it was negative when it was represented in a signed
datatype. Such an example is represented in CWE ids with the following: CWE-
682 (Incorrect Calculation) connected with the keyword CanFollow to CWE-681
(Incorrect Conversion between Numeric Types).

8. Logical Errors: Two vulnerable samples showed developers made logical errors.
For example, not enough memory was allocated regardless of the input and the
following code did write into unintended memory parts. Another sample had an issue
where the length of a variable was not updated correctly and that length was used
in memory-critical parts. Three samples showed buffer overflow conditions because
they had logical errors.

112 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg



Source Code Patterns of Buffer Overflow Vulnerabilities in Firefox 99

Sinks (50)

Pointer (5)
Pointer Write
(CVE-787) (2)

Pointer Read
(CVE-125) (3)

Array (20)

Array Read Static (2)

Array Write
(CVE-787) (9)

Array Read
(CVE-125) (9)

Critical Functions (25)

Critical Functions
String Scanf (1)

Critical Functions
String Copy (3)

Critical Functions
Transfer Memory (21)

Fig. 2: Taxonomy of sinks based on the data set.

5 Sink categories

What kind of sinks were used in the data set are shown in figure 2. These are classified into
the following categories:

1. Critical Functions: Sinks of this category are memory-critical functions. Common
functions in C/C++ are memcpy() or memset(). These functions are categorized into
the subcategory transfer memory. Three sinks of the data set used a string copy
function (strcpy()) and one sample used the scanf() function. These are functions
which are also found in the banned functions list for security development lifecycle
[Mi17].

2. Array: Arrays in C/C++ are very similar to pointers. The memory for an array is
arranged such that all entries are next to each other. If an array field is accessed using
an invalid index, a buffer overflow vulnerability exists. All data sets where the sinks are
arrays fall into this category. This can be split into write (CWE-787: Out-of-bounds
write) and read (CWE-125: Out-of-bounds read). Two samples performed a read
access with a static index. Both of them used the index zero, which is typically used
to get the first element of an array.

3. Pointer: The last category for sinks is the misuse of pointers. These are sinks where
pointers are used to access memory. This category can be mapped to the CWE-468
(Incorrect Pointer Scaling) category. This category can also be split into subcategories
of read (CWE-125: Out-of-bounds read) and write (CWE-787: Out-of-bounds write).

6 Fix categories

The results for the different fixes are categorized and seen in figure 3. They are connected to
the different problem types. Fixes are categorized as follows:

Source Code Patterns of Buffer Overflow Vulnerabilities in Firefox 113



100 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg

Fixes (50)

Proper Allocation (2)

Fix Calculation (2)

Change to Match-
ing Data Type (3)

Fix Index (4)
Fix Index Initialization (1)

Fix Index Update (3)

Use Safe Function (4)

Check If Alloca-
tion Succeeds (6)

Check Overflow
Underflow (10) Check Before Calculation (2)

Checkable Type (8)

Proper Input Check (19)

White Listing (1)

Not Too Small (3)

Not Negative (4)

Black Listing (4)

Not Too High (7)

Fig. 3: Taxonomy of fixes for the vulnerabilities based on the data set.

1. Proper Input Check: Fixes for this category are input checks which were completely
missing (Unchecked). Also fixes which check inputs that developers didn’t have in
mind fall into this category (Unexpected Input). The subcategories are for the different
kinds of checks. For example, negative values are a common input developers did
not expect. Also some vulnerabilities which have Variable Overflow in Check and
Variable Overflow Allocation as error categories were fixed by checking if the input
value was not too high. Also some fixes did just check if a value was not too small.
This is commonly a fix when developers thought the input could not be that small.
Black listing where specific inputs are filtered out and white listing where only specific
inputs are allowed were found as fixes in the data set.

2. Check Overflow Underflow: Firefox has a checkedint class which allows to check if
an overflow or underflow occurred. Accordingly, fixes used these classes instead of int
variables and checked for over- and underflow occurrences. Two fixes did check the
input, i.e., if an integer overflow occurred in the calculation before using it. This fixes
problems from the Variable Overflow in Check and Variable Overflow Allocation
categories.

3. Check If Allocation Succeeds: Some vulnerabilities fall in the error category Missing
Return Value Check. In our data set, these missing return value checks are related
to allocating memory. As the name already hints, fixes in this category check these
return values and change the control path accordingly.

4. Use Safe Function: Memory related functions provide a secure function which
requires an additional parameter. This parameter is used to restrict the size which
is used in the memory-critical function. A common example is strcpy and strcpy_s.
The additional parameter is used to provide the size of the string. This prevents a
vulnerability where the source string has no null character or the size of the source

114 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg



Source Code Patterns of Buffer Overflow Vulnerabilities in Firefox 101

string is larger than the size of the destination string. Four fixes used such functions
to remove the vulnerability.

5. Fix Index: This category is related to the error type Invalid Index. These errors were
fixed by using valid indexes. One instance was fixed by changing the data type so that
the index was not invalid any more. The fixes are split into the same subcategories as
the error type. For example, one index update fix was implemented by inserting a
break statement.

6. Change to Matching Data Type: Three vulnerabilities were patched by changing the
data type. This fix is related to the Mis-Matching Data Types error type category.
Three of these kind of errors were patched by changing the data type. The remaining
samples were fixed by correcting a previous error which then only resulted in a
vulnerability because of mis-matching data types. For example, an integer overflow
was fixed, which resulted in a negative result that was assigned to an unsigned integer
variable. As long as the value was positive, this did not create a problem.

7. Fix Calculation Two samples were patched by fixing the calculation. The calculation
was adjusted accordingly such that the undesired results will no longer occur.

8. Proper Allocation The last category of fixes are patches where the allocations were
fixed. For example, the allocation did not reserve enough memory. If the allocation
was changed such that it allocated the right amount of memory, it falls into this
category. Two samples patched the vulnerability by correctly allocating memory.

7 Discussion

Firefox is a well-known open source product and the source code is reviewed a lot.
Accordingly, the vulnerabilities from Firefox usually had input checks before potentially
dangerous functions or memory accesses were used. The vulnerabilities most often existed
because an integer overflow or underflow occurred. It is important to teach developers the
right use of variables which may overflow/underflow. Also the assignment of variables with
different data types in C/C++ is problematic and should be avoided. Nevertheless, if these
assignments are required, they should be used carefully.

The error types were related to existing CWE categories. CWE-888 contains software
fault pattern clusters. The containing category CWE-890 (SFP Primary Cluster: Memory
Access) is related to buffer overflow vulnerabilities. This category also has the following
subcategories:

• CWE-970 SFP 2. Cluster: Faulty Buffer Access: covered
• CWE-971 SFP 2. Cluster: Faulty Pointer Use: did not occur in data set
• CWE-972 SFP 2. Cluster: Faulty String Expansion: did not occur in data set
• CWE-973 SFP 2. Cluster: Improper NULL Termination: did not occur in data set
• CWE-974 SFP 2. Cluster: Incorrect Buffer Length Computation: covered

Source Code Patterns of Buffer Overflow Vulnerabilities in Firefox 115



102 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg

CWE-970 and CWE-974 are covered by our data set. Surprisingly, CWE-971 did not
occur in our data set. This is due to the fact that this category has only very specific CWE
subcategories, for example, when using a null pointer or using pointers to determine a length.
Also CWE-972 and CWE-973 did not occur in our data set. There was no vulnerability
sample related to an improper null termination of a String variable. Another related cluster
is CWE-969 (SFP Secondary Cluster: Faulty Memory Release) which covers vulnerabilities
where memory is released and still used later on. This includes vulnerabilities like “double
free“ or releasing memory which is not on the heap. Unfortunately, our data set did not
cover vulnerabilities which fit into this cluster.

As already stated, Microsoft released a list of banned functions for the security development
lifecycle [Mi17]. Most of our sinks that fall into the category Critical Functions are found
on the list. Our data set contained the critical functions memmove() and memset(), which
are not found in the banned list because these functions are using a restricting length
parameter. Only four of samples using a banned function were fixed by using a safe function.
17 of the sinks in our data set did use the function memcpy(). According to the list, the
function memcpy_s() should be used which requires an additional parameter defining the
size of destination. None of the patches used the function to fix the vulnerability. It is
easy to tell developers to avoid buffer overflow vulnerabilities, but there is a huge list of
critical functions. Developers have to know which functions are critical. Static code analysis
tools might be useful to find these functions. Nevertheless, in our data set only half of the
vulnerabilities use critical functions. Additionally, there are many different permutations of
buffer overflow vulnerabilities which makes the mitigation for developers problematic.

Our results show that buffer overflow vulnerabilities are not simply avoided by having a list
of critical functions. Buffer overflow vulnerabilities occur in many different permutations
and in combination of errors. Accordingly they are not easy to prevent by just learning
simple vulnerabilities. Our results provide an overview of source code patterns which are
found in our data set. These can be used to teach developers that all kinds of permutations
of our categories can result in a buffer overflow vulnerabilities.

8 Conclusions and future work

To minimize the occurrence of buffer overflow vulnerabilities, different source code patterns
have to be detected and avoided. To gain a better understanding of how such patterns
look like, we analysed 50 buffer overflow CVE reports related to Firefox. We created
categories for the types of errors the developers made, what kind of sinks were used and
how the developers fixed the vulnerability. These categories were compared to existing
CWE categories. Some categories are not found as a direct CWE category. Likewise, our
data set does not include all CWE categories. The focus of the categories is seen from a
developer’s point of view instead of a technical representation of the vulnerability details.
This helps to use the categories to teach developers which source code patterns and errors
are common for buffer overflow vulnerabilities.

116 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg



Source Code Patterns of Buffer Overflow Vulnerabilities in Firefox 103

Our patterns could be used to create different learning exercises using different permutations.
An interesting point will be to create these exercises automatically. The LAVA tool [Do16]
injects buffer overflow vulnerabilities in C code. It would be interesting to integrate our
patterns into this tool. This will be an important step because malicious developers might
already have developed such tools. It would reveal some limitations and maybe risks which
might occur by automatically creating vulnerabilities in the future. Our earlier work [Sc16]
is a tool which injects SQL injection vulnerabilities in Java source code using an abstract
syntax tree. A similar approach might be possible to inject buffer overflow vulnerabilities in
C/C++ code. Another avenue of research would be using these categories to benchmark
static code analysis tools. Data sets could be created using different permutations of our
categories. It will be interesting to see if all permutations are detected by static code analysis
tools as well as the false positives and the false negatives rates of the tools.

References

[Bi10] Bishop, M.; Howard, D.; Engle, S.; Whalen, S.: A taxonomy of buffer overflow
preconditions. In. 2010.

[Bi12] Bishop, M.; Engle, S.; Howard, D.; Whalen, S.: A taxonomy of buffer overflow
characteristics. In. Vol. 9, pp. 305–317, 2012.

[Bu17] Bugzilla, 2017, url: https://bugzilla.mozilla.org.
[Co17a] Common Vulnerabilities and Exposures, 2017, url: https://cve.mitre.org/.
[Co17b] Common Weakness Enumeration, 2017, url: https://cwe.mitre.org/.
[Do16] Dolan-Gavitt, B.; Hulin, P.; Kirda, E.; Leek, T.; Mambretti, A.; Robertson, W.;

Ulrich, F.; Whelan, R.: Lava: Large-scale automated vulnerability addition. In:
Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, pp. 110–121,
2016.

[Fi17] Firefox, 2017, url: https://www.mozilla.org/de/firefox/.
[Hu10] Hui, Z.; Huang, S.; Hu, B.; Ren, Z.: A taxonomy of software security defects

for SST. In. Pp. 99–103, 2010.
[KL05] Kratkiewicz, K.; Lippmann, R.: A taxonomy of buffer overflows for evaluating

static and dynamic software testing tools. In: Proceedings of Workshop on
Software Security Assurance Tools, Techniques, and Metrics. Pp. 500–265,
2005.

[LP11] Lerthathairat, P.; Prompoon, N.: An approach for source code classification to
enhance maintainability. In. Pp. 319–324, 2011.

[Mi17] Microsoft: Security Development Lifecycle (SDL) Banned Function Calls,
2017, url: https://msdn.microsoft.com/en-us/library/bb288454.aspx.

Source Code Patterns of Buffer Overflow Vulnerabilities in Firefox 117

https://bugzilla.mozilla.org
https://cve.mitre.org/
https://cwe.mitre.org/
https://www.mozilla.org/de/firefox/
https://msdn.microsoft.com/en-us/library/bb288454.aspx


104 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg

[MN10] Massacci, F.; Nguyen, V. H.: Which is the right source for vulnerability studies?:
An empirical analysis on Mozilla Firefox. In. 4:1–4:8, 2010, isbn: 978-1-4503-
0340-8.

[Na17] National Vulnerability Database, 2017, url: https://nvd.nist.gov/.
[Sc16] Schuckert, F.: PT: Generating Security Vulnerabilities in Source Code. In:

Sicherheit 2016 - Sicherheit, Schutz und Zuverlässigkeit. Pp. 177–182, 2016.
[SH13] Shahriar, H.; Haddad, H. M.: Rule-based source level patching of buffer overflow

vulnerabilities. In. Pp. 627–632, 2013.
[SKL17] Schuckert, F.; Katt, B.; Langweg, H.: Source Code Patterns of SQL Injec-

tion Vulnerabilities. In: Proceedings of the 12th International Conference on
Availability, Reliability and Security. ACM, 72:1–72:7, 2017.

[St16] Standard, C. C.: SEI CERT. In. 2016.
[WSG11] Wu, Y.; Siy, H.; Gandhi, R.: Empirical results on the study of software

vulnerabilities. In. Pp. 964–967, 2011.
[Ye16] Ye, T.; Zhang, L.; Wang, L.; Li, X.: An Empirical Study on Detecting and

Fixing Buffer Overflow Bugs. In. Pp. 91–101, 2016.

118 Felix Schuckert, Max Hildner, Basel Katt, Hanno Langweg

https://nvd.nist.gov/

