Cryptanalytic Time-Memory Tradeoffs on COPACOBANA

Tim Giineysu, Andy Rupp and Stefan Spitz

Horst-Gortz Institute for IT-Security, Ruhr-University Bochum, Germany.
{gueneysu, arupp}@crypto.rub.de, stefan.spitz@rub.de

Abstract: This paper presents our ongoing work on the analysis and optimization of
cryptanalytic time-memory tradeoffs targeting the COPACOBANA architecture [KPP06]
as platform for the precomputation/online phase.

1 Introduction

A common computational problem frequently appearing in cryptanalysis can be generally
described as follows: Let f : S — D be a one-way function with a domain .S of size
|S| = N. Given an image y € D, the challenge is to find a preimage of y, i.e., some
element x € S s.t. f(x) = y. For instance, in a known-plaintext attack on a cipher E one
tries to invert the function f : — E,(P), where P is the fixed known-plaintext and z is
a key, for a given ciphertext f (k).

There are two naive approaches to solve instances of this problem: performing an exhaus-
tive search for each wanted & or precomputing and accessing an exhaustive table contain-
ing all (z, f(z)) pairs. However, in practice these solutions are unsatisfying since they
require an infeasible amount of time respectively disk space. By using a cryptanalytic
time-memory tradeoff (TMTO) method, one tries to find a compromise between reason-
ably reducing the actual search complexity (by doing some kind of precomputation) and
keeping the amount of precomputed data reasonably low. What “reasonably”” means here
depends on the concrete attack scenario (e.g., real-time attack), the function f and the
available resources for the precomputation and online phase.

Existing TMTO methods [Hel80, D. 82, Oec03] share the natural property that the success
probability of the online phase, i.e., the probability that the wanted preimage is actually
covered by the precomputed data, depends on the complexity of the precomputation phase.
As a consequence, to achieve a success rate that is significant in practice a lot of time must
be spent on the precomputation phase (typically in the order of V). However, providing a
sufficiently large cluster of PCs for performing this task is usually too costly or difficult.
In fact, to the best of our knowledge nobody has reported a completed precomputation for
a full 56-bit DES TMTO attack so far.

Recently, the benefits of special-purpose hardware in terms of Field Programmable Gate
Arrays (FPGAs) for doing the time-consuming TMTO precomputations have been discov-
ered. In [SRQLO2] an FPGA design for a TMTO attack on a 40-bit DES variant using

205

Rivest’s approach was proposed. In [MBPV06] a hardware architecture for UNIX pass-
word cracking based on Oechslin’s method was presented.

The paper at hand describes our ongoing research project dealing with the realization of
TMTO attacks on the COPACOBANA (Cost-Optimized Parallel Code Breaker) hardware
architecture [KPPT06]. In the course of this project, the suitability of COPACOBANA for
implementing the precomputation/online phase of different TMTO methods is analyzed.
Moreover, we optimize the various TMTO parameter choices with respect to different
attack configurations. As a practical result, we like to provide precomputation data for the
first TMTO attack on full 56-bit DES.

2 Time-Memory Tradeoff Methods in Cryptanalysis

In this section we sketch Hellman’s original TMTO method as well as the the variants
proposed by Rivest and Oechslin. For concreteness, the methods are considered in the
case of a block cipher E given a fixed known plaintext P, i.e., f(z) = E,(P).

2.1 Hellman’s Original Approach

In Hellman’s TMTO attack, published in 1980 [Hel80], one tries to precompute all pos-
sible (z, f(z)) pairs in advance by encrypting P with all N possible keys. However, to
reduce memory requirements these pairs are organized in several chains of a fixed length.
The chains are generated deterministically and are uniquely identified by their respective
start and end points. In this way, it suffices to save its start and end point to restore a chain
later on. In the online phase of the attack, one then simply needs to identify and recon-
struct the right chain containing the given ciphertext to get the wanted key. The details of
the two phases are described in the following.

SP

Figure 1: Chain generation due to Hellman

Precomputation phase. In this phase, first m different keys are chosen serving as start
points S P of the chains. To generate a chain, one first computes Egp(P) resulting in some
ciphertext C' (see Figure 1). In order to continue the chain, C' is used to generate a new
key. To this end, a so-called reduction function R is applied reducing the bit length of C' to
the bit length of a key for the cipher E' (if necessary) and performing a re-randomization
of the output. By means of R we can continue the chain by computing R(Esp(P)) = X1,
using the resulting key X to compute R(Ex, (P)) = X5 and so on. The composition of

206

E and R is called step-function F'. After t applications of I’ the chain computation stops
and we take the last output as the end point E'P of the chain. The pair (SP, EP) is stored
in a table sorted by the end points. The number of distinct keys contained in a table divided
by N is called the coverage of a table. Unfortunately, the occurence of a key in a table is
not necessarily unique because (due to the nature of R) there is a chance that two chains
collide and merge or that a chain runs in a loop. Since the probability of merges increases
with the size of a table, at a certain point we cannot significantly improve the coverage by
simply adding more and more chains. To cope with this problem, Hellman suggested to
generate multiple tables each associated with a different reduction function.

Online phase. To find out if a given ciphertext C' was generated using a key k that is
covered by a particular table, we compute all chains starting from R(C') up to a length of
t and compare their end points with the end points in the table. More precisely, we first
check if R(C) is contained. If not we compute F'(R(C')) and look for a match, then we do
this for F'(F(R(C))) and so on. If a match occurs after the i-th application of F' for a pair
(SP,EP), then F*=""1(SP) = X,_;_; is a key candidate which needs to be verified. If
Ex,_,_,(P) = C we are successful and the online phase ends. If no valid key is found in
the current table, we repeat above procedure for another table (and another R and F).

2.2 Variants of Hellman’s Approach

Distinguished Points. In practice, the time required to complete the online phase of Hell-
man’s TMTO is dominated by the high number of table accesses. The distinguished point
(DP) method, introduced by Rivest [D. 82] in 1982, addresses this problem. A DP is a key
that fulfills a certain simple criterion (e.g., the first 20 bits are 0) which is usually given as
a mask of length dp;. Rivest’s idea was to admit only DPs as end points of a chain. For
the precomputation phase this means that a chain is computed until a DP or a maximal
chain length ¢,,,,, + 1 is reached. Only chains of length ¢ < ¢,,,4, + 1 ending in a DP are
stored. Using DPs also merging and looping chains can be detected and are discarded. In
the online phase, the table does not need to be accessed after every application of F' but
only for the first occuring DP. If we have no match for this DP we can proceed with the
next table.

Rainbow Tables. Rainbow tables were introduced by Oechslin [Oec03] in 2003. He
suggested not to use the same R when generating a chain for a single table but a (fixed)
sequence Ry, ..., R, of different reduction functions. More precisely, due to the differ-
ent reduction functions we get ¢ different step-functions F1, ..., F} that are applied one
after another in order to create a chain. This modification reduces the number of merges
considerably while loops are prevented completely. Hence, regarding a space efficient
coverage, these characteristics allows to put much more chains into a rainbow table than
into a Hellman table. This in turn significantly reduces the total number of tables needed
in order to achieve a certain coverage. Since fewer rainbow tables must be searched in the
online phase (what is however a bit more complex) a lower number of calculations and
table accesses is required. To lookup a key in a rainbow table, we first compute R;(C') and
compare it to the end points, then we do this for Fy(R;—1(C)), Fy(Fi—1(R:—2(C))), etc.

207

3 Using COPACOBANA for TMTOs on DES

The COPACOBANA [KPPT06] is an existing FPGA cluster designed for parallel appli-
cations with a focus on massive computations and a minor demand on communication
and memory. It integrates a total number of 120 Xilinx Spartan-3 XC3S1000 FPGAs in a
modular design. In a DES brute force attack configuration, the machine can compute 23°-9
DES-encryptions per second resulting in an average key search duration of 6.4 days.

In this section, we will employ COPACOBANA for accelerating the precompution and
online phase of a TMTO attack on DES. In such a scenario, primarily the hardware limita-
tions of COPACOBANA need to be considered. Since COPACOBANA does not allow for
installation of directly attached storage, all TMTO tables must be managed by a connected
host computer. The recent interface of COPACOBANA to the host provides a communi-
cation bitrate of 24 - 10° ~ 224 bit per second. Compared to the number of possible DES
encryptions per second, the bottleneck of the COPACOBANA is the data throughput for
transferring (S P, EP) tuples to the host. To address the constraint of limited bandwidth,
a minimum number of 214 . b computations must be performed until a data transfer is
initiated, where b denotes the bitlength of a tuple (SP, EP). For practical reasons, we
have fixed the memory usage to a maximum of two terabyte and the required success rate
to 80%. Based on experiments, we found following parameters for chain length, number
of tables and start points to satisfy the given constraints.

Method Chain Length # Start Points | # Tables | Bits p. table entry
Hellman t=2"7 2107 27T 73

DP tmin = 28, tmae = 220, dp; = 19 218 221 55
Rainbow t=2'9° 235 5 91

To optimize the bandwidth usage, we use the first m integers as start points S P so that each
SP can be stored with only logs(m) bits. For distinguished points, the minimum chain
length ¢,,;, is necessary to ensure that the generated data traffic from tuples (SP, EP)
complies with the available bandwidth on the COPACOBANA. More precisely, each DP
chain leading to a total chain length less than ¢,,,;, + 1 is discarded and not transfered to
the host. Furthermore, the storage of end points for DP can be limited to the remaining
56 — dp; bits not covered by the DP-property. The following table presents our worst case
expectations concerning success rate, memory usage, the duration of the precomputation
phase on COPACOBANA as well as the number of table accesses (TA) and calculations
(C) during the online phase. Note that these figures for use with COPACOBANA are based
on estimations given in [Hel80, Oec03, SRQLO2] (false alarms are neglected).

Method Success Rate | Memory Usage || Precomputation Online Phase

Hellman 0.80 1897 GB 24 days 2102 TA + 2702 C
DP 0.80 1690 GB 95 days 221 TA + 237 C

Rainbow 0.80 1820 GB 23 days 2218 TA 42103 C

According to our findings, precomputations for distinguished points on a single COPA-
COBANA take roughly four times longer compared to Hellman’s and rainbow methods
based on given constraints. Contrary, the subsequent online attack has the lowest com-
plexity for the distinguished point method. Considering a TMTO scenario to use the CO-
PACOBANA for precomputation only (implying that the online attack is performed by a

208

PC), the rainbow table method provides best performance. When using COPACOBANA
as well for precomputation and online phase, there is a strong indicator to select distin-
guished points as the method of choice. For distinguished points, we can assume the
frequency of table accesses to follow a uniform distribution, hence, we expect balanced
bandwidth requirements over time. With rainbow tables, the online attacks starts with very
short but incrementing computation trails. This results in significant congestion on the CO-
PACOBANA’s communication interface since a large number of table lookups are required
in the beginning of the online phase. Therefore, a scenario running both precomputations
and the online attack on the COPACOBANA, should be based on the distinguished points
method since this method is most promising with respect to the restrictions of the machine.

4 Future Work

Our goal is to realize a DES-TMTO attack providing a good success rate (> 80%), a
reasonable memory usage (= 2 TB) and an online phase that can be executed within a
few minutes. Considering only the number of calculations required for this phase which
is about 240 (see Section 3), we conclude that a hardware implementation of the online
phase (e.g., on COPACABANA), is mandatory since a contemporary PC only achieves
about 22! DES encryptions per second. However, even assuming such a fast hardware
implementation the high number of table accesses (about 22!, where one access takes about
4 ms) still prevent us from achieving this goal using existing TMTO methods. To this end,
we are working on a new TMTO variant that is suitable for COPACOBANA and allows
to further reduce the number of table accesses. The new scheme, called distinguished
rainbow points (DRP), is essentially a slightly modified version of Rivest’s DP approach
combined with Oechslin’s rainbow tables. Preliminary analyses show that its online time
should be within minutes including table accesses while the precomputation time is even
lower than for Rivest’s scheme.

References

[D. 82] D. Denning. Cryptography and Data Security, p.100. Addison-Wesley, 1982.

[Hel80] M. E. Hellman. A Cryptanalytic Time-Memory Trade-Off. In IEEE Transactions on
Information Theory, volume 26, pages 401-406, 1980.

[KPP+06] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking Ciphers with
COPACOBANA - A Cost-Optimized Parallel Code Breaker. In Proc. of CHES 2006,
volume 4249, pages 101-118. Springer-Verlag, LNCS, 2006.

[MBPVO06] N.Mentens, L. Batina, B. Prenel, and I. Verbauwhede. Time-Memory Trade-Off Attack
on FPGA Platforms: UNIX Password Cracking. In Proc. of ARC 2006, volume 3985
of LNCS, pages 323-334. Springer-Verlag, 2006.

[Oec03] P. Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. In Proc. of
CRYPTO 2003, volume 2729 of LNCS, pages 617-630. Springer-Verlag, 2003.

[SRQLO2] F. Standaert, G. Rouvroy, J. Quisquater, and J. Legat. A Time-Memory Tradeoff using
Distinguished Points: New Analysis & FPGA Results. In Proc. of CHES 2002, volume
2523 of LNCS, pages 596—611. Springer-Verlag, 2002.

209

