
Computeralgebra in der Hochschule

Automated Reasoning in the Class
I. Drămnesc (West University of Timişoara, Romania)
E. Ábrahám (RWTH Aachen, Germany)
T. Jebelean (Johannes Kepler University of Linz, Austria)
G. Kusper (Eszterhazy Catholic University of Eger, Hungary)
S. Stratulat (Univ. de Lorraine, CNRS, LORIA, Metz, France)

isabela.dramnesc@e-uvt.ro
abraham@cs.rwth-aachen.de
tudor.jebelean@jku.at
gkusper@aries.ektf.hu
sorin.stratulat@univ-lorraine.fr

Introduction
Automated Reasoning is a field of Computer Science
concerned with the automation of deduction processes
in Mathematics. For this purpose, algorithms for logi-
cal deduction (Automated Theorem Proving) have been
developed. Theorem provers allow to prove mathemati-
cal statements interactively by computer programs, SAT
solvers are available for checking the satisfiability of
propositional logic formulae, and SMT (Satisfiability
Modulo Theories) solvers that combine logical proce-
dures with methods from Computer Algebra (e.g. for
the manipulation of polynomial expressions) can be used
to check the satisfiability of Boolean combinations of
constraints from certain theories.

Automated Reasoning finds application in numerous
areas, for example for the verification of computer hard-
ware and software, and in general of complex systems,
as well as semantical information storage and retrieval.
Therefore it is crucial for computer specialists to under-
stand the theoretical basis and familiarize themselves
with the underlying algorithms, in order to be able to
develop Automated Reasoning tools or to use them for
solving their problems. Moreover, this knowledge is also
necessary for the development of semantically aware In-
ternet repositories and tools to access them. In practice,
we currently encounter numerous situations in which de-
sign or implementation errors in complex systems lead
to undesired results, ranging from small nuisances to
important loss of value and even to fatalities. In our
opinion, an important cause for such errors is the lack

of systematic use of formal modeling and verification
tools, and one important way of changing this situation is
the improvement of the education of students and of the
academic staff in fields related to Computational Logic.

As the field of Automated Reasoning is relatively
new, there is yet not enough teaching material that suffi-
ciently addresses mathematically involved concepts for
the education of students with diverse background, and
in particular material that helps to increase the motiva-
tion of both the students and the teachers and supports
efficient interaction.

The project ARC (Automated Reasoning in the Class)
aimed at improving the teaching of subjects related to
Automated Reasoning by producing teaching material
and tools that support the activities in the class and by
training academic staff on how to use them. The project
was funded in the frame of the Erasmus+ programme
of the European Union as a partnership between 5 uni-
versities from Romania (coordinator), Austria, France,
Germany, and Hungary, running from 2019 to 2022.

The main activities of the project have been: produc-
tion of a book and related tools (available on the project
home page [1]), 5 modules for training of teaching staff,
a summer school for students, and an international sym-
posium for disseminating the project results. The book

“Computational Logic: A Practical Approach” describes
the main models from Mathematical Logic and the most
important algorithms from Automated Reasoning, with
corresponding illustrative exercises. The tools are vari-
ous programs that illustrate the main methods and can
be used to support the teaching based on the various sec-

21

mailto:isabela.dramnesc@e-uvt.ro
mailto:abraham@cs.rwth-aachen.de
mailto:tudor.jebelean@jku.at
mailto:gkusper@aries.ektf.hu
mailto:sorin.stratulat@univ-lorraine.fr

tions of the book. The training of the academic staff for
using the tools and the book took place in 5 one–week
modules with the subjects: Mathematica and Theorema
(Linz, Austria), Satisfiability Module Theories (SMT)
Solving (Aachen, Germany), Problem Based Learning
(Timişoara, Romania), SAT Solving (Eger, Hungary), and
Coq (Metz, France).

As an illustration of our approach we describe in
more detail the teaching process of the DPLL algorithm
[2, 3] for checking the satisfiability of propositional logic
formulas. The material and the tools for the other algo-
rithms described in our book are freely available on the
home page of the project [1].

Teaching the DPLL Algorithm

Problem-based Learning

To motivate the application of logics and automated rea-
soning, we developed material to illustrate how certain
problems can be encoded logically; later on, these logical
encodings can also be used to illustrate the execution of
automated reasoning algorithms and the application of
relevant tools.

In this article we focus on propositional logic [4],
whose formulas connect propositions (Boolean variables)
by the unary operation of negation (¬) and the binary
operators of conjunction (∧), disjunction (∨), implica-
tion (→) etc. A literal is a proposition or its negation; a
clause is a disjunction of literals; a propositional logic
formula in conjunctive normal form (CNF) is a conjunc-
tion of clauses. Below we give two examples how to
encode problems in propositional logic.
Example: The pigeon hole problem. Let n ∈ N\{0}.
The pigeon hole problem is the problem to decide
whether n+ 1 pigeons fit into n holes, if no two pigeons
fit into one hole. This problem is an example which can
be easily solved by humans but which often challenges
automated reasoning tools. We can encode this problem
in propositional logic as follows, where xi,j stands for
pigeon i being in hole j (1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n):

(n+1∧
i=1

(
n∨

j=1

xi,j)
)
∧
(n∧
j=1

n∧
i1=1

n+1∧
i2=i1+1

(¬xi1,j ∨ ¬xi2,j)
)

Above, the left operand of the outmost conjunction en-
codes that each pigeon is in at least one hole, and the
right operand encodes for each pair of pigeons that they
cannot be in the same hole. Note that we break the sym-
metry for the pigeon pairs in the second block, ordering
the pairs by increasing indices. Furthermore, we require
only that each pigeon is in at least one hole; one could
also encode the fact that each pigeon is in at most one
hole, but since we only want to decide the existence of
a solution we know that if there is a solution in which a
pigeon uses more than one hole than there is also a solu-
tion in which it uses exactly one hole (the others being
empty). On this example we can illustrate the relevance
of how we encode problems.

Example: Sudoku Light. Assume an n× n square grid
for some n ∈ N \ {0}. Each square in the grid is either
empty or it contains a natural number from {1, . . . , n}.
We want to fill each empty square in the grid with num-
bers such that each row and each column contain exactly
one occurrence of each number from {1, . . . , n}. This
problem can be encoded by the propositional logic for-
mula

φinit ∧ φsquares ∧ φrows ∧ φcolumns

using propositions gi,j,k for i, j, k ∈ {1, ..., n} to en-
code that the square in row i and column j contains the
number k; φinit is a conjunction stating for each initially
non-empty field in row i and column j with number k
the truth of gi,j,k; and the following sub-formulas:
Each square has at most one number:

φsquares :=

n∧
i=1

n∧
j=1

n−1∧
k1=1

n∧
k2=k1+1

(¬gi,j,k1 ∨ ¬gi,j,k2)

Each row contains each number:

φrows :=

n∧
i=1

n∧
k=1

 n∨
j=1

gi,j,k

Each column contains each number:

φcolumns :=
n∧

j=1

n∧
k=1

(
n∨

i=1

gi,j,k

)

Teaching the DPLL Algorithm with Mathematica

The Davis–Putnam–Logemann–Lovelace (DPLL) algo-
rithm [2, 3] solves SAT problems in conjunctive normal
form by investigating on a search tree a certain subset of
the possible assignments to the propositional variables
and by unit propagation.

A unit clause consists of a single literal – note that
such a clause determines the truth assignment of the
corresponding variable, since each of the clauses of a
CNF formula need to be satisfied in order to satisfy the
whole formula. Unit propagation uses this information to
simplify the set of clauses: all instances of the opposite
of this literal (whose truth value is false) are removed
from the corresponding clauses (unit resolution) and all
clauses containing an instance of this literal (whose truth
value is true) are deleted (unit subsumption). (The unit
clause itself is also removed by this rule, but the corre-
sponding assignment is kept in case we want to actually
find the solution[s].) Note that unit resolution may also
produce new units – in this case they are also propagated
(Boolean constraint propagation) – as well as an empty
clause or an empty set of clauses.

When there is no unit clause in the current set, then
the algorithm proceeds by branching: it chooses one of
the variables and it produces two branches for the possi-
ble truth assignments and propagates these. A heuristics
decides which branch to process first.

The search on a branch finishes in two possible ways.
If unit resolution produces the empty clause (a contra-
diction is found), then the formula is not satisfied on the

22

current branch of the search tree; the algorithm back-
tracks by moving up along the current path to the most
recent branching point with a yet unexplored child and
continues with processing that child. If unit subsumption
empties the current clause set, then the formula is satis-
fied for the current assignment of the variables. In case
we are only interested in satisfiability, then the search
can stop at the first such satisfying situation.

Some variants of DPLL also use the pure literal rule:
if a literal occurs with only one sign in the problem, then
all the corresponding clauses can be removed without
changing the satisfiability of the problem.

The formula is unsatisfiable if contradiction occurs
on all branches. Otherwise, each satisfiable branch pro-
duces one or more solutions (the variables that have not
been assigned can have any value).
Example: DPLL solving. Fig.1 shows the search tree
for the set of clauses listed in node 0.

Figure 1: Example of DPLL solving.

Because there is no unit clause in the original set,
the first step is a branching one, using the variable A
and producing the two new sets 1 and 2. (One can use
any of the other variables and then the sets would be
different.) On the branch corresponding to A the first
and the last clause are removed, while the second and the
fourth clause loose the negation of A. On the branch cor-
responding to the negation of A the second and the third
clause are removed, while the first and the last clause
loose A. On both branches the third clause remains un-
changed.

Set 1 again does not contain any unit, thus branching
is applied to C producing sets 3 and 4. In set 3 the sec-
ond and the third clause are removed and the first clause

looses B. In set 4 the first clause is removed and the last
two clauses loose the negation of C.

Set 3 becomes empty either by unit propagation or
by the pure literal rule, thus the assignment of true to
A,B and C satisfies the formula. On can check that this
assignment satisfies the original set by observing that
each of the original clauses contains at least one of these
three variables. The two possible assignments to D give
two satisfying full assignments.

Set 4 gives a contradiction, thus we can infer no
solution here.

Set 2 has pure literal C, thus true assignment to this
satisfies the last two clauses. If we use the pure literal
rule then we can eliminate them, and then we have again
pure literal B that finishes the search. This gives the
solution assignments that have negative A and positive
B and C, with D of any value. However note that by
using the pure literal rule we could ignore some of the
solutions, because in principle also the negative C may
be part of some solutions (however this is not the case
here).

If we do not use the pure literal rule, then unit B is
propagated and we obtain the set 6, in which branching
is applied on C and we obtain a satisfying assignment
on set 7 and contradiction on set 8.
The Chaff implementation
Chaff [5] is an implementation of the DPLL algorithm
that is lazy: it avoids some unnecessary operations. For
instance when a clause is deleted, all previous updates of
this clause by unit resolution are useless.

This implementation does not use recursion, but it
explores the search tree in an explicit way. However
the amount of backtracking data is very small: only the
assignments to the variables and the branching variables
need a stack. This is because the information about the
watched literals (details follow) does not need to be back-
tracked: the algorithm runs correctly no matter which are
the watched literals.

In order to avoid some unnecessary operations one
uses the concept of watched literals. Namely, at the be-
ginning, two literals from every clause are setup to be
watched, and a clause is updated (visited) only when one
of the watched literals must be removed. Otherwise, in
the process of unit propagation the clauses are neither re-
moved and the literals are also not deleted, but of course
the necessary information (a clause or a literal should
have been deleted) is used by just checking the current
assignment of the corresponding variables. This method
allows to avoid many operations, however the fact that a
clause becomes unit is detected immediately as explained
below.

We describe here a particular version of Chaff, hav-
ing all the essential features. At the beginning the
watched literals are established in an arbitrary way, and
for each variable we instantiate a record containing:

• the truth assignment (initially unassigned);

• two lists of clauses on which the variable occurs
as positive, respectively as negative literal, each

23

composed of two sublists (occurrence as the first,
respectively the second watched literal).

Additionally the algorithm uses a backtrack stack for
the branching variables, a variable stack for currently
assigned variables, and a unit queue for the units that
have been found but not yet propagated. All these are
initially empty.

The main loop has three kinds of steps:

• Branching: If the unit queue is empty:

– if all variables are assigned we have a solu-
tion, store it and go to backtracking.

– otherwise choose an unassigned variable, as-
sign it true, put it in the backtrack stack and
in the variable stack, and go to unit propaga-
tion for the positive literal of this variable.

• Continue unit propagation: If the unit queue is not
empty, choose one of the variables and propagate
the literal corresponding to its current assignment.

• Backtracking:

– If the backtrack stack is empty then stop, the
search tree is exhausted.

– Otherwise pop the variables from the vari-
able stack and unassign them one by one,
until the same variable occurs in the back-
track stack. Remove the variable from the
backtrack stack, assign the variable to false,
and propagate the negative literal of this vari-
able.

Unit propagation of a literal consists in scanning
the lists of clauses corresponding to the opposite of this
literal and visiting each of them.

Visiting a clause consists in the following:

• If the other watched literal is assigned true, end
the visit (the clause should have been removed).

• Otherwise, scan the list of the literals that are not
watched:

– If the scan ends then either there are non
watched literals, or they should all have been
removed: this clause is a unit - namely the
other watched literal, try to assign the corre-
sponding value to the variable.

* If the variable has no value: assign the
value found and put the variable in the
unit queue.

* If the variable already has the same
value: end the visitation.

* If the variable already has the opposite
value: contradiction, end the visitation,
end the unit propagation, and go to back-
tracking in the main loop.

– If the scanned literal has no value: in this
clause switch this literal with the watched
literal that triggered the visitation and update
the list of clauses that contain watched lit-
erals in the records corresponding the two
variables involved, then end the visitation.

– If the scanned literal is positive: end the
visitation (the clause should have been re-
moved).

– If the scanned literal is negative: continue to
scan (the literal should have been deleted).

Figure 2: Demo of the Chaff algorithm.

We developed a Mathematica implementation of the
DPLL algorithm; our implementation can generate and
display the corresponding search trees, as show in Figure
1. Furthermore, in Mathematica we developed another in-
teractive simulation tool for the Chaff algorithm, whose
functionalities we illustrate next on an example.
Example: Chaff. Fig.2 presents the screen shot at
the end of the interactive animation demonstrating the
Chaff algorithm on the set of clauses shown in the table
“Clauses”. The box on the LHS of each clause contains
the watched literals. The buttons on the LHS upper cor-
ner can be used for navigating forward and backward
through the demo. The upper box indicates the state
of the main loop. The search tree is displayed on the
RHS only for a better understanding by the user, it is
not actually necessary for the running of the algorithm.
Over the box we see the final result: after 96 elementary
steps we have two contradictions (nodes 5 and 7) and
two satisfying assignments (nodes 9 and 10).
Teaching: After presenting the main structure of the al-
gorithm as above, we show the students several examples
as the previous ones and explain how the algorithm is
applied. The pictures are produced dynamically using
our tools implemented in Mathematica, and the students
can themselves experiment interactively using different
examples.

Exercise Generation for the DPLL Algorithm

Interaction during lectures enable the students’ active
participation and increases the effectiveness of learning.
We made especially good experience with bonus ques-
tions. These are posed during the lectures (in average one

24

question per 45 minutes lecture). The teacher first poses
a small example problem and gives the students some
fixed time (3-5 minutes) to try to solve it. After that, the
teacher presents the solution and gives the students the
opportunity to ask questions. Successively, each student
gets an individual problem to solve within a fixed time
window (3-8 minutes). These individual problems should
differ from the example problem just in certain parame-
ters, such that the solutions for the individual problems
can be achieved through the same steps as for the ex-
ample problem. If time permits, the students should be
given the possibility to discuss (face-to-face or online)
or even to check each other’s solutions. Solutions can be
submitted on an online learning platform like Moodle.
For each correct solution, the students can earn bonus
points for the final exam. According to the short time
frame per task, the posed problems should be small and
cover a central concept.

Besides bonus questions, similar problems are
needed to design weekly exercise sheets, intermediate
tests, and written exams. Also here, it is advantageous to
have parametric problems, whose instances share a com-
mon solution scheme and a comparable solution effort.
Optimally, also the problem sizes should be scalable, as
the students have more time to solve the exercise sheets
in home work than the bonus questions during the lec-
tures.

The definition of such parametric problems and the
automated generation of their instances is highly chal-
lenging, but once implemented, also highly rewarding.
Individual problem instances assigned to the students
have a strong motivating effect, they harden cheating
and they can be evaluated automatically, which is very
important when teaching large classes.

However, for topics related to computer algebra and
symbolic computation, it is hard to come up with a clear
measure that defines the quality of such parametric prob-
lems. We developed a catalogue of quality criteria, cover-
ing aspects of (i) which problems to choose, (ii), how to
formulate the problems, (iii) which questions to ask and
(iv) how to give feedback. We do not discuss the above
catalogue here in detail, but present some aspects on a
few examples.

In our project, we developed 36 such parametric prob-
lems for different topics covered in an elective lecture
on Satisfiability Checking taught at RWTH Aachen Uni-
versity by Ábrahám, with 200–550 registered students in
the previous years. In the following we present three of
these problems that are related to the Chaff algorithm.

Example: Propositional logic. The following problem
instance should check the understanding of the syntax
and semantics of propositional logic, as well as aspects
of encoding real-world problems in propositional logic.

In the problem statement, we could ask e.g. to en-
code by a propositional logic formula the problem to seat
three people in three sequentially ordered seats under cer-
tain side conditions. However, this would require a free
textual answer, which we want to avoid for several rea-
sons: it would require to fix the input syntax; reading this
input syntax specification takes valuable time; it might
be inconvenient to answer on cell phones; it is unclear
how to evaluate incorrect syntax; the answer would not
be unique, such that students might be uncertain which
answer to give, furthermore some of the encodings might
be easier to find than others, and the time needed to type
different solutions might vary.

Instead, we present a propositional logic formula and
assign meanings to its propositions, and ask to select
all correct answers from a list (single/multiple choice).
Though this form is more easily guessable, having a list
with at least 4 choices (and thus at least 4 possible an-
swers for single choice and 16 for multiple choice) lowers
the probability of lucky guessing. If possible, these an-
swer choices should cover regular but also corner cases,
highlight important points in definitions etc.

To achieve a parametric problem, we defined 3 com-
plex and 27 easy sub-formulas related to the seating
problem, and further 32 statements formalized in natural
language as well as in propositional logic. To generate a
problem instance, we randomly select 2 complex and 1
easy sub-formulas and build their conjunction. Then we
use a SAT solver to assert this formula and classify all
32 statements in tautologies and non-tautologies. Having
done this, we randomly select four times one of the two
classes and a statement from that class as choices. We as-
sure to select both classes at least once and that there will
be at least three statements in both classes. By randomly
selecting first the tautology class and then an instance
from that class, we assure that each possible answer is
equally probable, making the guessing harder (as typi-
cally there will be less tautologies than non-tautologies
under the statements).
Example: Watched literals for DPLL. With the next
parametric problem we train the understanding of the
watched-literals scheme. We fix four propositions (we
use a, b, c, d, but the naming could be also chosen ran-
domly from a given set of options). For each problem
instance, we generate a clause with four literals, each
literal being one of the propositions with a random sign,
yielding 24 = 16 clause variants. Next we generate an
assignment of true, false or unassigned to each of the
propositions, offering 34 = 81 possible (partial) assign-
ments. The students should decide which literal pairs are

25

suited to be watched together for the given clause under
the given (partial) assignment. Again, to avoid free-text
answers, we use the multiple-choice format. To reduce
the probability of successful guessing, we include all 7
possible literal pairs (up to ordering) as options. Note
the additional option None of the above, to exclude the
possibility that points will be awarded for not answering
the question.

Example: Boolean constraint propagation. This task
addresses the combined mechanisms of branching and
propagation in the DPLL algorithm (excluding backtrack-
ing). We again fix how many propositions we want to use
(here: 4) and fix their names (here: A,B,C,D), along
with static orderings for propositions (here: alphabetic)
as well as for the Boolean values (here: false < true).
A further parameter is the number (here: 4) and maxi-
mal size (here: 4) of the clauses. To create a problem
instance, we randomly generate the different clauses: for
each clause, we randomly decide for each proposition
whether it is included, and for each included proposition
we select a random sign. We assure that no clause is
empty, that the clauses are pairwise different and that
each proposition appears at least once. We simulate the
DPLL algorithm until either a conflict is detected or until
it terminates without reaching any conflict. To be com-
parable, we process only those instances that reach a
full solution after making a number of propagated as-
signments from a given interval (here: at least two), and
dismiss all other instances (i.e. we repeatedly generate
new random instances until the above condition is met).

We now need to fix a question to be asked, which pro-
vides a good indication whether the students successfully
applied the DPLL algorithm, without any complicated
input syntax (e.g. providing the final assignment) and
without offering good chances to be guessed correctly
(e.g. the value of a given proposition in the final assign-
ment). In this example we ask for the number of true
propositions in the final assignment, the possible answers
being any number between 0 and 4. Using more proposi-
tions would further reduce the probability for successful
guesses.

Further DPLL-related Topics

Further aspects of automated reasoning for propositional
logic that we could not cover in this article but are cov-
ered by the ARC material include the conflict-driven
clause learning (CDCL) [5] approach (that most state-
of-the-art SAT solvers implement), parallel SAT solv-
ing techniques and other algorithms not based on the
DPLL algorithm. For hands-on exercises, the standard
DIMACS [6] input format for SAT solvers is introduced.

Conclusion
In this article we reported on teaching materials devel-
oped in the ARC (Automated Reasoning in the Class)
project. These materials can be used in lectures, sem-
inars and practical courses, as introductory material to
prepare for B.Sc., M.Sc. and PhD projects, as well as in
the context of training schools. We hope that the commu-
nity will find these materials useful. We aim to further
maintain and extend this collection in the future and are
grateful for feedback and external contributions.

Acknowledgements. This work is co-funded by the
Erasmus+ Programme of the European Union, project
ARC: Automated Reasoning in the Class, 2019-1-RO01-
KA203-063943.

References

[1] https://arc.info.uvt.ro/

[2] Davis, M., Hilary, P.: A computing procedure for
quantification theory. J of ACM 7(3) (1960) 201–215

[3] Davis, M., Logemann, G., Loveland, D.: A machine
program for theorem-proving. Commun. ACM 5(7)
(Jul 1962) 394–397

[4] Biere, A., Heule, M., van Maaren, H., Walsh, T.:
Handbook of Satisfiability. Volume 185 of Frontiers
in Artificial Intelligence and Applications. IOS Press
(2009)

[5] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang,
L., Malik, S.: Chaff: Engineering an efficient SAT
solver. In: Proc. of the 38th Annual Design Au-
tomation Conference, Association for Computing
Machinery (2001) 530–535

[6] http://www.domagoj-babic.com/
uploads/ResearchProjects/Spear/
dimacs-cnf.pdf

26

https://arc.info.uvt.ro/
http://www.domagoj-babic.com/uploads/ResearchProjects/Spear/dimacs-cnf.pdf
http://www.domagoj-babic.com/uploads/ResearchProjects/Spear/dimacs-cnf.pdf
http://www.domagoj-babic.com/uploads/ResearchProjects/Spear/dimacs-cnf.pdf

