
cba

Heinrich C. Mayr, Stefanie Rinderle-MA, Stefan Strecker (Hrsg.): 40 Years EMISA
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 29

Model-driven Runtime State Identification

Sabine Wolny1, Alexandra Mazak2, Manuel Wimmer3, Christian Huemer4

Abstract: With new advances such as Cyber-Physical Systems (CPS) and Internet of Things (IoT),
more and more discrete software systems interact with continuous physical systems. State machines
are a classical approach to specify the intended behavior of discrete systems during development.
However, the actual realized behavior may deviate from those specified models due to environmental
impacts, or measurement inaccuracies. Accordingly, data gathered at runtime should be validated
against the specified model. A first step in this direction is to identify the individual system states of
each execution of a system at runtime. This is a particular challenge for continuous systems where
system states may be only identified by listening to sensor value streams. A further challenge is to
raise these raw value streams on a model level for checking purposes. To tackle these challenges,
we introduce a model-driven runtime state identification approach. In particular, we automatically
derive corresponding time-series database queries from state machines in order to identify system
runtime states based on the sensor value streams of running systems. We demonstrate our approach
for a subset of SysML and evaluate it based on a case study of a simulated environment of a five-axes
grip-arm robot within a working station.

Keywords: Model-driven Engineering; Time-Series Database; State Identification; Runtime Queries;
Process Mining

1 Introduction

Forecasts show that in the upcoming years most of the devices we interact with will be linked
to a global computing infrastructure [BS14]. This tendency represents an infrastructure in
which the physical environment is populated by interconnected and communicating objects
(e.g., sensors, actuators and other smart devices) capable for autonomously interacting with
each other and with the environment itself. In order to deal with the increasing complexity
of cyber-physical systems (CPS), models are used in many research fields as abstract
descriptions of reality. This means that a model serves as an abstraction for a specific
purpose, as a kind of “blueprint” of a system, describing the system’s structure as well
as desired behavior. However, often we recognize a discrepancy between these models
and their real world correspondents [MW16b]. In other words, we experience deviations
between design-time models and runtime models discovered from real data.
1 JKU Linz, CDL-MINT, Linz, Austria sabine.wolny@jku.at
2 JKU Linz, CDL-MINT, Linz, Austria alexandra.mazak-huemer@jku.at
3 JKU Linz, CDL-MINT, Linz, Austria manuel.wimmer@jku.at
4 TU Wien, BIG, Vienna, Austria huemer@big.tuwien.ac.at

https://creativecommons.org/licenses/by-sa/4.0/
sabine.wolny@jku.at
alexandra.mazak-huemer@jku.at
manuel.wimmer@jku.at
huemer@big.tuwien.ac.at

This development raises new challenges for Model-Driven Engineering (MDE) ap-
proaches [MWP18]. While design models help in the engineering process by providing
appropriate abstractions, data-driven approaches such as process mining [Aa16] may help
to uncover some under-specified or unintended parts of these design models at runtime. For
instance, on a high level of abstraction, behavioral modeling languages (e.g., state-machine-
based languages) are used to describe the behavior of a physical asset by means of states and
transitions. Such models define discrete states, which are represented by defined variable
values. A system has to achieve/go through these states during its execution. However in
reality, systems do not switch in a time discrete manner between states, but the values of the
variables are continuously evolving to the intended values of the next state. This means, each
variable undergoes a continuous series of changes that need to be continuously monitored,
e.g., to be able to react immediately to a time delay in safety critical systems. The challenge
is to continuously listening to value streams in order to determine whether a state has indeed
occurred, i.e., if the specific combinations of variable values have occurred over all streams
at the same time. In particular, the realization precision of systems as well as measuring
inaccuracies complicate this process as false positives and false negatives may occur when
matching state templates to data streams.

Based on first ideas presented in [Wo17], we address this challenge by introducing a novel
approach where we automatically generate state realization event queries derived from state
machines for an appropriate state identification at runtime. This approach enables us to
continuously observe multiple data streams of distributed sensor devices for identifying
a system’s entire state at runtime. By applying the so-called Model-driven Runtime State
IdEntification (MD-RISE) approach, we automatically transform behavioral models, i.e.,
state machines, into time-series queries to be able to match sensor value streams with
pre-defined variable values of the design model to report identified states from execution.
First evaluation results derived from a case study of a 5-axes grip-arm robot show the
potential of the approach in terms of precision and recall of finding system states in sensor
value streams. By this, state based monitoring is possible for instance, even if the systems
are not able to provide a explicit state-based trace.

The remainder of this paper is structured as follows. In the next section, we present
a motivating example for our approach. Section 3 presents the MD-RISE approach by
describing the MD-RISE architecture and its prototypical implementation. Section 4
demonstrates the evaluation of MD-RISE based on a case study of a 5-axes grip-arm robot
which is interacting with other components within a working station, like a pick-and-place
unit. In Section 5, we discuss related work. Finally, we conclude this paper by an outlook on
our next steps in Section 6.

2 Motivating Example

As motivating example for this paper, we consider a simple continuous automated system
around a 3-axes grip-arm robot (gripper). This gripper is modeled by using by the Systems

30 Sabine Wolny, Alexandra Mazak, Manuel Wimmer, Christian Huemer

Modeling Language (SysML) [FMS12], in particular by using the block definition diagram
(BDD) and the state machine diagram (SM). The BDD is used to define the structure
of the gripper with its properties: BasePosition (BP), MainArmPosition (MAP), and
GripperPosition (GP) (see Fig. 1(a) Design Models, BDD System). These properties
describe the angle positions of the three axes of the gripper. Based on the machine operator’s
knowledge, these angle positions can be defined for different settings (e.g, drive down,
pick-up) with pre-defined tolerance ranges. These ranges fix the accepted margin of deviation
(e.g., ±0.1) for the variable values of each property (BP, MAP, GP). The desired behavior
of the gripper is described by various states and state transitions modeled by using the
SM (see Fig. 1(a) Design Models, SM Grip-arm robot). These states are DriveDown and
PickUp with assigned variable values specifying the respective angle position in these states.
During operation (i.e., execution at runtime), the gripper as a continuous system moves
in its environment (e.g., pick-and-place unit) on the basis of a workflow described by the
SM. These movements are recorded by various axis sensors and returned as continuous
sensor value streams on a log recording system. In our motivating example, we record three
sensor value streams BP, MAP, GP (see Fig. 1(b) Runtime Data). These records show that
the gripper does not “jump” from one discrete state into another as modeled in the SM,
but is–of course–continuously moving. Thus, the challenge is to identify possible discrete
states by analyzing the sensor value streams. For this purpose we have to raise raw sensor
value streams on a higher level of abstraction. This enables, e.g., to better compare an initial
model (e.g., SM) with its realization.

The state identification is done by matching the different raw sensor value streams to the
pre-defined variable values defined in the SM (see Fig. 1(b) Runtime Data). It should be

BDD System

St
ru

ct
u

re

(a
)

D
es

ig
n

 M
o

d
el

s
(b

)
R

u
n

ti
m

e
D

at
a

Grip-arm robot

BasePosition (BP): Float = 0.0 ± 0.1
MainArmPosition (MAP): Float = 0.0 ± 0.1
GripperPosition (GP): Float = 0.0 ± 0.1

B
eh

av
io

r

SM Grip-arm robot

DriveDown

BP 0.0
MAP 1.50
GP 1.50

……

PickUp

BP 0.0
MAP 1.50
GP -0.40

Se
n

so
r

V
al

u
es

Fig. 1: Design time and runtime perspective of the motivating example

MD-RISE 31

System@DesignTime

System@RunTime

State Machine
Diagram (SM)

State Realization
Event Query

Sensor Value
Stream

Identified
System States

Time Series
Database

TSDB

Running System

Block Definition
Diagram (BDD)

State-based
Log Model

Event-based
Log Model

(XES format)

SysML

PM Tool

Fig. 2: Architecture for model-driven runtime state identification

considered that the pre-defined absolute variable values in the SM are not necessarily
precisely measured in the real world because of, e.g., measuring inaccuracies. Such
inaccuracies has to be taken into account by dealing with numerical values of objects of the
physical world [MWV16]. Thus, in order to perform the state identification successfully, it is
important to define appropriate tolerance ranges (see Section 4). For instance, the sequence
of identified states can be used as input for further analysis (see Section 3).

3 Model-driven Runtime State Identification

In this section, we present our Model-driven Runtime State IdEntification (MD-RISE)
approach which combines MDE-techniques with a Time-Series Database (TSDB) and
Process Mining (PM), for states identification, recording, abstraction, and analyses. Fig. 2
shows the architecture of MD-RISE as well as the interplay of design time and runtime
artefacts.

3.1 MD-RISE Prerequisites

For prototypically realizing the approach, we have a number of prerequisites that must be
met: (i) the system’s workflow must be expressible by means of a state machine, (ii) the
different states of the system must be unique in order that values describing a state are
not identical for two different states, (iii) numeric values must be returned by sensors at
runtime and must be storable in a TSDB, and (iv) it must be ensured that the time stamps
are accessible.

32 Sabine Wolny, Alexandra Mazak, Manuel Wimmer, Christian Huemer

StateMachine

name: String

Block

name: String

Property

name: String

AutomatedSystem

name: String

State

name: String

Transition

Assignment

value: Float

[0..*] block

[0..*] property

[0..1] stateMachine

[0..*] state

[0..*] transition

[1..1] successor

[0..*] incoming

[0..*] assignment[1..1] predecessor

[0..*] outgoing

[1..1] property

ToleranceRange

value: Float

[0..1] tolerance

Fig. 3: Metamodel for describing a simple automated system

3.2 MD-RISE Architecture

Based on the motivating example of the gripper (see Section 2) and the mentioned
prerequisites, we consider an automated system consisting of a controller, sensors, and
actuators. At design time, we model the structure and behavior of this system by using
a subset of SysML (see Figure 2: System@DesignTime, BDD and SM). Fig. 3 shows the
simplified graphical metamodel used for modeling BDD and SM of the system. Every
component of the system (Block) contains properties (Property) and can have a SM
(StateMachine), which describes the behavior of this component. Each Property can have
a specified tolerance range (ToleranceRange) that defines an acceptable deviation of the
assigned property values, e.g., based on measurement inaccurancies. The SM consists of
states (State) and transitions (Transition). Generally, a state can have multiple incoming
and outgoing transitions. A transition must have a predecessor and successor state (see
Fig. 3). Additionally, different values can be assigned to a state (Assignment). In this paper,
we just focus on Float property values, since we are interested in value changes during
execution (see Section 4).

Based on this metamodel, we automatically derive a query on the basis of the SM, a
so-called “state realization event query” (see Fig. 2, System@RunTime). This query helps
for identifying states based on the recorded sensor value streams in a TSDB. For this purpose
we use a Model-to-Text (M2T) transformation to automatically transform model elements to
query statements (i.e., text strings) (see Subsection 3.3). During runtime, the sensors of the
running system continuously send data over a messaging system middleware. These sensor
value streams (e.g., values of the angle positions of the gripper) are recorded in a TSDB
(see Figure 2). A single log of the stream contains the following information: timestamp
(the actual time in the granularity of seconds), sensor (the name of the specific sensor),
value (the measured value). The number of log entries for one component varies depending
on the number of sensors. The challenge is to continuously listening to value streams in
order to determine whether a state has indeed occurred, i.e., if the specific combinations of
variable values have occurred over all streams at the same time (see Fig. 1(b) Runtime Data).
For this purpose we apply the aforementioned state realization event query for identifying

MD-RISE 33

states containing the following information: timestamp (the actual time in the granularity of
seconds), state (the recognized state based on measured values).

However, the absolute values assigned in the SM at design time (see Fig. 1(a) Design
Models) are necessarily not precisely identified as such during runtime due to measurement
inaccuracies. For instance, we define for a certain state (e.g, DriveDown) a value of 1.50 for
a certain angle position (e.g., MAP) at design time, but at runtime we measure a value for this
position of 1.492. For this purpose we implement a tolerance range, assigned to the initial
model (e.g., the SM), to define in which range such inaccuracies are still acceptable (see
Figure 3, ToleranceRange). The definition of such a range is crucial. If the range is selected
too small, the inaccuracies may result in too few or even no identified states. Otherwise, if
the range is too large, too many states are identified. We examine this challenge in our case
study presented in Section 4.

In a next step, we generate a state-based log model that consists of the information of all
identified states and, in addition, a case ID for identifying the corresponding process instance
(see Fig. 2: System@RunTime, State-based Log Model). Such a case ID is required when
using PM tools in order to be able to distinguish different executions of the same process.
We employ this case ID in our approach to identify single runs of the SM during runtime.
In a further step, the state-based log model is transformed to an event-based log model (see
Fig. 2, Event-based Log Model) by applying a Model-to-Model (M2M) transformation,
like presented in previous research work [MW16a]. Since, we use a PM tool for analyzing
this model, the structure must be based on eXtensible Event Stream (XES) schema. This
is a supported input format of ProM Lite5 1.1. For instance, by using this PM tool, the
event-based log model can be analyzed, e.g., to uncover some under-specified or unintended
events that were not considered in the SM.

In summary, by applying MD-RISE it is now possible to raise raw sensor value streams on
a higher level of abstraction, namely the state level. MD-RISE bases on queries, so-called
state realization event queries, which are automatically derived from an initial design
model for the purpose of state identification at runtime. The identified system states can be
automatically transformed into a state-based log model to make the outcome useable, e.g.,
for PM tools like ProMLite for further analyses.

3.3 MD-RISE Prototypical Realization

For a first prototypical realization, we use the defined metamodel (see Fig. 3) and implement
it by using Ecore in the Eclipse Modeling Framework6. Based on this metamodel, we
develop a M2T transformation by using Xtend7 in order to automatically generate state
realization event queries out of the SM for different states. The structure of this M2T

5 http://www.promtools.org/doku.php?id=promlite11

6 https://www.eclipse.org/modeling/emf

7 http://www.eclipse.org/xtend

34 Sabine Wolny, Alexandra Mazak, Manuel Wimmer, Christian Huemer

http://www.promtools.org/doku.php?id=promlite11
https://www.eclipse.org/modeling/emf
http://www.eclipse.org/xtend

transformation depends on the used TSDB. In our implementation, we use InfluxDB8 as
TSDB. Therefore, the structure of our state realization event queries are similar to a SQL
syntax, as shown in the following pseudo code example based on our metamodel:

«FOR s IN Block.stateMachine.state»

SELECT «FOR a IN s.assignment» «a.property.name», «ENDFOR» time

FROM «Block.name»

WHERE «FOR a IN s.assignment»

«a.property.name»>=«a.value-a.property.tolerance.value»

and «a.property.name»<=«a.value-a.property.tolerance.value»«ENDFOR»

«ENDFOR»

Based on the raw sensor value streams collected at runtime and stored in the TSDB, the
queries are executed and the results are the identified states with their timestamps. In
our prototypical implementation, we store the outcome as csv-file, which is then used as
input for the state-based log model. This model is a Ecore model representation of the
csv-file. In a next step, we use the Atlas Transformation Language (ATL)9 as transformation
tool to transform the state-based log model to an event-based log model for importing it
into ProM10 [MW16a]. The full implementation of MD-RISE can be found at our project
website11.

4 Case Study based on a CPPS-Simulation Environment

In this section, we present as well as discuss the accuracy and limitations of MDE-RISE
on the basis of a case study of a CPPS-simulation environment around a 5-axes grip-arm.
In doing so, we follow the guidelines for conducting empirical explanatory case studies
by Roneson and Hörst [RH09]. In particular, we report on applying our approach to detect
states at runtime based on stored value streams in a TSDB.

4.1 Research Questions

The study was performed to quantitatively assess the completeness, correctness, and
performance of MDE-RISE. More specifically, we aimed to answer the following research
questions (RQs):

8 https://www.influxdata.com

9 https://www.eclipse.org/atl

10 http://promtools.org/doku.php

11 https://cdl-mint.big.tuwien.ac.at/case-study-artefacts-for-emisa-2019/

MD-RISE 35

https://www.influxdata.com
https://www.eclipse.org/atl
http://promtools.org/doku.php
https://cdl-mint.big.tuwien.ac.at/case-study-artefacts-for-emisa-2019/

RQ1—Correctness: Are the identified states at runtime correct in the sense that all identified
states are representing real states? If our approach identifies incorrect states, what is the
reason for this?

RQ2—Completeness: Are the identified states complete in the sense that all expected states
are correctly identified? If the set of identified states is incomplete, what is the reason for
missed identifications?

RQ3—Performance: How strongly is the performance of the query execution influenced by
the number of sensor value streams or the number of stored values per sensor?

4.2 Case Study Design

Requirements. As an appropriate input for our case study, we require an automated
system such as a gripper integrated in a simulated environment where we are able to observe
the behavior of the gripper during operation. We require access to multiple sensors of the
gripper for log acquisition and a method to automatically identify states based on sensor
value streams from simulation runs.

Setup. To fulfill these requirements, we implemented a CPPS-simulation of an autonomous
acting production unit executed by using the open source tool Blender12. The simulation
scenario considers a working station, like a pick-and-place unit, where a gripper takes work
pieces from a conveyor belt, put them down on a test rig, and finally release them in a red
or green storage box based on the information coded on each work piece by a QR-code.
Each component communicates via a messaging system middleware with InfluxDB. This
TSDB provides us to acquire raw sensor value streams. During simulation, the gripper
enters several different states for processing the work pieces. To verify the correctness of our
approach, we have chosen two very similar states (differ only in one sensor value stream)
to determine if the detection works: DriveDown and PickUp. The assigned values of the
axes Base Position (BP), Main Arm Position (MAP), Second Arm Position (SAP),
Wrist Position (WP), and Gripper Position (GP) of the two states in the SM are shown
in Tab. 1. Furthermore we need to define an acceptable tolerance range to determine when
the state identification is as accurate and complete as possible. We use a tolerance range
from a deviation of 0 to a deviation of 0.4 (in 0.01 steps). The upper bound is only set for
evaluation purposes to show the distribution of precision and recall. In reality, a deviation of
0.4 may be already too large. The deviation values are added or subtracted to the respective
SM values (see Tab. 1). We use the same tolerance ranges for all properties and do not vary
them.

For our evaluation we use two different database settings in combination with different
numbers of sensor value streams that are used for the states identification. We use a dataset
12 https://www.blender.org

36 Sabine Wolny, Alexandra Mazak, Manuel Wimmer, Christian Huemer

https://www.blender.org

Tab. 1: Expected values for the gripper’s axes for the states DriveDown and PickUp.
`````````̀Gripper Axis

State DriveDown PickUp

Base Position (BP) 0.0 0.0
Main Arm Position (MAP) 1.50 1.50
Second Arm Position (SAP) -0.12 -0.12
Wrist Position (WP) 0.0 0.0
Gripper Position (GP) 1.5 -0.40

with 156 rows and a dataset with 1,560 rows stored in the database. For the state identification
we use a single sensor value stream (GP), three sensor value streams (GP, BP, MAP), and
all five sensor value streams (GP, BP, MAP, SAP, WP). For the performance check we also
extend our dataset up to 15,600, 156,000, and 1,560,000 rows.

For performance purpose of the state realization queries, we calculate the duration between
start of the query execution and result return by System.nanoTime() in Java. The performance
figures have been measured on an Acer Aspire VN7-791 with an Intel(R) Core(TM) i7-4720
HQ CPU @ 2.60 GHz 2.60 GHz, with 16 GB of physical memory, and running the Windows
8.1. 64 bits operating system. Please note that we measured the CPU time by executing each
query 40 times for all different settings and calculated the arithmetic mean of these runs in
milliseconds (ms).

Measures. In order to assess the accuracy of our approach, we calculate precision and
recall as defined in [MRS08]. In the context of our case study, precision denotes the fraction
of correctly identified states among the set of all identified states. Recall indicates the
fraction of correctly identified states among the set of all actually occurring states. Precision
denotes the probability that a identified state is correct and the recall is the probability that
an actually occurring state is identified. Both values range from 0 to 1.

Precision is used to answer RQ1 and recall to answer RQ2. Furthermore, we calculate the
so-called f-measure to avoid having only isolated views on precision and recall [MRS08].
To answer RQ3, we compute the duration of the query execution.

To check if our approach is accurate for a given scenario to identify system states, we have
manually obtained the gold standard of state identifications for our given case study (156
rows: 3 expected states for DriveDown and PickUp, 1560 rows: 30 exepected states for
DriveDown and PickUp). For computing precision and recall, we extract the true-positive
values (TPs), false-positive values (FPs) and false-negative values (FNs), with the help
of the expected state identifications. From the TP, FP and FN values we then compute
precision, recall and f-measure metrics as defined by Olson and Delen [OD08, p. 138].

MD-RISE 37



Tab. 2: Precision, recall and f-measure for a single sensor value stream (GP). Bold line marks the best
fit.

DriveDown PickUp
tolerance range precision recall f-measure precision recall f-measure
0 NaN 0 NaN NaN 0 NaN
0.01 NaN 0 NaN 0.08 1 0.14
0.02 1 1 1 0.08 1 0.14
0.03-0.05 1 1 1 0.07 1 0.14
0.06-0.08 1 1 1 0.07 1 0.13
0.09-0.11 0.75 1 0.86 0.07 1 0.13
0.12-0.19 0.75 1 0.86 0.07 1 0.12
0.20-0.30 0.6 1 0.75 0.05 1 0.10
0.31-0.37 0.5 1 0.67 0.05 1 0.10
0.38-0.39 0.5 1 0.67 0.05 1 0.09

4.3 Results

We now present the results of applying our approach to the different settings of our gripper
simulation. Tab. 2−Tab. 4 show the results for precision, recall and f-measure for the two
different states in the different value stream settings. The values are valid for both database
settings (156 rows, 1560 rows), since there were no differences with regard to precision,
recall and f-measure. This can be explained by the fact that the queries are independent
of the number of values in the database. As soon as the sensor value streams are in the
accepted tolerance range, the state is returned.
Tab. 3: Precision, recall and f-measure for three sensor value streams (GP, BP, MAP). Bold line marks
the best fit.

DriveDown PickUp
tolerance range precision recall f-measure precision recall f-measure
0 NaN 0 NaN NaN 0 NaN
0.01 NaN 0 NaN 1 1 1
0.02-0.08 1 1 1 1 1 1
0.09-0.10 0.75 1 0.86 1 1 1
0.11-0.12 0.75 1 0.86 0.6 1 0.75
0.13-0.16 0.75 1 0.86 0.5 1 0.67
0.17-0.18 0.75 1 0.86 0.43 1 0.6
0.19 0.75 1 0.86 0.25 1 0.4
0.20-0.21 0.6 1 0.75 0.25 1 0.4
0.22-0.30 0.6 1 0.75 0.23 1 0.375
0.31-0.39 0.5 1 0.67 0.23 1 0.375

It is noticeable that the states identification fails and no states are found if the tolerance
range is too small. The larger the range, the more false states are detected and the precision
decreases as expected. In Tab. 2 for the state PickUp it could be recognized that the precision
value is really small (highest value 0.08), because of wrong states identification based on a

38 Sabine Wolny, Alexandra Mazak, Manuel Wimmer, Christian Huemer



single sensor value stream. This can be explained by the fact that the gripper moves during
the simulation and opens and closes the gripper arm in various locations (e.g., conveyor,
test rig). These states do not differ in the value of GP but have a different BP. Thus, this one
axis GP is not enough to identify the state PickUp. Furthermore, it is interesting that the use
of all gripper’s axes for state identification PickUp leads to a lower recall for the tolerance
range 0.01 (see Tab. 4).
Tab. 4: Precision, recall and f-measure for five sensor value streams (GP, BP, MAP, SAP, WP). Bold
line marks the best fit.

DriveDown PickUp
tolerance range precision recall f-measure precision recall f-measure
0 NaN 0 NaN NaN 0 NaN
0.01 NaN 0 NaN 1 0.33 0.5
0.02-0.08 1 1 1 1 1 1
0.09-0.10 0.75 1 0.86 1 1 1
0.11-0.12 0.75 1 0.86 0.6 1 0.75
0.13-0.16 0.75 1 0.86 0.5 1 0.67
0.17-0.18 0.75 1 0.86 0.43 1 0.6
0.19 0.75 1 0.86 0.25 1 0.4
0.20-0.21 0.6 1 0.75 0.25 1 0.4
0.22-0.3 0.6 1 0.75 0.23 1 0.375
0.31-0.39 0.5 1 0.67 0.23 1 0.375

Figure 4 shows the results of our performance check. It could be determined that the number
of sensor value streams and the number of rows in the database both have an influence on
the execution time.

Interpretation of results. Answering RQ1: The recognition of correct states depends
on the defined tolerance range and the differentiability of states. A precondition for our

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000A
ve

ra
ge

 E
xe

cu
ti

o
n

 D
u

ra
ti

o
n

 (
m

s)

Rows in the time-series database

single value stream

three value streams

five value streams

Fig. 4: Performance Results (average execution time in ms) according to sensor value streams and
rows in the TSDB.

MD-RISE 39



approach is the uniqueness of states. However, if the various states differ only slightly, the
number of sensor value streams used for states identification is relevant for correctness.

Answering RQ2: The selected tolerance range and the number of sensor value streams are
also decisive for the completeness of the states identification. The more sensor value streams
are used, the more important individual sensor values become for the identification. In
addition, the completeness of the identified states is better the larger the selected tolerance
range is. In our evaluation we quickly achieve a good completeness. As soon as this is
reached, the tolerance range should not be further increased, otherwise the correctness of
the identified states suffers.

Answering RQ3: Our investigations of the execution time already show in this simple setting
the influence of the number of data records in the database and the used number of different
sensor value streams. However, the performance seems still promising for large cases as we
experience a linear increase of execution time for all tested settings.

4.4 Threats to Validity

Internal Validity - Are there factors that can influence the results of the case study? At
design time, values for our axis positions are assumed on the basis of, e.g., calibration values.
At runtime, the same exact values are not always measured, but with a certain fluctuation
range. Thus, a certain tolerance range must be defined at design time in which the values
are accepted. In our case, we knew exactly which values to expect and were therefore able
to keep our tolerance range small. However, this might not work with other settings.

External Validity - Is it possible to generalize the results? Our approach is based on queries
automatically created by state machines. We focus on creating queries that are understood by
the TSDB InfluxDB. Thus, the queries are currently in SQL syntax. If a different database
query language is needed, only the Xtend code has to be adapted regarding syntax without
changing the model in the background. At the moment our evaluation is based on a single
case of a gripper simulation. For further and more detailed results the study has to be
extended to other scenarios. Raw data from sensors are often noisy, incomplete and can
contain erroneous records. This is not considered in our case study. In addition, the datasets
for performance analysis are relatively small in relation to databases. Larger sets would be
needed for further more detailed results.

5 Related Work

Discovering the behavior of running software. In [Li16], the authors utilize process mining
(PM) techniques to discover and analyze the real behavior of software. By doing so, they
discover behavioral models for each software component by considering hierarchies. In
a first step of their approach, they identify component instances and construct event logs

40 Sabine Wolny, Alexandra Mazak, Manuel Wimmer, Christian Huemer



for each component from raw software execution data. In a second step, they recursively
transform the logs to a hierarchical event log for each component by considering calling
relations among method calls. Based on these hierarchical event logs, the authors discover
a hierarchical process model to understand how the software is behaving at runtime. The
authors’ software component behavior discovery builds on the inter-disciplinary research
field of Software Process Mining (SPM), firstly introduced by Rubin et al. [Ru07]. Both
approaches base their grounding on the well-established techniques and methods of the
research field of PM [Aa16].

Applying reverse engineering for obtaining event logs. In [LA15], the authors present a
reverse engineering technique based on PM for obtaining real event logs from distributed
systems. Similar to [Li16], the authors present an inter-disciplinary approach based on PM
techniques and reverse engineering. The aim of their approach is to analyze the operational
processes of software systems when running. The formal definition, implementation, and
instrumentation strategy of the approach bases on a joinpoint-pointcut model (JPM) known
from the area of aspect-oriented programming [EFB01]. This JPM helps (i) by defining
the parts of a system that are to be included, (ii) enables to quickly gain insight into the
end-to-end process, and (iii) detects the main bottlenecks. The authors demonstrate the
feasibility of their approach by two case studies.

Query-based process analytics. A query approach enabling business intelligence through
query-based process analytics is presented by Polyvyanyy et al. [Po17]. In contrast to our
approach they are focusing on PM techniques for the automated management of model
repositories of designed and executed processes, and on the relationships among these
processes. For this purpose the authors introduce a framework for specifying generic
functionalities that can be configured and specialized to address process querying problems,
such as filtering or manipulation of observed processes.

Finally, we would like to highlight two research works that underline our approach and
discuss the differences. Mayr et al. [Ma17] critically note that models are mainly used
as prescriptive documents. Therefore, the authors aim for a model-centered architecture
paradigm to keep models and developed artefacts synchronized in all phases of software
development as well as in the running system. In this context, our approach helps to lift
raw sensor data through automated states identification during operation at a model level
for enabling a comparison between prescriptive and descriptive models. Senderovich et
al. [Se16] apply PM techniques for real-time locating systems. They solve the problem
of mapping sensor data to event logs based on process knowledge since location data
recordings do not relate to the process directly. Therefore, they provide interactions as an
intermediate knowledge layer between the sensor data and the event log [Se16]. Contrary to
our approach, their raw sensor log consists already of different business entities and they
have to map interactions to activity instances, while the sensor logs in our approach consist
only of numerical values which we first have to aggregate to events.

MD-RISE 41



6 Conclusion and Future Work

In this paper, we presented an approach that automatically derives state realization event
queries from the design model to identify system states of a continuous system based on
sensor value streams at runtime. This enables to raise raw sensor data from the data layer on
a higher model layer. At this model level, runtime processes can be analysed more quickly
and possible unintended parts within the realized system may be identified more easily and
time-saving. Since inaccuracies has to be taken into account by dealing with numerical
values of objects of the physical world, additionally we implemented a tolerance range
for defining in which range such inaccuracies are still acceptable for an identified state at
runtime.

First results of our case study indicate that a high precision and recall of system state
identification may be achieved if an appropriate tolerance range for the runtime values was
defined. Nevertheless, the uniqueness and distinctiveness of the individual states determine
whether the state identification works well or not. If states are very similar, enough different
sensor value streams must be used for state identification to obtain a good precision and recall.
The approach is a step towards a better integration of model-driven software development to
all the operations within a system’s life cycle in order to continuously deploy stable versions
of application systems.

There are several lines for future work we are going to explore in more detail. First, we
plan to apply and validate our approach in a real-world setting, instead of a simulation.
Second, we want to extend our approach to monitor different components with a larger set
of sensor value streams. Third, we only used identically tolerance ranges for the properties.
In a further investigation, we want to find out if there are automated techniques possible
to estimate good guesses for the tolerance ranges of different properties. Finally, we want
to find out if we could extend our approach for state estimation and detection of possible
hidden states.

Acknowledgment

This work has been supported by the Austrian Federal Ministry for Digital and Economic
Affairs, the National Foundation for Research, Technology and Development, and by the
FWF in the Project TETRABox under the grant number P28519-N31.

References

[Aa16] van der Aalst, W. M. P.: Process Mining-Data Science in Action. Springer,
2016.

[BS14] Broy, M.; Schmidt, A.: Challenges in Engineering Cyber-Physical Systems.
Computer 47/2, pp. 70–72, 2014.

42 Sabine Wolny, Alexandra Mazak, Manuel Wimmer, Christian Huemer



[EFB01] Elrad, T.; Filman, R. E.; Bader, A.: Aspect-oriented Programming: Introduction.
Commun. ACM 44/10, pp. 29–32, Oct. 2001.

[FMS12] Friedenthal, S.; Moore, A.; Steiner, R.: A Practical Guide to SysML. Morgan
Kaufmann, 2012, isbn: 9780123852069.

[LA15] Leemans, M.; van der Aalst, W. M. P.: Process mining in software systems:
Discovering real-life business transactions and process models from distributed
systems. In: MODELS. Pp. 44–53, 2015.

[Li16] Liu, C.; van Dongen, B.; Assy, N.; van der Aalst, W. M. P.: Component behavior
discovery from software execution data. In: SSCI. Pp. 1–8, 2016.

[Ma17] Mayr, H. C.; Michael, J.; Ranasinghe, S.; Shekhovtsov, V. A.; Steinberger, C.:
Model Centered Architecture. In: Conceptual Modeling Perspectives. Springer,
pp. 85–104, 2017.

[MRS08] Manning, C. D.; Raghavan, P.; Schütze, H.: Introduction to information retrieval.
Cambridge University Press, 2008.

[MW16a] Mazak, A.; Wimmer, M.: On Marrying Model-driven Engineering and Process
Mining: A Case Study in Execution-based Model Profiling. In: SIMPDA.
Pp. 78–88, 2016.

[MW16b] Mazak, A.; Wimmer, M.: Towards Liquid Models: An Evolutionary Modeling
Approach. In: CBI. Pp. 104–112, 2016.

[MWP18] Mazak, A.; Wimmer, M.; Patsuk-Bösch, P.: Execution-Based Model Profiling.
In: Data-Driven Process Discovery and Analysis. Springer, pp. 37–52, 2018.

[MWV16] Mayerhofer, T.; Wimmer, M.; Vallecillo, A.: Adding uncertainty and units to
quantity types in software models. In: SLE. Pp. 118–131, 2016.

[OD08] Olson, D. L.; Delen, D.: Advanced Data Mining Techniques. Springer, 2008,
isbn: 978-3-540-76916-3.

[Po17] Polyvyanyy, A.; Ouyang, C.; Barros, A.; van der Aalst, W. M.: Process querying:
Enabling business intelligence through query-based process analytics. Decision
Support Systems 100/, pp. 41–56, 2017.

[RH09] Runeson, P.; Höst, M.: Guidelines for conducting and reporting case study re-
search in software engineering. Empirical Software Engineering 14/2, pp. 131–
164, 2009.

[Ru07] Rubin, V.; Günther, C. W.; van der Aalst, W. M. P.; Kindler, E.; van Don-
gen, B. F.; Schäfer, W.: Process Mining Framework for Software Processes. In:
Software Process Dynamics and Agility. Springer, pp. 169–181, 2007.

[Se16] Senderovich, A.; Rogge-Solti, A.; Gal, A.; Mendling, J.; Mandelbaum, A.:
The ROAD from Sensor Data to Process Instances via Interaction Mining. In:
CAiSE. Pp. 257–273, 2016.

[Wo17] Wolny, S.; Mazak, A.; Konlechner, R.; Wimmer, M.: Towards Continuous
Behavior Mining. In: SIMPDA. Pp. 149–150, 2017.

MD-RISE 43


