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Adapting Binary Decision Diagrams for Visualizing Product
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Abstract: This paper deals with the challenges of visualizing and understanding complex interacting
Boolean formulæ for selecting parts in an automotive Bill-of-Materials (BoM). Our approach targets
entire BoM positions containing all variants of a part, each with its own selection formula. A part
variant is needed for a car if the selection formula evaluates to true under the option list (feature list)
which defines the car variant. Understanding the formulæ is critical when editing or when trying to
analyze and explain a bug, but it is non-trivial. SAT-solving is commonly used to detect bugs, but
explaining the cause of bugs is a different matter. Our approach is to visualize all selection alternatives
in a single diagram based on an adaptation of binary decision diagrams (BDDs). We also visualize the
influence of the configuration constraints for car variants on the selection diagrams and show how
they can help to reduce their size. Based on this method we implemented a visualization tool which
additionally serves as a visual formula editor.

Keywords: Software Product Lines, Binary Decision Diagrams, Visualization

1 Introduction – Structure

Premium car manufacturers such as Daimler produce large numbers of highly customizable
products in product lines out of parts that exist in many possible variations. Variability
drivers are technical restrictions, sales options serving specific customer demands, legal
requirements of the distribution country, marketing strategies, etc.

Product documentation both defines how a customer can configure a car order out of
all available options, and which (variants of) parts must be selected from the overall
Bill-of-Materials (BoM) to build each order. Automotive product configuration is therefore
organized on two levels. High Level Configuration uses Boolean constraints to define a
subspace of valid option combinations (car variants) within the Cartesian product of all
options. Low Level Configuration uses Boolean formulæ to select from the BoM the right
variant of each part based on the option list which defines each car variant.

Note that a part does not need to be a physical object in this context, since the software of
a car’s electronic control units (ECU) must also be adapted in order to fit the individual
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2 Daniel Bischoff and Wolfgang Küchlin

car variant. One way to adapt the software is to use parameters to enable or disable certain
functions, or to adapt the behavior of the ECU in general. The ECU is configured through
predefined settings when an individual car is manufactured. These settings have to be
selected for the respective car variants, based on the car’s option list.

Since the features of a car are selected by a customer in the form of sales options, the
terms “option” and “feature” can be used interchangeably. In state-of-the-art approaches for
software variability management the Feature Oriented Domain Analysis (FODA) approach
is used to model the problem space, whereas parameters and their values are part of the
solution space [Ap13]. Feature models can be translated into Boolean formulæ [Ba05]. The
vehicle variants, which result as possible selections of the feature model, are then mapped
to the solution space.

The current approach to describe such mappings is by the use of Boolean formulæ.
Visualizing and checking those formulæ is the subject of this paper. Broadly speaking, we
present a way to visualize the underlying relations so that it becomes easy to check that they
are indeed mappings, or to pinpoint defects in the formulæ.

The running example for this paper is as follows: Suppose one has implemented a special
highway light software. This activates high beam mode as soon as the car’s speed exceeds a
specific limit. Since the limit has to be adapted to different car variants, the activation speed
is a parameter. There are four Boolean features of the car which influence the activation
speed. First it matters where the car is to get a MOT3 approval, denoted here by the two
features “GER” and “USA” respectively. The feature “NAVI” is used to indicate whether
the car is equipped with a satellite navigation system which can help to recognize highways.
One might also be able to predict whether the current road is a highway via a camera
“CAM”. We will use just those four features to influence our activation speed parameter. In
practice, complex parameter configurations with more factors have to be taken into account.

Section 2 describes the mapping problem in detail and outlines the complexity. Section 3
presents different approaches for visualizing Boolean formulæ. Section 4 describes how our
approach deals with feature constraints that limit the configuration space in practice.

2 The Problem – Configuration of Alternatives

The challenge at hand consists of mapping each vehicle variant to the correct parameter
value. Due to the high number of possible variants this is done by functions (given as
Boolean formulæ). These cover entire subsets of cars, rather than listing individual cars
and their parameter values in variant tables. A typical configuration table shown in Tab. 1,
which corresponds to a BoM position, holds all four possible values for our activation
speed parameter p, consisting of values 70, 80, 90, 100 and Boolean selection formulæ
ϕ70, . . . , ϕ100. We use upper case letters to denote vehicle features, ∧ for conjunction, ∨ for
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disjunction,→ for implication and ¬ for negation. > denotes the constant with value true
and ⊥ denotes false.

value selection formula
p = 70 ϕ70 = (¬GER ∧ N AV I ∧ C AM) ∨ (USA ∧ GER ∧ N AV I ∧ C AM)
p = 80 ϕ80 = (¬USA ∧ GER ∧ N AV I ∧ C AM) ∨ (¬GER ∧ ¬N AV I ∧ C AM)

∨(¬GER ∧ ¬C AM ∧ N AV I) ∨ (USA ∧ C AM ∧ ¬N AV I)
p = 90 ϕ90 = (¬USA ∧ ¬GER ∧ N AV I ∧ ¬C AM) ∨ (¬USA ∧ GER ∧ ¬N AV I ∧ C AM)

∨(USA ∧ ¬N AV I ∧ ¬C AM)
p = 100 ϕ100 = (¬USA ∧ GER ∧ N AV I ∧ ¬C AM) ∨ (¬USA ∧ ¬N AV I ∧ ¬C AM)

Tab. 1: Example configuration for a parameter with four possible values.

These formulæ denote a relation between vehicle variants and the parameter values. However,
additional properties are required:

1. Since the parameter can only hold one value at a time, it is expected that the different
options are alternatives.

2. The formulæ need to assign a value for every variant.

Property 1 requires the relation to be right-unique, Property 2 requires left-totality. I.e.,
in combination the selection formulæ have to be constructed in such a way that for all
assignments of the vehicle features exactly one formula evaluates to true.4 These properties
ensure that the relation is a (total) mapping. More formally we can write this as

∀
v∈2F

*,
∑

i

int(ϕi |v) = 1+- . (1)

• F is the set of vehicle features (here F = {GER,USA, N AV I,C AM }).
• int is a function that transforms a Boolean constant to an integer, i.e. int(>) = 1

and int(⊥) = 0.

• ϕi |v denotes the evaluation of ϕi given the vehicle feature selection in v.

• 2F is the power set of F and therefore a v ∈ 2F is a vehicle variation. If a vehicle
feature f ∈ F is in v, it is included in the vehicle variant, else it is absent.

f |v =

> if f ∈ v
⊥ otherwise

(2)

In this way all variables in the various ϕ are assigned a value and the ϕ|v evaluate to
a constant.

4 Here this is not the case in order to show how our approach deals with those errors.

Adapting Binary Decision Diagrams for Visualizing Product Configuration Data 1501
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For simplicity, the given example is kept short as it is used throughout the rest of the paper.
However, one can easily imagine that such configuration tables can become large and the
corresponding formulæ can become quite complex. Large and complex selection formulæ
are hard to read and even harder to maintain for a human documentarist [HB05].

The process of error checking, i.e. ensuring that exactly one formula is true in each table for
all possible assignments, is error-prone, if not outright impossible to do by hand for complex
formulæ. Moreover, there are as many formulæ as there are parts in the BoM, between about
30,000 and 100,000 in practice. Fortunately, this property can be efficiently checked with a
SAT-solver even for large numbers of large formulæ [KS00; MC03; SKK03].

However, there is still the problem of explaining each error to the user – a terse answer of
SAT or UNSAT is hardly sufficient — and there is the related problem of supporting the
user in developing or correcting these complex formulæ. In addition, an approach like in
[SKK03] reports errors on the level of individual position variants and does not provide a
comprehensive view of the entire situation at the position. A SAT solver will also report an
overlap error in the form of any single car which selects two part variants, but it will not
provide a representation of all cars which produce the same error.

The next section will show different approaches to visualize such configuration tables in
order to make checking for errors easy.

3 Binary Decision Diagrams

The well known Binary Decision Diagrams (BDDs) [Ak78] provide a graphical representa-
tion of Boolean formulæ. The representation is even unique (within a Boolean equivalence
class) if Reduced Ordered BDDs (ROBDDs) are used [Br92]. From an ROBDD the user
can read off the answer to the following question: “which true / false decision do I have
to make for each Boolean variable in a predetermined order to reach a result of true (resp.
false) for the value of the formula?”

If we wanted to draw OBDDs for the four formulæ from Tab. 1, we could do this for example
with the arbitrary ordering C AM < N AV I < GER < USA as seen in Fig. 1. One could
also combine these OBBDs into a shared OBDD (cf. [Kn09]) depicted in Fig. 2. These
BDDs are interpreted by starting at the root of the tree, following the dashed line if a variable
is assigned false, and following the solid line for true. It is still very hard to see if there is
any assignment (i.e. car) where multiple formulæ or none at all evaluate to true. Therefore
these traditional visualization approaches are not suitable for our problem.

Instead we propose a multi terminal BDD approach (as in [Cl93] and [Ba93]). For this
purpose we construct a single formula by combining the selection formulæ ϕi from Tab. 1
and new variables P70, P80, P90, P100. Variable Pi encodes the fact that parameter P is set to
value i. We call the result parameter formula since it describes all possible values and their

1502 Daniel Bischoff, Wolfgang Küchlin
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Fig. 1: OBDDs for ϕ70, ϕ80, ϕ90, ϕ100. The numbered roots show where each BDD starts.

conditions for the parameter. In general the parameter formula ψ for a parameter with some
designated values is constructed as follows:

ψ =
∧

i

(ϕi → Pi) =
∧

i

(¬ϕi ∨ Pi) (3)

This ensures that whenever a selection formula evaluates to true, the corresponding part
variable is also forced to true. In our case from Tab. 1 this results in

ψ = (¬ϕ70 ∨ P70) ∧ (¬ϕ80 ∨ P80) ∧ (¬ϕ90 ∨ P90) ∧ (¬ϕ100 ∨ P100). (4)

When one draws the BDD for ψ with respect to the variable order

(C AM, N AV I,GER,USA, P70, P80, P90, P100).

the result is a regular BDD where the lower half (shown in Fig. 3) contains the new variables.
To make the transition towards a multi terminal BDD easier to see, we removed the negative
terminal in Fig. 4.

In Fig. 4 one can clearly see that a satisfying assignment on the leftmost path has to assign
P70 = true for example. On the rightmost path none of the P are relevant, which can only
be the case if none of the ϕ in ψ are satisfied.

Adapting Binary Decision Diagrams for Visualizing Product Configuration Data 1503
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6 Daniel Bischoff and Wolfgang Küchlin

Fig. 2: A shared OBDD for all formulæ from Tab. 1. The numbered nodes at the top show where each
formula’s BDD starts.

To compile the multi terminal BDD we stop drawing after the feature level and form
terminal nodes (cf. Fig. 5). Each terminal node represents a formula where the features
C AM, N AV I,GER,USA are already assigned a value and therefore this formula only
consists of the variables P70, . . . , P100. In each terminal node we write the variables which
have to be set to true in order to satisfy the corresponding formula. This might be none5,

5 If none of the Pi have to be assigned a specific value in order to satisfy ψ, the formula is already true at this
point. I.e. the node is the positive terminal of the BDD. This is the case only when all the ϕi are false.

1504 Daniel Bischoff, Wolfgang Küchlin
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Fig. 3: The lower half of a BDD for ψ. Fig. 4: The lower half of a BDD for ψ without
the negative terminal.

Fig. 5: A multi terminal BDD visualizing the formulæ from Tab. 1 (Fehlteil is German for missing
part).

one or many of the Pi . Note that it is not possible to falsify ψ without assigning the Pi . The
result for the formulæ from Tab. 1 is shown in Fig. 5.

In this visualization one can clearly see that there is an assignment for which two formulæ
evaluate to true, hence the terminal labelled “90+80”. It is also obvious that there is an
assignment for which none of the formulæ evaluate to true, hence the terminal that reads
Fehlteil (missing part). One can also see which assignments lead to these situations.

In our opinion the visualization using the multi terminal approach is superior for the task at

Adapting Binary Decision Diagrams for Visualizing Product Configuration Data 1505
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8 Daniel Bischoff and Wolfgang Küchlin

hand compared to the standard BDD approaches. In the next section we will show how our
approach deals with additional configuration constraints that limit the variability space of
possible cars.

4 High Level Configuration

Fig. 6: A labeled edge multi terminal BDD visualizing the formulæ from Tab. 1 under the HLC.

Real world vehicle features are subject to configuration constraints. In the automotive
industry, these are known e.g. as Model Description (VW), Vehicle Description Summary
(General Motors), or Product Overview (Daimler: Produktübersicht). In line with the
FODA approach, the term High Level Configuration (HLC) is used [Ha98] for the problem
of configuring a vehicle from sales options, in contrast to the Low Level Configuration
problem of configuring an individual vehicle from the set of all materials in the BoM. HLC
dependencies are complicated and are organized as a set of Boolean constraints (several
thousand in practice). Tab. 1 showed an example without an HLC, i.e. all assignments to
the variables CAM, NAVI, GER, USA were possible without limitations. Let us assume an
HLC where GER and USA exclude each other because we aim to produce cars for single
countries only. Further we assume that NAVI implies GER because there are only road
maps for Germany available. The HLC can then be written as follows:

(¬USA ∨ ¬GER) ∧ (¬N AV I ∨ GER). (5)

We can now draw our BDD while respecting the HLC by conjugating this formula to ψ.

1506 Daniel Bischoff, Wolfgang Küchlin
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Since some feature combinations are forbidden by the HLC, there is no reason to draw them.
Instead when the HLC forces a variable assignment, we label the corresponding edge with
that assignment. In Fig. 6 an assignment of true to N AV I forces the assignment of true to
GER as well, which in turn forces the assignment of false to variable USA. Therefore the
positive edge of the NAVI-nodes is labeled with −USA + GER. This decreases the overall
size of the BDD significantly.

5 An Editor for Mappings

Based on the visualization techniques presented in Sect. 3 and Sect. 4 we implemented a tool
to draw diagrams based on configuration formulæ. The resulting graph is interactive and
can be manipulated in order to fix problems like the ones depicted in Fig. 5 and Fig. 6. The
corrected graph can be translated back into Boolean formulæ. For example the formula ϕ80
can be extracted from Fig. 5 as follows:

1. For each terminal containing “80” find all paths to the root. Each path represents an
assignment. In Fig. 5 there are five such paths. They are denoted by ψ1, ψ2, ψ3, ψ4, ψ5.
For example the leftmost path is ψ1 = C AM ∧ N AV I ∧ GER ∧ ¬USA.

2. The formula ϕ80 is the disjunction of these assignments.
ϕ80 = ψ1∨ψ2∨ψ3∨ψ4∨ψ5 = (C AM∧N AV I∧GER∧¬USA)∨ψ2∨ψ3∨ψ4∨ψ5

With this technique all underlying formulæ can be computed from a BDD and drawing
a BDD based on the extracted formulæ reproduces the original BDD since BDDs are a
canonical representation of a formula.

6 Conclusion

We have shown how Boolean formulæ are used in automotive product documentation.
In Chapter 3 we demonstrated how traditional visualization methods fail to make error
checking easy for human documentarists. We presented our approach to visualize multiple
related formulæ in a single diagram and showed how the visualization helps to make parts
selection rules including their bugs transparent and understandable for a human. In Chapter 4
we also showed how our approach deals with restrictions to the space of variations and how
they even help to make diagrams smaller and more readable.

Adapting Binary Decision Diagrams for Visualizing Product Configuration Data 1507
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7 Future Work

We plan further research along the following lines:

• Test the existing method with real data in a larger case study.

• Develop algorithms to deal with complex high level configurations efficiently6.

• Allow the introduction of self defined features7 (shortcuts), which are expressed in
terms of already existing features. Can they help to further decrease the size of the
diagrams and increase readability?

• Additionally we are planning to evaluate the proposed method with practitioners. Our
goal is to learn from the evaluation and to further improve our method, while already
improving the data quality of the product configuration data.
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