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ABSTRACT

Current research shows that interactions with conversational user
interfaces (CUI) miss requirements for good usability, e.g. suffi-
cient feedback regarding system status. Within a user-centred de-
sign process we created different design approaches to explain the
CUT’s state. A prototypical explainable conversational user inter-
face (XCUI) was developed, which explains its state by means of
representations of (1) confidence, (2) intent alternatives, (3) entities,
and (4) a context time line. The XCUI was then tested in a user study
(N = 49) and compared with a conventional CUI in terms of user
satisfaction and task completion time. Results indicated that comple-
tion time and satisfaction improvement were dependent on specific
task characteristics. The effects of the implemented XCUI features
potentially resulted from task-specific needs for explanation. This
could be based on the tasks’ different complexity indicating the
potential need for adaptive presentation of explainability features.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCL

KEYWORDS

Conversational User Interfaces, Explainable Artificial Intelligence,
Explainable Conversational User Interfaces

1 INTRODUCTION

Boosted by techniques commonly referred to as artificial intelli-
gence (Al), end-user devices with integrated conversational user
interfaces (CUI) [34] such as intelligent speakers or smartphones
have been growing quickly in popularity during recent years. Al-
though this technology promises some advantages (such as opera-
tion without the use of hands for voice user interfaces, or natural
language input in general), various studies find low usability or
satisfaction with CUI applications [38]. For example, a common
strategy amongst users is to try out different phrases as instructions
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to achieve their goal - and consequently, users either have to learn
how their system works [43] or are not able to use all functionalities
[37].

These barriers to successful interactions become particularly
apparent in walk-up-and-use systems [20], which focus on sponta-
neous and short-term use by different users - e.g. in reception areas
in hospitals, offices or administration.

We address these challenges by providing additional explana-
tions which grant users information about the system’s state and
resulting interaction possibilities. Such procedures can be summa-
rized as explainable artificial intelligence (XAI) [25]. However, there
has not been sufficient research on how key explainability features
can be integrated into an existing CUI to form an explainable conver-
sational user interface (XCUI). In this study, we particularly focus
on walk-up-and-use-systems, where users can neither prepare for
the use of the system nor have the possibility to take advantage of
optimizations over time (e.g. by adapting the system or through
learning effects from the user). To this end, we conducted a theoret-
ically grounded design process for explainability features as well
as an online user study.

Our three main contributions are: (1) initial designs of an ex-
plainability approach, consisting of four explanation features which
supplement the primary speech modality of a CUI in the context
of a walk-up-and-use situation with visual explanations. These
were derived from a user-centered design process and built up on
existing approaches such as [35] in terms of providing more de-
tailed information to the user, enhancing understanding by relying
on contrastive explanations (c.f.[41]) and combining information
from natural language processing (NLP) as well as intent recogniz-
ing modules; (2) a comparative user study of a walk-up-and-use
CUI with and without our designs of explanation features. N = 49
users were assessed in regard to task completion time and user
satisfaction; (3) design-relevant findings about the intricate and
non-trivial relations between user tasks and the design and benefit
of the different explanation features, e.g., our results revealed that
the depiction of entities identified by the CUI is better suited for
complex tasks while competing intents should be displayed for easy
tasks.

We will first describe relevant concepts from the field of CUI
and explain which interface improvements could be applied to cur-
rent barriers and how the researched context differs from previous
studies. We then explicate the conducted design process and the
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created visual explainability features for an XCUL Subsequently, we
present our research strategy to test the explainability features as
well as the empirical results. Finally, we discuss the meaning of the
feature-related results for further research and CUI designs. Hence,
we discuss the following research questions along our research
process:
(1) RQ1: Which explainability features appear promising to
provide information about a system’s state?
(2) RQ2: Which impact do these explainability features have on
task completion time and user satisfaction (comparison CUI
vs. XCUI)?

2 RELATED WORK

2.1 Interacting with Conversational User
Interfaces

[39] defines Conversational User Interfaces (CUI) as interfaces or
frontends, accepting speech, text and touch input, built e.g. for chat
bots or conversational assistants [40]. CUI differ from other inter-
faces in their ability to understand natural language and therefore
communicate with people in a natural way [40]. Other characteris-
tic features are the ability to remember conversational content [40]
or to include environmental information [44].

CUI enable applications commonly referred to as Virtual Per-
sonal Assistants/Voice Assistants [39], Intelligent Assistants [6],
Intelligent Personal Assistants [13] or Conversational Agents [38].
In this paper we use the term CUI, since it includes all of the above.
We also distinguish our research from studies dealing with Embod-
ied Conversational Assistants (ECA), which focus on imitating a
human conversational partner as authentically as possible on differ-
ent levels (language selection, intonation, but also body language
and gestures or facial expressions), see [44]. In contrast, our work
focuses only on the communication of information and does not
aim to represent emotional or affective states in order to achieve a
higher resemblance to humans.

However, based on the promise of a natural way of communi-
cation, CUI are required to meet the high expectations that stem
from non-digital communication between people, e.g. the ability
to integrate context information into an answer and, if necessary,
to state which context information has been used for an answer
[23]. To manage users’ expectations, previous approaches to op-
timize CUI often try to support users during the development of
valid mental models or to correct faulty mental models. Mental
models can be defined as an abstract cognitive representation of
systems consisting of relevant elements needed to perform a given
task [9]. Optimizing them can be achieved e.g. by well-designed
feedback [19], or by explicitly explaining certain functions of the
system. In a walk-up-and-use context those systems aim to pro-
vide a lightweight decision without prior training (as in [5, 20, 31]
or researched in [18]). Here, previously described approaches fall
short because interaction is not frequent or continuous enough -
in the worst case, there is only one conversation/interaction. In
these cases it makes sense to design a user interface that requires as
few assumptions as possible about the mental model of users and
displays information that can be used by different users without
previous training or tutorials. As opposed to training users and
their mental models over a longer period of time and usage, our
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approach aims at immediately communicating system state and
interaction possibilities by the explicit addition of explainability
features.

2.2 Challenges for Improving CUI Interaction

The problem of users falling back on trial-and-error in interactions
is often attributed to the fact that feedback from a system does not
allow users to sufficiently observe (1) the current state of a system
(i.e. observability as a key facet of explainability) and to under-
stand (2) possible actions of the system and associated commands
[37, 43]. Critical requirements for usability and user experience in
human-machine interaction (such as overcoming the gulfs of exe-
cution and evaluation [42]) are therefore not met. Instead, usability
problems are further reinforced by system characteristics: commu-
nication, e.g. in the auditory domain, imposes strong limitations on
how much information can be output simultaneously [17]. Over-
all, information transmitted during a conversation has a shorter
time span within which it persists [48]. As [45] and [39] show,
supplemental visual support can be utilized to display additional
information, thus mitigating the effects of the auditory domain. Al-
though previous research has shown that users may feel frustrated
having to deal with visual information when they expected to com-
municate in spoken language (e.g. [6]), we expect additional and
information-rich interaction possibilities to be helpful especially in
walk-up-and-use systems (see also [39]).

Users expect CUI to understand their spoken requests [32]. There
are various techniques aiming to understand the user’s intent, for
instance tokenization, bag of words and regular expressions, but
machine learning techniques such as Deep Learning (c.f. [28]) are
increasingly being used for this purpose [39]. While decisions of
rule-based systems can be presented in an adequate manner, doing
the same is more difficult for machine learning systems [53]. Un-
derstanding which processes happen in e.g. a deep neural network
(DNN), accessing, analysing and expressing these processes is a
current challenge in research [46]. This lack of comprehensibility
for the user has been criticized by several researchers [1, 14, 25].
In their design guidelines for Artificial Intelligence Amershi and
colleagues [2] strongly advocate for an explicit explanation of the
Al systems’ behavior, such as the display of contextually relevant
information or the scoping of services when the user’s intent is not
sufficiently clear.

If a system is not explainable the user may remain indecisive
even if the results are correct and the system is trustworthy enough
[10]. Missing explanations on the side of e.g. CUI impedes the
development of user acceptance and prevents users from building
up trust for a system [11, 27, 30].

2.3 Explanations in Al Systems and CUI

Research shows that a variety of Al systems’ users trust a system
more when it is able to explain its decisions [29]. Since people form
a mental model of a system’s functionality, this helps them in their
later usage through valid explanations [51]. Additionally, the expla-
nation of a system’s behaviour increases both the understanding of
and the trust in the system, especially when a user doesn’t know
how the system works [36]. The explanation can also serve as a
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mechanism to check if the system is working correctly [15]. Fur-
thermore, explanations are necessary when a system intelligently
includes the context and uses machine learning models so that
users can’t tell how exactly the system reached its decision [29].
Especially in walk-up-and-use systems, so called local explanations,
that focus on explaining the reasons for a special action or deci-
sion of a system rather than the general functionalities, may prove
helpful to avoid trial-and-error situations [47]. Therefore, as a step
towards higher transparency and explainability of Al systems [14]
the goal of this study is to shed light on the effects of selected
features introducing explainability into walk-up-and-use CUL

In previous research, different approaches to achieve explainabil-
ity have been developed and, in part, tested: for example, [22, 24]
provide insights on displaying information on why a system didn’t
choose an alternative, e.g. categorization of an image recognition
system. Informing users about very likely, yet not chosen alterna-
tives is called contrastive explanation [41] or counterfactual ex-
planation [7]. Users benefit from contrastive explanations because
they allow a variety of cognitive manipulations that help to interact
with Al systems [7].

Another idea from explainable artificial intelligence is to high-
light the input features accordingly to their importance for the
system’s result. In the field of image recognition, for example, heat-
maps are used to show which pixels have been most relevant (or
irrelevant), leading to different XAlI-techniques such as sensitivity
analysis [3] or layerwise relevance propagation [4]. Looking at CUI,
displaying important keywords which were used in order to extract
the meaning of an inquiry has already been established [35]. How-
ever, additional features such as displaying the individual relevance
of certain inputs (i.e. words) or to what extent some inputs may
reduce general confidence, still need to be implemented and tested.

A common technique in systems relying on deep neural net-
works, e.g. in image recognition, is the display of probability of
a chosen outcome (i.e. a target class) given the presented stimuli.
Information about the confidence value of results aim to enable
users to reflect the reliability of, e.g. an image categorization. As
studies showed, confidence ratings are able to influence human
machine cooperation [16, 50]. Yet, when it comes to CUI, especially
in those relying on spoken language, many systems do not provide
information about the confidence regarding intent detection or
speech recognition. One can argue that single-turn conversations
do not need to provide confidence information, since users may be
satisfied with an answer or not.

In summary, while holding much potential for further improve-
ments of CUI explainability features need to be designed carefully
and by following a user-centered design. Therefore, in our present
research we chose to integrate potential users’ ideas about tasks,
context and features and evaluate the developed prototype accord-

ingly.

2.4 Use Case

For this research, the selected use case is exemplary for the use of
a walk-up-and-use system: the reception of a collaborative work
space. Typical tasks are the request of schedules, directions, infor-
mation about meetings or arrival and departure options. On one
hand, this use case represents different response types (dynamic

information e.g. about meetings or static information e.g. about
rooms) and, on the other hand, only a short interaction span.

2.5 Design Process

To begin the design process, the tasks that the CUI in our walk-up-
and-use case would be able to work on were defined in a workshop
with potential users. These tasks were grouped into user requests re-
garding (1) transportation connections, (2) appointments, (3) spatial
searches and (4) simple tasks. Afterwards, a 3-step design process
was conducted in order to create an XCUI that would explain its
state.

2.5.1 Identifying the elements of a CUI’s state. The goal of the first
step was to identify elements that could be used to explain the
state of a CUL [44] and [39] describe the functionality of CUI and
specify the elements intent, entity and context. Gupta et al. give an
example of a CUI system including those elements and add dialog
management and speech recognition [26]. The state of a CUI can
therefore be described using these elements. Thereafter, different
services (Rasa, Google Dialogflow, IBM Watson Assistant) were
analyzed to find out what information they provide that could be
used to explain the elements above. It turned out that Rasa gave
the most information, especially about intents and entities when
compared to other services like Google Dialogflow or IBM Watson
Assistant. As a speech recognition service, IBM was to be selected
since it also provided the most information on speech recognition.

2.5.2 Ideation workshop. Having identified the elements of a CUI
state and what information is provided about these elements, in
the next step an ideation workshop was conducted to collect pos-
sible ways of displaying the information and thereby the state of
a CUL The workshop followed the design studio method and was
carried out with six participants over a video conference tool. In
two iterations with an ideation phase and feedback phase each, the
participants firstly created ideas on their own on how to explain a
specific CUI element using the existing information and secondly
discussed as a group how these explanations could be integrated in
a concept for the whole state with all elements. The guiding ques-
tion was which explainability features can provide information
about the system status.

In the first iteration, the following ideas for each element were
created: Intents could be explained by displaying alternatively de-
tected intents of an inquiry as buttons. By clicking on a button,
the intent could be changed accordingly. The recognized entities of
an inquiry could be highlighted in color. To display the variables
that are saved in the context during an interaction, the participants
thought of a timeline where each variable could be presented. If
the CUI takes a variable into account to answer a question during
an interaction, the corresponding variable should be highlighted
on the timeline. Explaining the dialog management was difficult for
the participants due to insufficient information about that element.
By displaying the transcribed inquiry, the element speech recogni-
tion is already partially explained. To give even more information,
the participants suggested reporting the confidence score of this
recognition process by using an avatar or emoji.

Explaining the elements together in one concept, in the second
iteration the participants agreed on explaining the confidence value
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of speech recognition together with the confidence value of the intent
detection process. Dialog management was left out in the concept
as well as the element intent because users could also correct their
intent by formulating another inquiry.

2.5.3 RQI: Creating an XCUI concept. Based on the results of the
ideation workshop, an XCUI concept was created that consisted of
four features which aim to explain the system’s state. The concept
mostly followed the results of the ideation workshop and therefore
contained explanations of entities and context, leaving out the ex-
planation of dialog management. As suggested, the concept also
included the explanation of the confidence scores of intent and
speech recognition by changing the facial expression of an avatar.
The functionality of viewing and selecting intent alternatives was
added even though the workshop’s participants didn’t consider it,
since the element would help to reduce the task completion time
and therefore affect RQ2. After being trained, the system was able
to identify 24 different intents. All in all, the explainability features
of the XCUI are named: (1) intent alternatives, (2) confidence, (3)
entities and (4) context timeline. Figure 1 gives an example of how
intent alternatives are displayed using buttons, while Fig. 2 shows
the implementation of the context timeline and a highlighted en-
tity. In addition, both figures include avatars with different facial
expressions representing different confidence levels.

Figure 1: Example of Intent Alternatives

Show task

where can i grab something to eat

Press the switch labeled 'Beamer" on the wall.
The projector can then be switched on with the
remote control. If you still need help, contact
technical support

Do you want to do something else?
Beamer setup  Say hello  Search restaurants

Searchroom  Something else

—
h Q

Figure 2: Example of Explainability Features: Context Time-
line and Entities

Show task
how do i get to the (EETTaNSIAtIoN

This map shows how to get from Hamburger
Welle to Hamburg Central Station. Take the U1
from Wartenau station. The next train leaves in
4 minutes

Current

location: Destination:
Hamburger Hambur
Welle

Central Station
! 1

The concept also included ways to support the tasks which would
be carried out with the CUL For instance, a traffic connection task
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would be displayed along with a map visualizing the traffic route
as seen in Fig. 2 and search results of spatial tasks would be pre-
sented on a suitable map. Following [49] we enhanced the CUI by
displaying spatial tasks, or tasks including traffic connections on
the screen instead of reporting them acoustically, thereby reducing
the user’s cognitive workload.

2.6 System Implementation

In order to evaluate the XCUI in the next chapter, the concept
was first implemented. Fig. 3 shows the architecture of the system
consisting of three applications and four connected services.

Figure 3: XCUI architecture

- Speech Services
PostgreSQL Speech r ition
Interaction data and synthesis

Explainablility
Server (Node.js)
Computing
explanation data

Docker Container

Rasa X
CUl answer
generation

Client (Angular)
»| User interaction with
cul

CUl answers

User utterances

2.6.1 Rasa X. The core of the XCUI system is Rasa X, the frame-
work that was used to build the CUL By using training sentences
and sample conversations, a model was built that can be used to
give answers to user requests. Rasa X runs on multiple Docker
containers, versions of its model used Git and can be accessed via
an https APL

2.6.2 Client. The client implements the XCUI, which the users
interact with. When speaking to the XCUI the spoken inquiry of the
user is sent to the explainability server where the request is handled.
To gather data for the study, the client also collects interaction data
such as satisfaction scores and completion time of tasks from the
users.

2.6.3 Explainability server. This instance is responsible for han-
dling user requests from the client. Speech is transcribed using
the connected IBM speech-to-text service. The written request is
then sent to Rasa X to get an answer from the CUI, which is played
to the user on the client by first synthesizing it as spoken output
using the Google text-to-speech service. In order to display the
explanations of the XCUI on the client side, this server is also re-
sponsible for getting the explanation information including data
about the recognized intent, entities and context from Rasa X and
then computing the needed explanation data which is sent to the
client. Any interaction data that is collected by the client is saved
by the explanation server into a PostgreSQL database.

3 USER STUDY

To examine the effects of the designed XCUI features we designed
an experimental user study focusing on the comparison of CUI vs.
XCUI regarding user satisfaction and task completion time (within-
subject design). Due to COVID-19 restrictions, the study had to
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be transferred into an online experiment. However, particular care
was taken to maximize external validity and quality control (e.g.
checking for screen size or performing a functionality test before the
experiment) in order to achieve valid results. In sum, the conditions
were not much different from the originally planned lab setting.

3.1 Methods

3.1.1 Participants. For the present study, N = 49 participants (29
female, 19 male, 1 neither male nor female; Mean = 31.2 years; SD =
11.8) were recruited via university e-mail lists and social media. 69.4
% of the participants had an academic degree. Because research in
human-computer interaction is at risk of a biased sample selection
(e.g. because this kind of research attracts participants with high
technological affinity, see [52]), we checked our sample by assessing
affinity for technology interaction (ATIL, [21]). Our sample had a
wide range (from 1.70 to 6.00) with an average value of 3.90 being
close to the answer scale mean of 3.50. Additionally, the standard
deviation of the study sample (SD = 0.97) falls within the range of
prior studies (SD = 0.87 to 1.09, see [21]).

3.1.2  Setting and Procedure. A biphasic design was chosen for the
experiment:

In the first phase (P1) participants had to check their require-
ments (display size, microphone and speaker). To prevent further
technical problems, participants read given phrases aloud and the
speaking velocity was measured in order to ensure that everyone
accomplished the tasks in the same velocity.

In the following phase (P2) participants performed nine simple
tasks which resulted from the task analysis. Participants were di-
vided into two groups, A performing tasks (1-4) with XCUI and
B (5-9) respectively. Accordingly, A performed tasks 5-9 with the
CUI and B tasks 1-4 with the CUL In the end the sequence of the
tasks was randomized to avoid sequence effects. For each task, the
task completion time was tracked and user satisfaction was elicited
on a six-level scale. The differentiation in two groups only existed
in phase 2. In the second phase the following dependent variables
(DV) were collected: (DV1) task completion time (ms) as a proxy
for efficiency and (DV2) user satisfaction (6 item likert scale). For
further analysis, means for time and satisfaction were calculated.
After the second phase, the Explanations Satisfaction Scale [29]
was conducted to evaluate the XCUI All metrics are intended to
measure the system’s usability.

3.2 Results

Our general results including user satisfaction and completion time
are shown in Table 1. The time values were z-standardized for better
comparability. Neither user satisfaction nor task completion time
showed a significant difference on the overall sample.

Group A, likewise the overall sample, showed no differences
regarding satisfaction or task completion time. The effect sizes
indicate that when using the XCUI participants of Group A were
less satisfied and needed longer to complete the task. In Group B no
significant effects for task completion time were found. However,
Group B showed a significantly higher satisfaction using the XCUIL
The general assessment of satisfaction results through the ESS were
in the middle range of the scale (Mean = 3.34) with a rather low
variance (SD = 0.838).

4 GENERAL DISCUSSION

In the present study, we designed a conversational user interface
for a walk-up-and-use system, therefore demanding a high level of
explainability. Four interaction features (intent, confidence, entities
and context timeline) were developed and tested against a system
without these features.

Techniques to Imbue Explainability. Four different concepts were
initially identified as particularly promising to improve the explain-
ability of a CUI system (c.f. RQ1: Which explainability features
appear promising to provide information about a system’s state?).
Within a user-centered design process, four matching explainability
features were created based on the developed concepts: Firstly, (1)
recognized intents should be displayed as well as other possible
intents and should be selectable. In the sense of a contrastive expla-
nation, especially obvious intents are presented. Furthermore, (2)
the recognized entities were color-coded to express the relevance of
single recognized words. Since these entities can retain relevance
over a longer period of time in the conversation, one (3) timeline
marking all used context information was added. Finally, the (4)
confidence with which the CUI interprets the statements was also
shown in a conceptual way via the facial expression of an avatar.
However, for unfamiliar systems, this representation of confidence
might was too subtle and participants did not recognize it. Within
our experimental user study we found our features in general to
increase subjective preference without having a negative impact
on task completion time or satisfaction.

Finding 1) We showed exemplary, how intent, confidence, context
and entities can be incorporated into a visual display for CUI sys-
tems without having a negative impact on task completion time or
user satisfaction.

Higher Satisfaction for Complex Tasks. The results indicate that
the effects of the explanatory components depended on the specific
tasks given and the reception of those components was influenced
by task characteristics. In regards to the second research question
(RQ2: Which impact do explainability features have on task comple-
tion time and satisfaction?) there did not appear to be significant
differences in task completion time or user satisfaction across the
whole sample. However, when looking at the two groups (A and B),
we found no significant results in Group A, which mainly carried
out easy tasks with the XAI. This contrasts Group B, where users
were faster and showed higher satisfaction.

Finding 2) For complex tasks assisted by a walk-up-and-use voice
assistant with a display, highlight recognized entities relevant for
the given task and present them in a timeline in order to demon-
strate the system’s state and capabilities. For easy tasks assisted by
a walk-up-and-use voice assistant with a display, show information
regarding recognized intent alternatives.

It can be concluded that the added components of explainability
possibly have different effects under different task conditions, i.e.
task complexity. [12] found in their study on the use of information
for task processing that different information is used by users -
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Table 1: Users’ task completion time and satisfaction (on a scale of 1-6)

Descriptives Statistics ‘ Paired T-Test
Mxcut SDxcui Mcui SDcui| t df p d

Overall

TCT 28851 17311 29666 18512 028 48 .781 0.04
Satisfaction 4.63 1.09 4.45 1.11 1.16 48 .125 0.17
Group A

TCT 30395 13547 22971 14753 -1.91 19 .071 -0.43
Satisfaction 4.34 1.30 4.58 1.17 -0.93 19 818 -0.21
Group B

TCT 27787 19655 34284 19639 1.69 28 .101 0.32
Satisfaction 4.84 0.881 4.35 1.07 256 28 .008 0.48

Note. N gyerall = 49; 1 Group A = 20; 1 Group B = 29. TCT = task completion time (in ms).

TCT values were z-transformed before testing.

depending on how complex the task is . Since the XCUI explana-
tions of its status can be interpreted as additional information, it
is possible that this additional information was also used for more
complex tasks in the present study. [8] describes how more diver-
gent approaches are more often used for complex tasks than for
simple ones.

On a technical level, [33] already showed that the consideration
of semantically similar intents is a good possibility to develop an
efficient but adaptive assistance system. Here, the AidMe system
from [33] was developed to add user specific intents to the already
trained ones. Focusing on only one feature, such as intents in walk-
up-and-use systems, can also help to reduce the cognitive load,
which should be investigated in future studies.

5 LIMITATIONS AND FURTHER WORK

Even though we kept the tasks as unspecific as possible in the
context of this research, some limitations have to be taken into
account. For example, the XCUI system did not take into account
any prior knowledge of the user. This can be especially relevant
for the representation of used entities. In the present case, this was
not included in our research, since personalization of answers in
walk-up-and-use systems is based on direct interactions most of
the time.

The analysis of the results showed clear effects, which are proba-
bly due to certain task types. While this was not considered before
the development of the experiment, future investigations should
explicitly investigate task parameters. For example, it should be
investigated whether the adaptive (and exclusive) use of explain-
ability features for more complex tasks and not for easy tasks leads
to higher overall satisfaction. Although the results found in our
evaluation clearly indicate this, the experiment itself is not designed
to analyze satisfaction variation based on task differences.

Based on the feedback we gathered during our user-centered
design process, we chose a symbolic representation of confidence
by facial expression of a virtual character. This stood in contrast to
the design of other features such as the abstract timeline or visual
highlights in the transcribed text. Future work should focus on the
question if more consistency in terms of abstraction or symbols
could increase recognizability and usability. Finally, the sample

used in the evaluation consists mainly of people with a higher
educational background, whereby a wide distribution of ATI values
in particular indicates that the sample is sufficiently diverse.

6 CONCLUSION

One reason for low usability of CUI is missing feedback of the sys-
tem’s state to users. Within our research, we deducted, designed
and implemented four different explainability features to challenge
this shortcoming. First of all, we discovered that CUI in walk-up-
and-use systems such as reception desks have special requirements:
CUI must be able to display enough information on system status
and action options due to limited learning resources. Guidelines
for the design of human-centered Al and CUI were used to reduce
ambiguity and, based on these guidelines, first concepts for the
improvement of CUI were developed. We focused on four central
components of a conversation that we wanted to represent: 1) the
recognized entities, 2) using contextual information, 3) the recog-
nized and optional intents and 4) the confidence of the recognition.

Within the framework of a user-centered design process, we fur-
ther developed and implemented the results in a prototypical XCUI
that processes information about the course of the conversation
and presents it. Based on our results, it can be assumed that use of
the XCUI in more complex tasks may leads to higher satisfaction.
At the same time, it shows that further research is needed on the
connection between the concrete task and additional explanations
of the CUL Therefore, the given research design could be developed
to integrate further measurements regarding task complexity (e.g.
perceived workload) and design tasks in order to evoke different
explanatory demands.
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