Method for Service-Oriented EAM with Standard
Platforms in Heterogeneous I'T Landscapes

Helge Buckow, Hans-Jiirgen Grof3, Gunther Piller,
Karl Prott, Johannes Willkomm, Alfred Zimmermann

SOA Innovation Lab ¢.V.
Workstream SOA and Standard Platforms
c/o Deutsche Post AG
Charles-de-Gaulle-Straf3e 20
53113 Bonn

info@soa-lab.de, helge buckow@mckinsey.com, hans-juergen.gross@daimler.com,
gunther.piller@fth-mainz.de, karl.prott@capgemini-sdm.com,
johannes.willkomm@capgemini-sdm.com,
alfred.zimmermann@reutlingen-university.de

Abstract: The SOA Innovation Lab has investigated the use of standard software
packages in a service-oriented context. As a result, we present a holistic approach
for developing a service-oriented enterprise architecture with custom and standard
software packages. It starts on enterprise level with the identification of domains
where both the SOA paradigm and standard software are of relevance. Here SOA
capabilities of products from different vendors can be evaluated within a proposed
maturity framework. After pre-requisites and dependencies between distributed
components are determined, a high-level architecture can be developed. On the
basis of use cases and integration patterns this high level architecture can be
refined and verified. Besides methods and related artifacts, we present current
adoption issues for standard software packages in service-oriented contexts.

1 Introduction

The growing complexity of IT landscapes is a challenge for many companies. A large
number of standard software packages - mostly extended and modified, individual
software solutions, legacy applications, and different infrastructure components lead to
high cost and limited responsiveness to new business requirements. Many companies
start enterprise architecture management (EAM) initiatives to tackle this problem. In
areas where flexibility and agility are important, SOA is the current paradigm to
organize and utilize distributed capabilities. Here, the use of standard software is often a
challenge, especially when dealing with services on a fine granular level. Although many
vendors of standard software packages advertise that their product is SOA enabled, the
adoption of SOA with standard software is still rare.

The use of standard application platforms emerged in many cases from the introduction
of ERP systems, aiming to cover all basic business functionalities of a company and

219



integrating those into a more or less closed system. ERP application suites often
dominate the enterprise architecture application layer and the associated automation of
business processes in a rather monolithic, proprietary way [Gr07]. Disadvantages of
standard application platforms include potential difficulties when fitting to individual
business processes. In addition, their limited agility after first customization provides
obstacles for the adaption to changed business needs and flexible product or service
extensions [Cs96]. Standard platforms are often limited in scope and less performing as
compared to their best of breed or custom developed counterparts. Additionally, the
integration with other leading systems may be a serious issue and challenge for open
system environments, which need to support end-to-end business processes.

Some of these limitations can be overcome with the help of service-oriented architecture.
SOA is an IT architecture paradigm that utilizes services as fundamental, flexible, and
interoperable building blocks for both, structuring the business and for developing
applications. SOA is a business oriented architecture style, often based on best of breed
technology for agnostic business services, delivered by applications in a business-
focused granularity [Gr07]. An introduction into fundamental SOA concepts,
technologies, and case studies can be found e.g. in [Er05, Kr+05]. A discussion of
current architectural standards for SOA reference models and ontologies, reference
architectures, maturity models, SOA modeling profiles, and open standards work related
to the topic of SOA governance is provided in [KE09].

Initially SOA was burdened with hype and inflated expectations. Now it is part of an
ongoing discussion about software architecture. The benefits of SOA are recognized,
they comprise flexibility, process orientation, time-to-market, and innovation. The
adoption of tools and methods for SOA is growing. An overview about the current status
of adoption can be found in the SOA Check 2009 [MEO09], an empiric study about the
development of current SOA systems in Germany. Reports on the maturity of SOA
technology from vendors are provided by various analysts (see e.g. [Na+08, Pe+08,
KPO09]).

We have developed an approach for the design of a service-oriented enterprise
architecture with custom and standard software packages. Besides the overall method,
we have built a SOA architecture maturity framework. It allows a comprehensive
assessment of the SOA ability of standard platforms, covering all dimensions of an
enterprise architecture, as e.g. structured in TOGAF [To09]: architecture strategy and
management, business architecture, information architecture, application architecture,
technology architecture, service & operation architecture, as well as architecture
realization. Further useful artifacts of our approach are a method for mapping SOA
services to domain maps, SOA use cases and integration patterns — including
corresponding templates — and a capability map for SOA infrastructure components.

One of our finding is that some disadvantages of standard application platforms remain,
even after the extension of classical standard system modules with fine-grained service-
oriented access shells. In many cases such services are not self-sustaining and have to be
used with their whole package, or need to integrate several complete system modules.

220



In this paper we give an overview of our method in Section 2. Section 3 and 4 provide
details about the identification of domains, where a combination of SOA and standard
software is suitable. Finally, in Section 5 we briefly introduce other artifacts of our
approach, which will be published elsewhere.

2 Method Overview

In order to identify areas for the use of standard software packages in a service-oriented
environment, it is necessary to establish basic EAM capabilities. This includes the
definition of a domain map and a picture of the current IT architecture landscape as the
core artifacts for EAM. To develop these artifacts, the role of an enterprise architect
needs to be established, who is able to understands business needs and translate them
into IT requirements. Finally, governance processes need to be introduced to ensure that
the target architecture will be implemented.

The central artifact for developing a SOA landscape is the domain map. The SOA
Innovation Lab has developed a method for the creation of domain maps, which is
explained in detail in Section 3. We have developed a taxonomy and templates for
describing domains and have started to collect best practice examples from members of
the SOA Innovation Lab. Each domain map is highly individual, suiting a specific
business context. Nevertheless, our collection of domain maps can be used as a starting
point for the development of templates for specific industries.

SOA has strong benefits, like agility, flexibility, and reduction of redundancies. These
benefits are not a priority in all functional areas - some require efficiency and reliability
instead, e.g. HR or controlling. This means, there is a need to develop cases for SOA and
standard platforms based on individual domain requirement, e.g. sales order
management. Therefore, the next step is to assess and weight business needs on domain
level. The SOA Innovation Lab has developed principles for the weighting of domains,
which are explained in detail in Section 4. As a result, one can define for each domain
whether a solution should be SOA enabled.

For a domain with a business need for the benefits that SOA might offer, it has to be
assessed if a SOA enabled standard package is available as a solution. In order to
identify packages that might suffice, the SOA Innovation Lab has developed a
questionnaire to evaluate the SOA ability of a vendor. This questionnaire is based on a
SOA architecture maturity framework, which we constructed by integrating different
analysis views, using a consistent meta-model approach based on correlation analysis of
intrinsic model elements. For this purpose we have transformed CMMI [Cm09], which is
originally an assessment framework for software processes, into a framework to analyze
systematically enterprise architectures for packaged based SOA environments. Hereby
we have used assessment criteria, maturity domains, architecture capabilities, and level
rankings from different SOA maturity models [Ma09]. Additionally we have selected
architecture elements from state of art architecture frameworks like TOGAF [To09] and
Essential [Es09], as well as from Quasar Enterprise [En+08], a collection of methods for
creating enterprise architecture artifacts.

221



In addition to the overall SOA ability, it is necessary to map the vendor solution to the
detailed domain map, to evaluate the overall functional fit. The SOA ability of the
identified package then needs to be evaluated against specific SOA use cases. The SOA
Innovation Lab has developed a taxonomy for SOA use case descriptions which span
functional as well as non-functional characteristics, like performance, transaction
volume, security.

Once a functional fit has been verified, it is necessary to identify dependencies of the
standard software package regarding processes, functions and data. For most standard
software packages, the deployment unit is not a small collection of tightly coupled
services, but contains rather large bundles of services — often with not transparent
interdependencies. In some cases the whole package is required in order to use only few
services.

For standard software packages that fulfill the functional and non-functional
requirements, a first draft of the to-be architecture then needs to be developed. This
includes the high-level system architecture, as well as integration patterns for the
physical architecture (see also [FP03, HW04]). We have developed a capability map for
integration that allows, to structure corresponding requirements. In addition, a taxonomy
for integration patterns has been constructed and a set of best practices for integration in
a SOA environment has been compiled. These patterns can be used to assess the
integration capability of a standard software package.

The final step is to define the roadmap for the implementation of the SOA enabled
standard software packages. The as-is architecture needs to be evaluated against the
target architecture. In many cases a number of standard software packages are already in
place, but are not used in a SOA enabled way. The gap between as-is and target
architecture then needs to be identified and business cases have to be developed, to
prioritize the steps of the implementation.

3 Definition of Domain Map

When developing enterprise architecture under the SOA paradigm, a domain map is the
central artefact, which structures and organizes the needed capabilities. It uses — from a
business point of view — the principles of information hiding, separation of concerns, and
tight/lose coupling, and makes them transparent. Since one major goal of SOA is the
increase of reusability and flexibility by respecting these principles in business and IT,
domain maps provide the corresponding topographic base. Methods for the identification
of domain maps are described in several publications, e.g. [En+08]. Figure 1 shows a
typical result.

However, more work needs to be done, if an architect wants to identify areas, where
SOA and the use of standard software packages make sense. Here we have introduced
the following steps for refinement:

222



—
Christoph Kolumbus Reisen AG (CKR)
— — —1
Travel Agency Internet Call Center
— — — —1
Custom Tour
Design
i Tour
Planning Procurement — Sale )
Handling
Standard Tour
Design
—1 1 —1
Tour Services Customer Tour Order
Management Management Management
—1 — —1
. . Human
Accounting Reporting Resources

Figure 1: Illustration of a domain map from [En+08]

1) Define degree of differentiation and sharing: In this step an architect evaluates on
domain level the need for differentiation and the ability to be shared throughout the
company. This investigation will result in a categorization of the domains and the
corresponding capabilities as shown in Figure 2.

Sharable

— —
Tour Handling Planning

| —
E Produd Dozt Froduct D esign
@ rocu esign Custom Tours
= Package Tours Frocurem ent
w
] Customer
= Internet Relationship
i Management

— — —
ol . .
& Fmanm_al Tour Order Sale
'.ar_-; Accounting M anagem ent
=| /3 —
3
— R eporting Call Center
&
e
-D— — —
= Human Resource Tour Services Travel
Zc: Managem ent Management Apency

Mon-Sharable

Figure 2: Illustrative example for categorizing domains and their capabilities

223



The architect needs this categorization in order to apply the following refinement
patterns.

2) Refine domains: In this step the architect will apply domain refinement patterns to
the classified domain map. They are based on the method for finding domains from the
SOA Innovation Lab.

Modularisation: Here one domain is split into two. This pattern is often applied to
domains where the need for differentiation cannot be clearly marked. For example, some
capabilities in one domain might have high needs for differentiation, others not. In this
case modularisation can make sense, because the IT systems that automate the two
different service types are often subject to competing non-functional requirements, e.g.
high flexibility versus cost efficiency.

Generalisation: This pattern is applied to domains that have some, but not all
capabilities in common. The common capabilities are generalized and form a new,
centralized domain. They now can be used in a shared way. This situation appears often
in domains that cover the same functional area but modularisation has taken place
because of a few, e.g. organization or product specific, non-sharable capabilities.

Aggregation: This pattern is usually applied to a number of domains that share their low
need for differentiation. Here two or more domains are merged. In this case the architect
reduces potentially unnecessary complications due to needless loose coupling.

3) Finalization: During the whole process of defining a domain map, the stakeholders
from business and IT needed to be deeply involved. In addition to this, the architect will
have produced different versions of domain maps. In this final step he will need to
consolidate the different versions and get a final buy-in for his suggestion.

4 Weight Business Needs on Domain Level

Once an architect has defined a domain map as described above, he will need to
characterise the domain map and provide information on a more fine-grained level. The
goal is to develop a to-be architecture, which marks clearly those areas where the usage
of standard software packages makes sense. In order to achieve this, the architect needs
to classify each domain according to its business needs, in addition to the need for
differentiation and ability to be shared. Figure 3 gives an example for this
categorization.

In Figure 3 the columns sales planning, sales processing and sales delivery are the
subdomains of the domain sales. Let us illustrate the principle behind these ratings with
few examples:

224



Sales Sales Sales

Business Needs Planning Processing Delivery

@ Need for Differentiation « H -« H - L
@ Agility <M « H . L
@ Compliance « M « H « H
@ Ability to be reused « L - M - L
(®) Business Criticality * M © H * M
H (High)

M (Medium)

L (Low)

Figure 3: Illustrative Example for categorizing subdomains according to their business needs

For the domain sales processing, the business need for need for differentiation was rated
high, since it is in our example crucial for gaining advantages over competitors to have
unique business processes, which assure the shortest throughput times and the best
adherence to delivery dates. Because of this, processes must be changed according to
changed market requirements and products as quickly as possible — the underlying IT
systems must be agile.

For the domain sales delivery, we rated the need for differentiation and agility low.
Since, in our example, it would make only little difference whether the corresponding
processes were performed similar to those of the competitors or not. Furthermore, these
processes have not changed much in the last years and probably will not change in the
years to come.

For the latter there is a high potential to use a standard software package in a service-
oriented way sustainably - if a package can be found, which automates the needed
functionality appropriately.

For the former the architect will have to do some refinement in order to identify areas on
more fine-grained level, where the service-oriented usage of standard software packages
makes sense. He will have to identify subdomains and rate them again.

These refinement and rating steps have to be iterated until either agility and
differentiation is of low relevance, or the domains represent capabilities that correspond
to exactly one role and one goal. This stop criterion is necessary to control the level of
granularity and to limit the complexity of an overall SOA landscape. Automating
isolated fine-grained services with standard software usually will not bring additional

225



benefits, because dealing with built-in dependencies of standard software package is
most often more expensive than automating these services in a custom-built way.

Custom components that
cluster services
of type interaction

Custom components that

\ cluster services of type process
} where there is high
\ relevance of agility and
differentiation

|-

4y

==
-

Standard components that
cluster services
of type process

where there is high
relevance of compliance
and cost-efficiency

£

Py
N

]

o] .
T L )
1= >ég | ——

Custom components that
cluster services of type function
or data which cannot be

Standard components that
cluster standard services
of type function and/or data

automated by standard software
and / or agility and differentiation
is of high relevance

Legend

Interaction
component

Function
component

Process
component

Data
component

Typical
interface ————=
relationship

Interface relationship
which
should not
be used or be used
very carefully

——=

Figure 4: Typical architecture for combining custom and standard software in a
service-oriented way

226




After the architect has iterated through these steps, he will have to identify concrete
standard software packages for those domains, for which agility and differentiation are
of low relevance. On this basis the architect will develop a to-be architecture, in which
fine-grained services on function or data level enhance the standard software packages
with needed functionality and where standard software packages offer services that can
be combined to higher-level processes. A typical architecture for combining custom and
standard software in a service-oriented way is shown in Figure 4.

This architecture is based on the Application Landscape Reference Architecture from
[En+08]. It suggests that in an ideal SOA, components should only automate services of
exactly one category — interaction, process, function or data — and that the latter should
not depend on the former in terms of interface relationships. When dealing with standard
software, additional aspects are important:

(1) Try to avoid the integration of complex custom processes components into standard
software components, because this would lead to a significant loss in flexibility, when
the custom software components need to be changed.

(2) Missing isolated functionality in standard software components should be added
through a service-oriented integration of custom function and data services. Be careful
when integrating functionality of higher complexity.

(3) Try to avoid custom specific relationships to standard software packages if the latter
are solely used for isolated function or data services, because the management of those
standard software components and the analysis of interdependencies will usually be very
time consuming and error prone.

(4) Combine custom software and standard software processes to higher level processes
on the basis of custom built software.

5 Further Methods and Artifacts

The identification of a company specific domain map and the assessment of business
needs on domain level are starting point for an evaluation, whether SOA with standard
platforms makes sense. As outlined in Section 2, next steps need to follow, like an
evaluation of the SOA ability of standard software packages, an analysis of use cases,
and the development of an appropriate solution architecture. In this section we list some
corresponding methods and artifacts which were developed by the SOA Innovation Lab.
Details will be given in forthcoming publications.

e SOA architecture maturity framework: Basis for an evaluation of the SOA
ability of standard software packages. This framework assesses the SOA
strategy of a vendor, the business architecture, technical architecture and
architecture realization. It is uses TOGAF and CMMI structures. The maturity
framework includes also a detailed questionnaire and anticipated answer types.

227



e Method for mapping SOA services: Needed for a detailed evaluation,
whether SOA can be used with a particular standard software package in
domains where SOA is the favoured architecture. The proposed method
includes an evaluation of functional, as well as non-functional requirements.
Examples for the latter are dependencies between SOA enabled standard
components, or pre-requisites on the availability of master data in vendor
solutions.

e SOA use cases: Template for the description of SOA wuse cases and
characteristics for their classification based on the complexities of the
integration logic and underlying application landscape.

e Integration patterns: Building blocks for the architecture of SOA use cases.
Integration patterns are triggered by business scenarios and integration needs
for SOA infrastructure components from different vendors, e.g. federation of
different enterprise service repositories. An example for an integration pattern
is the so called Service Facade. It manages the access to common data for
different software packages and offers one unique technical and business
interface.

e Capability map: Helps to determine and compare the ability and completeness
of SOA infrastructure components from different vendors. It provides a starting
point for questions like: Which components of a vendor shall be used to realize
specific use cases or implement particular integration patterns?

6 Outlook

Besides publications on the topics mentioned above, the SOA Innovation Lab plans
further investigations on the usage of SOA within an EAM framework.

One area of future activities deals with the construction of software landscapes in the
context of monolithic business applications. As a result, we will obtain solution
proposals for software landscapes with standard software packages and SOA. Part of this
project is the development of a requirement catalogue for vendors, aiming at more
flexibility in the usage of standard software components. Furthermore we intend to
detail our general results related to domain modelling and road mapping for complex
application landscapes. Here the systematic development of architecture principles in a
SOA world is key. Finally, we plan to investigate methods and solutions for the
integration of internal and external services in mixed application landscapes, which
consist of on-premise and on-demand solutions.

228



Literature

[Cm09]
[Cs96]

[En+08]

[Kr+05]
[KE09]

CMMI for Development. Version 1.2 Carnegie Mellon University, Software Engineering
Institute, 2006, http://www.sei.cmu.edu/reports/06tr008.pdf, 2009.

CSC: Standardsoftware und geschéftliche Flexibilitidt. Foundation Bericht 107, June
1996.

Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J.P., VoB}, M.,
Willkomm, J.: Quasar Enterprise. dpunkt.verlag 2008.

Erl, T.: Service Oriented Architecture. Prentice Hall 2005.

The Essential Architecture Project: http://www.enterprise-architecture.org, 2009.

Fowler, M.: Patterns of Enterprise Application Architecture. Addison Wesley 2003.
Grigoriu, A.: An Enterprise Architecture Development Framework. Trafford Publishing
2007.

Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison Wesley 2004.

Kenney, F.L., Plummer, D.C.: Magic Quadrant for integrated SOA Governance
Technology Sets. Gartner Research 2009.
http://www.gartner.com/DisplayDocument?doc_cd=166481, 2009.

Krafzig, D., Banke, K., Slama, D.: Enterprise SOA. Prentice Hall 2005.

Kreger, H., Estefan, J.: Navigating the SOA Open Standards Landscape around
Architecture. http://www.adobe.com/devnet/livecycle/pdfs/soa_standards.pdf, 2009.

[Ma09] ACMM Architecture Capability Maturity Model, The Open Group 2009.

[ME09]

[Na+08]

[Pe+08]

[To09]

Inaganti, S., Aravamudan, S.: SOA Maturity Model. BP Trends, April 2007,
http://www.bptrends.com/publicationfiles/04-07-ART-The:| 20SOA || 20MaturityModel-
Inagantifinal.pdf, 2009. Sonic: SOA Maturity Model.

http://soa.omg.org/Uploaded:] 20Docs/SOA/SOA_Maturity.pdf, 2009. Oracle: SOA
Maturity Model,
http://www.scribd.com/doc/2890015/oraclesoamaturitymodelcheatsheet, 2009.

Open Group: OSIMM Maturity Model for SOA, http://www.opengroup.org/projects/soa-
book/page.tpl?CALLER=faq.tpl&ggid=1319, 2009. IBM: SIMM Services Integration
Maturity Model, http://www.ibm.com/developerworks/webservices/library/ws-soa-
simm/, 2009.

Martin, W., Eckert, J.: SOA Check 2009. Ergebnisse einer empirischen Studie.
www.soa-forum.de/pdf/SOA-check2009.pdf, 2009.

Natis, Y.V., Pezzini, M., Thompson, J., lijima, K., Sholler, D.: Magic Quadrant for
Application Infrastructure for New Systematic SOA Application Projects. Gartner
Research 2008. http://www.gartner.com/DisplayDocument?doc_cd=163409, 2009.
Pezzini, M., Natis, Y.V., lijima, K., Sholler, D., Thompson, J., Vecchio, D.: Magic
Quadrant for Application Infrastructure for SOA Composite Application Projects
Gartner Research 2008. http://www.gartner.com/DisplayDocument?doc_cd=163401,
2009.

TOGAF Version 9. The Open Group Architecture Framework 2009.

229






