
System software real-time testing 
aids 

W.E. QUILLIN 

Plessey Radar, The Plessey Co, England 

1. General methods of software system build-up 

1.1 Design 

Before the use of testing aids can be considered 
it is helpful to consider the way a system is built. 
The system design is a top- down process, which 
takes the system from an overall specification to 
the design of individual pro_gram modules, which 
will be coded, tested and integrated to build the 
complete system. The design process also leads 
to the choice of suitable hardware. 

1.2 Off-line testing 

System Implementation is a bottom-up process, 
starting with the testing and integration of the 
lowest levels of the modules. Initial testing will 
be in an off-line environment, in either a free­
standing computer of the type for which the object 
code is intended, or in a computer of a different 
type, generally larger, which has a suitable 
emulator program. lt is important that this off­
line testing stage should be -as thorough as pos­
sible, and remove all the coding hlgs and design 
errors it can possible catch. A single free­
standing computer is usually much easier to 
obtain and control for testing purposes than a 
complete on-line system. Some routines can be 
very extensively tested in this manner, others 
are much more difficult to off-line test, especially 
if they control complex interface equipment with 
real- time constraints. Not only single modules, 
hlt suitable collections of related modules, will 
be tested off-line. Input and output modules of 
these collections will be replaced by dummies, 
and assistance in the testing is provided by a set 
of off- line testing aids. The majority of faults 
which escape detection at this off-line testing 
stage will be interface errors and errors due to 
the constraints of real-time working. 

1.3 On-line testing 

For each package of modules there comes a time 
when either it is not possible to carry out any 

106 

INPUT INPUT DATA 
f---+- BASE - HANDLING 

DATA PROGRAM UPDATE 

SYSTEM 
DATA 
BASE 

-

OUTPl!J OUTPUT DATA BASE 
HANDLING t-+- EXTRACTION 1--+-DATA PROGRAM PROGRAM 

TEST 1 INPUT HANDLING PROGRAM 
TEST 2 OUTPUT HANDLING PROGRAM 
TEST 3 INPUT HANDLING PLUS DATA BASE UPDATE 
TEST 4 OUTPUT HANDLING PLUS DATA BASE EXTRACT 
TEST 5 COMPLETE SYSTEM 

Fig. 1 

further off-line tests, or to do so would involve 
the production of an unacceptable amount of test 
program or test data. At this point on-line testing 
is started, and it is at this time that system 
testing aids are required. Like the off-line tests, 
the on-line testing starts with as simple a system 
as possible. The code is tested in its final object 
computer, but not all the other system computers 
and the full input-output facilities will be provided 
initially, see Fig. 1. Part of the job of the on-line 
test aids is to cover up the lack of these facilities 
and make it appear to the code under test that it 
is in its full system environment. The testing 
aids are primarily intended to help test the soft­
ware, and leave it to a pre-test checkout or hard­
ware detection routines included in the package 
under test to find any system hardware failures. 
The problem with a real-time system is that it is 
not designed to be capable of stopping and then 
being restarted. Hence the use of freeze-points 
in the code to trap errors is generally inappro­
priate. The testing must take place with the 
system in operation and it is highly desirable that 
minor changes can be made, whilst the system 
continues to run. 



2: Requirements for system testing aids 

Testing aids are required to fulfil the following 
functions in a software system under development . 

1 .  To inject data into the system under test . 
The simplest form of data injection required is 
the addition of items to stacks, queues and lists 
in the system, to check that the processing of this 
data is initiated and performed correctly. Such 
requirements generally arise because the system 
under test is incomplete . The need also arises 
sometimes during testing as it becomes necessary 
to exercise a suspect program on a more rapid 
basis than would be the case in normal use. 
Another type of data injection is the on-line 
amendment of contents of common core store and 
computer core store . This gives test personnel 
a method of controlling the running system, 
temporarily masking faults to enable other faults 
to be found, and, if they are not careful, comple­
teley wrecking the software under test. lt is a 
facility which must be used with caution, particu­
larly when changing computer core store contents 
if the computers have a relocatable loader . The 
system testing software should enable tasks of 
the system on-line operating system to be initiated 
or suspended during the test by suitable data 
injection . 

2. To extract data from the system for sub­
sequent analysis . Once again the simplest case 
is extracting data from a stack, queue or list . 
There are two cases here, one where the queue 
or list forms the end of the process under test, 
i .e .  the program which would usually empty it is 
not yet included. In this case the testing aid must 
remove entries at a suitable rate to prevent 
unwanted list or queue full indications. The 
second case is more complicated, where the list 
or queue is an intermediate point in the software 
under test. In this case the test program must 
look at and record entries but not remove them. 
The sampling rate should be rapid, so entries 
are not missed, but in practice if there is no 
designed phase relationship between the test pro­
grams, the filling program, and emptying pro­
gram this is generally impossible as the occasion 
will arise where a list is read immediately after 
an entry is added and the monitoring software has 
no time to catch the entry. The debugging aids 
must also be able to observe more general 
system data, such as models showing current 
system configuration, current state of world 
models in which the system has an interest, 
operator and data link injected data, fault reports, 
etc. 

3 .  To vary the real- time working of the sys­
tem. Requirements arise during testing when it 
is required that the system should run faster or 
slower than real- time . Difficult faults may be 

found easier in a slow running system - the ulti­
mate in slow running a system is to be able to 
'One- Shot ' it, and the system testing aids should 
mak.e this possible, in conjunction with the on- line 
operating system. Other system faults may 
require the system to run faster than real-time, 
this being especially true of faults which require 
assistance of engineers using instruments, e .g .  
oscilloscopes. Testing, both hardware and soft­
ware, is designed to ensure that such faults are 
rare, but they cannot be completely eliminated . 
A facility should also be provided to enable part 
of the program under test to be continuously 
repeated, as an aid to finding intermittent and 
other seldom occurring faults. 

4 .  The system testing forms part of the total 
documentation. This is required to give a record 
of the testing methods used and to assist in the 
tracing of faults which occur during use and 
during subsequent software or hardware modifica­
tions. The system testing software can assist 
this documentation task by giving a print-out in a 
suitable form for incorporation in the documenta­
tion. 

5 .  Frequently du ring testing the designed 
method of system start-up and shut- down is 
inappropriate due to the need to run with parts of 
the system incomplete and the desire to reduce 
testing time when possible. The system test soft­
ware should enable various start- up and shut- down 
procedures to be followed as appropriate to the 
test being conducted. 

3. Examples of testing software successfully used on 
on-line systems 

The following examples consider two on- line test 
programs written and used by the Plessey Co. for 
testing on-line software. They are currently 
being modified �.<l im:cgrated, but for the purposes 
of this paper they are considered as individual 
programs. 

3. 1 Electronic data display monitor 

This program was written to run on a system 
which has a number of operator positions which 
include alpha-numeric keyboard inputs and 
electronic data displays (or VDUs), onto which 
the system can write alpha-numeric characters, 
as output . The same design could be applied to 
other 1 /0 media, e .g .  keyboard and teleprinter 
or lineprinter . This would help the output to be 
of assistance for documentation reasons, but it 
can lead to the problem of the system testers 
disappearing under a mountain of paper whilst 
they search for a sheet which is relevant to a 
problem under test . The program was in fact so 

1 07 



arranged that inputs can be accepted from paper 
tape and the computer control console as the 
positions ' keyboards. In practice these first two 
options have rarely been used. 

1 
2 
3 
4 
s 

6 
7 
8 
9 

10 

LEFT SIDE RIGHT SIDE 
DISPLAY DISPLAY 
AREA AREA 
( LHS ) (RHS ) 

LHS COMMENT LINE RHS COMMENT LINE 
LHS MESSAGE LINE RHS MESSAGE LINE 

DATE MONITOR POSITION TIME 

Fig. 2 Basic display for EDD  monitor 

3.2 The basic display is shown in Fig. 2. lt 
requires a position with at least a 10 line display 
facility. The program will operate if using a 
position with only 8 lines (in one case some posi­
tions had only 8} but the Date, Monitor Position 
and Time Displays are then not available. The 
position in use is set up at the start of a trial and 
can be changed if required during the testing 
period. Each side of the display is treated inde­
pendently and on each side there can be displayed 
up to six words of eight or twelve digits. Data is 
loaded into the display formats from the top and 
if a smaller number of words than six is 
required the lower data lines will remain blank. 

3. 3 There are four types of data messages: 
i Display up to six words from a common 

core store. 
ii Display up to six words from a computer 

store. 
iii Inject up to 6 words into a common core 

store. 
iv Inject up to 6 words into a computer store. 

Data is set up on the monitor in octal . In the case 
of injections to core store, the operator must 
confirm the data and then inject, giving ample 
chance to remove an error. Repeated injections 
of the data set up are possible . 

3.4 There are also four possible auxiliary mes­
sages: 

i Add 'nn ' to a given address (nn is a two­
digit octal number) . 

ii Subtract 'nn ' from a given address. 
iii Continually update displayed data . 
iv Freeze display. 

The first two apply to any of the Data messages, 
the second two only to Display Data messages. 

108 

3. 5 There are also four clear and erase 
messages: 

i Clear a whole display. 
ii Clear right side of display. 

iii Clear left side of display. 
iv Erase last character injected. 

3.6 There are comment messages which are 
given to the operator upon a fault condition. 

i Wrong Key - Try Again. 

This is displayed upon operation of an illegal 
alpha- numeric key. lt is cleared on a valid 
injection . 

ii No Data message displayed. 

This is displayed if an operator attempts an 
Auxiliary Data message when no Data message 
has been injected. 

iii Common core address invalid. 

If the full address field is not used for common 
core store addresses and an out of limit request 
is made, this message will be displayed. 

iv Faulty Transfer. 

After an inject to store message the program 
sends the data, then reads it back as a check. 
This message is displayed if the check fails. 

v lnject lnhlbited. 

lt is sometimes necessary to inhibit the injection 
of data, for example during system trials. This 
inhibit is controlled from a computer console key. 
The above message is displayed if the operator 
tries to inject whilst this key is operated. 

vi Computer Not Available. 

Whilst transferring injections to or from another 
computer the program expects a confirm reply. 
If this does not arrive in a predetermined time, 
the above message is displayed. 

1 
2 
3 
4 
s 

6 
7 
8 
9 

10 

5252 5252 5252 7654 3210 
7777 7777 7777 0123 4567 
6666 6666 6666 1212 1212 
5555 5555 4444 5151 5151 

7777 7777 
0000 0000 

WRONG KEY - TRY AGAIN 
OS --5 004A1000Q41 --C002A 122222*RY* 

28 FEB 71 14 

F i g .  3 Sample format of EDD monitor 

11 15 10 7 

3. 7 Figure 3 shows a sample format . The left 
side display "- - S  004 A 1000 Q4 I" means inject 
the four words of data into store 004, starting at 



address 1000. The 05 is the number of times this 
data has been injected. The operator has operated 
an invalid key. The date is 28th February, 1971. 
The right side display message "--C 002 A 
122222*" means display 6 words of data from 
computer 002 starting at address 122222. The 
Auxiliary Data Message RY* means continually 
update the display. The time is shown as 
11.15 10.7, i.e. 10.7 secs after quarter past 
eleven. 

3.8 Experience with this program has shown that 
it makes it possible for an experienced system 
test team to locate errors by working in an inter­
active fashion with the running system. The use 
of a display enables many data items in computers 
and common core stores to be scanned rapidly, to 
find for example where a chain of events breaks. 
Data changes of ¼ sec can be detected on the dis­
play enabling entries in queues and lists to be 
seen between addition and removal. 

4. SCOT program 

The second system test aid program to be 
described is called SCOT (System Computer On­
line Test) and covers testing functions described 
in paragraph 2 which are not covered by the EDD 
Monitor program, such as adding data to queues, 
giving output suitable for documentation and 
system start-up. Whereas the EDD monitor pro­
gram is designed for searching for faults and 
obtaining small amounts of data (by writing down 
display contents or photography) the SCOT pro­
gram is used to obtain large volume outputs. 

4.1 The following description of input messages 
shows the program 's capabilities. 

i Specify common stores in use for the test. 
The address numbers of the stores to be 
used are input. 

ii Place data in common stores. From one 
word up to a complete store may be set up. 

iii Extract all entries from a queue and reset 
control word. The entries extracted are 
printed out. 

iv As above, for a list. 
v Compare Data in a specified area of a com­

mon store with its previous contents. Any 
differences are printed out. 

vi Add an entry to a queue. 
vii Add an entry to a list. 

Write directives (ii), (vi) and (vii) must be pre­
ceded by a time-tag which can range from ¼ sec 
upwards in steps of ¼ sec. Extract directives 
may be time-tagged. If they are not, they will be 
executed every ¼ sec. A choice of time sources is 
provided - the program will use a system clock if 
available, if not a programmed timer can be used 
- which is less accurate. 

There are a number of program usable control 
keys on the computer consoles. Keys one to twenty 
can be used to switch individual directives on or 
off if they specify the key number. 

As well as pre-loading the common core stores 
the program can be used to start system compu­
ters in any order by sending specially coded mes­
sages to them, whilst they are in a start-up state. 
Queues, Lists and Data areas can be referenced 
by a CORAL name instead of the store number 
and address. This is arranged by a declaration of 
the form 

<name> * store number store address 

where * is either Q, L or D for queue, list or data 
area. 

S 2, 3, 15 

K1 T 1 47 .5 

WDS 3 A 1250 

C 1234 5670 1234 

C 5252 

T3 30.0 

5252 

EQS 4 A 1000 

5252 

Fig. 4 SCOT input message example 

4.2 Figure 4 shows an example of a SCOT input 
message. First the stores in use for the test are 
declared, in this case 2, 3, and 15. 

The next message is to write to store 3, 
address 1250 the two words given in octal. This 
is after 1 min 47 .5 secs, and as KI is specified it 
will only be obeyed if computer console key 1 is 
operated. 

The next message, which is independent of the 
console keys as none is specified, should be 
actioned at 3½ min after the program starts. lt is 
to extract data from a queue in store 4, address 
1000. In fact, it will result in an error when it is 
read into the computer, as only stores 2, 3 and 
15 have been declared for the test. 

4.3 Figure 5 shows the form of a SCOT output. 
First the start time is output if the program has 
access to the system clock. Then the system 
stores in use are shown, not exactly as depicted 
here as the present version outputs the store 
availability table built up as a result of the store 
declaration input. However, this example has 
been simplified to make it more clear, and avoid 
a need for system table layout knowledge. 

The next output message echoes the input which 
was to write to store 3, address 1250 the two 
octal constants shown, as a check that this action 
was completed. 

109 



START TIME 

SAL 02 

SAL 03 

SAL 15 

12 45 52 25 

Str 3 Adr 1250 

C 1234 5670 1234 

C 5252 5252 5252 

Emin 3 sec 30.0 Str 3 Adr 1000 

C 0003 0003 0401 cnt 3 tai 1 hed 3 

C 0357 4732 0101 

C 0 

C 3716 5125 3076 

C 1327 0312 7766 
--

Fig. 5 SCOT output message example 

The next output message is the result of read­
ing a queue in store 3, address 1000. Note that 
it is a queue of five words (four plus a control 
word} the maximum length being shown in the 
control word. The control word also shows where 
the head is (word 3), the tail (word 1) and the 
count of entries (3 in this case). These are output 
as decimal integers as shown. 

4.4 Error reports from SCOT fall into three 
classes. 

(a) Input faults. 
i Fault in common core store declaration or 

no stores declared. 
ii Fault in octal constant. 

iii Fault in number given for common store, 
out of range or not declared. 

iv Address fault. 
v Fault in decimal number. 

vi Fault in time gi ven. 
vii Fault in name declaration. 

viii Name not declared. 

(b} Store faults. 

110 

i Initial check unsuccessful. The stores 
declared are checked at the start of the 
test, and should this check fail this mes­
sage is output, along with the data sent, 
data received and the store number and 
address. 

ii Transfer of data unsuccessful. Data written 
to a store is read back and checked. If the 
check fails, this message is output along 
with the four items as in (i). 

iii Routining fault. Every ¼ sec a routining 
pattern in a reserved word in every store 
is checked. A fault causes this output 
along with store number and data returned. 

(c) Access faults. 
i QÜeue full. 

ii List full. 
iii Queue locked out too long. 
iv List locked out too long. 
v Computer failed to start. 

The time is given along with the above five fault 
reports. 

4.5 Experience has shown SCOT to be a valuable 
syste-m testing aid. It is particularly good at 
eliminating interface errors before system inte­
gration tests. To achieve this, the programmer 
who is writing say a program to extract data out 
of a queue and process it will get a programmer 
whose code would normally help fill the queue to 
provide a test tape, thus ensuring no misunder­
standing. 

The hardware tests of common core stores 
were included in SCOT as a 'long stop' to help 
show any faults which may arise during a test. 
These checks have shown faults during test runs, 
but these have generally been due to manual equip­
ment allocation errors, not hardware, when a 
store has been out of system when required or 
removed in error during a test. A system is more 
prone to such errors during build-up time as the 
tests do not often require the total system and 
other activities are allowed to use the spare equip­
ment. 

5. Hardware assistance with system testing 

The constant problem during testing is one of data 
collection - finding out what state the system was 
in just before it faulted. Up to now this assistance 
has usually been arranged by special software, 
and this paper has considered in detail two pro­
grams which have been used to achieve this. It is 
also possible to arrange for the system hardware 
to collect data to assist in on-line testing. This 
can be by hardware built-in to the the system or 
special-purpose test equipment which can be 
attached. These alternatives are now considered. 

5. 1 Faci/ities bui/t-in to the computer hardware 

In the case of real-time computer systems there 
are a number of ways the hardware design can 
help the system testers. Historical registers and 
test driver facilities are examples of these. 

i Historical registers. 
The computer contains a group of, say, 
sixteen registers addressed sequentially so 
they form a circular queue. When an 
instruction involving a single store operand 
is obeyed, three values are placed in these 
historical registers: 



Instruction Address Register, Absolute 
Value. 

Instruction. 
Store Operand Address. 

The third item is omitted if the instruction 
does not involve an operand address. Hence 
the last six or seven machine instructions 
obeyed can always be found in the historical 
registers. Their contents can be frozen by 
either a fault interrupt or by program con­
trol, and their contents then extracted. 

ii Test driver facilities. 
Special interface facilities can be provided 
so that the computer may be test-driven by 
another computer (of the same or a different 
type) which can access its registers and core 
store. This enables a trace of the compu­
ter's activities to be obtained du.ring real­
time working, when a software trace facility 
is inappropriate due to the slowing down of 
run time (typically by a factor of 80). 

5.2 System attachments 

System attachments can be obtained for data 
recording. These are generally similar to the 
historical registers described above, wt they are 
portable and will usually interface with any con­
venient points of the system, e.g. store data lines, 
store address lines, interconnection buses, peri­
pheral devices. Data is recorded in special regi­
sters or on magnetic tape for subsequent analysis 
off-line. They are particularly useful towards the 
end of system testing to measure use factors of 
connection channels and look for system bottle-

necks. Some are equipped with an address com­
parator which can be used to show, for example, 
the amount of time spent in the operating system 
routines. Once experience is gained patching such 
monitors into a system they can quickly provide 
detailed information on suspected fault areas 
without requiring special on-line software. 

6. Conclusion 

Experience has shown that time and money spent 
on providing system testing aids has been essential 
to the testing of on-line system software, from the 
start of first on-line tests up to final system 
trials. Even after a system becomes operational 
some faults will continue to occur and the test 
aids have a continued value. 

As the cost of hardware decreases and computer 
designers pay more attention to software needs, 
more assistance is likely to be given by special 
circuitry to the on-line testing of computer sys­
tems. 

Discussion 

Q. Do your debugging aids run as part of the 
user 's program in real time? 

A. Yes. lt depends on having enough capacity in 
the computer, which we have. 

Q. Is it possible to make the program run more 
slow ly than normal? 

A. Yes, the rate can be controlled. 

111 


	Teil 1_erl
	doc03671820190521095123
	doc03671920190521095137
	doc03672020190521095151
	doc03672120190521095203
	doc03672220190521095218
	doc03672320190521095229
	doc03672420190521095247
	doc03672520190521095301
	doc03672620190521095317

	Teil 2_erl
	doc03672720190521095329
	doc03672820190521095352
	doc03672920190521095404
	doc03673020190521095422
	doc03673120190521095433
	doc03673220190521095449
	doc03673320190521095500
	doc03673420190521095525
	doc03673520190521095537
	doc03673620190521095555

	Teil 3_erl
	doc03673720190521095608
	doc03673820190521095634
	doc03673920190521095646
	doc03674020190521095711
	doc03674120190521095723
	doc03674220190521095742
	doc03674320190521095756
	doc03674420190521095813
	doc03674520190521095828
	doc03674620190521095846

	Teil 4_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 5_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 6_erl
	doc03675720190521100207
	doc03675820190521100234
	doc03675920190521100300
	doc03676020190521100318
	doc03676120190521100335
	doc03676220190521100355
	doc03676320190521100412
	doc03676420190521100430
	doc03676520190521100448
	doc03676620190521100506

	Teil 7_erl
	doc03676720190521100532
	doc03676820190521100549
	doc03676920190521100612
	doc03677020190521100629
	doc03677120190521100644
	doc03677220190521100701
	doc03677320190521100724
	doc03677420190521100740
	doc03677520190521100755
	doc03677620190521100811

	Teil 8_erl
	doc03677720190521100826
	doc03677820190521100845
	doc03677920190521100900
	doc03678020190521100916
	doc03678120190521100930
	doc03678220190521100947
	doc03678320190521101001
	doc03678420190521101030
	doc03678520190521101045
	doc03678620190521101109

	Teil 9_erl
	doc03678720190521101126
	doc03678820190521101149
	doc03678920190521101205
	doc03679020190521101221
	doc03679120190521101237
	doc03679220190521101255
	doc03679320190521101312
	doc03679420190521101329
	doc03679520190521101343
	doc03679620190521101404

	Teil 10_erl
	doc03679720190521101417
	doc03679820190521101435
	doc03679920190521101448
	doc03680020190521101506
	doc03680120190521101525
	doc03680220190521101544
	doc03680320190521101601
	doc03680420190521101636
	doc03680520190521101655
	doc03680620190521101714

	Teil 11_erl
	doc03680720190521101727
	doc03680820190521101744
	doc03680920190521101759
	doc03681020190521101817
	doc03681120190521101831
	doc03681220190521101848
	doc03681320190521101902
	doc03681420190521101920
	doc03681520190521101936
	doc03681620190521101954

	Teil 12_erl
	doc03681720190521102010
	doc03681820190521102028
	doc03681920190521102046
	doc03682020190521102100
	doc03682120190521102120
	doc03682220190521102136
	doc03682320190521102152
	doc03682420190521102210
	doc03682520190521102225
	doc03682620190521102247

	Teil 13_erl
	doc03682720190521102312
	doc03682820190521102330
	doc03682920190521102348
	doc03683020190521102408
	doc03683120190521102428
	doc03683220190521102448
	doc03683320190521102506
	doc03683420190521102526
	doc03683520190521102544
	doc03683620190521102603
	doc03683720190521102618
	doc03683820190521102635
	doc03683920190521102655
	doc03684020190521102712
	doc03684120190521102727
	doc03684220190521102748
	doc03684320190521102807
	doc03684420190521102828




