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Abstract: With the increasing availability of large-scale interaction networks derived
either from experimental data or from text mining, we face the challenge of interpret-
ing and analyzing these data sets in a comprehensive fashion. A particularity of these
networks, which sets it apart from other examples in various scientific fields lies in
their k-partiteness. Whereas graph partitioning has received considerable attention,
only few researchers have focused on this generalized situation. Recently, Long et
al. have proposed a method for jointly clustering such a network and at the same time
estimating a weighted graph connecting the clusters thereby allowing simple interpre-
tation of the resulting clustering structure. In this contribution, we extend this work
by allowing fuzzy clusters for each node type. We propose an extended cost func-
tion for partitioning that allows for overlapping clusters. Our main contribution lies in
the novel efficient minimization procedure, mimicking the multiplicative update rules
employed in algorithms for non-negative matrix factorization. Results on clustering
a manually annotated bipartite gene-complex graph show significantly higher homo-
geneity between gene and corresponding complex clusters than expected by chance.
The algorithm is freely available at http://cmb.helmholtz—muenchen.de/
fuzzyclustering.

1 Introduction

With the relatively cheap availability of biological high-throughput methods such as mi-
croarrays, machine learning techniques gain more and more importance in the field of
bioinformatics. Learning approaches often focus on the analysis of homogeneous data
sets that can be represented as a network having vertices of a single type only. How-
ever, many real-world networks are heterogeneous and involve objects of multiple, related
types, thus forming k-partite graphs consisting of diverse types of vertices. A key ques-
tion of clustering-based approaches is how to interpret the global organization of these
networks as the coexistence of their structural subunits associated with more highly inter-
connected parts. Identifying these a priori unknown building blocks such as for instance
the common genetic origin of different diseases is crucial for the understanding of the
structural and functional properties of such networks.
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Most available clustering methods cannot be applied to k-partite networks because they
do not treat the single node types (partitions) separately and therefore do not represent
the global community structure correctly. While this has been addressed in terms of algo-
rithms for some time now [Bar07, GL04, KAKS97,ZHS07, LWZY06], not many possible
applications exist yet in bioinformatics, although the field commonly deals with such net-
works [KHTO9]. A particular issue that may hamper application to bioinformatics may be
that most existing algorithms identify separated, disjoint clusters by assigning each data
point to exactly one cluster [Mac67,JD88], whereas most biological networks consist of
highly overlapping cohesive groups of vertices. A single data point can therefore belong
to more than only one cluster, e.g. a large fraction of proteins belong to several protein
complexes simultaneously [RBDK ' 08]. So far only a few approaches exist that allow the
detection of overlapping clusters by assigning either each data point a degree of belonging
to clusters or to several clusters respectively [Bez81, PDFV05].

In order to identify clusters in heterogeneous data and moreover connect these clusters be-
tween the different node types, we developed a fuzzy partitional clustering method based
on a non-negative matrix factorization (NMF) model [L.S99]. We demonstrate that we
can identify biological meaningful overlapping clusters in k-partite graphs. We applied
our method to a bipartite gene-protein complex graph representing the manually annotated
Corum core set [RBDK108]. The extracted clusters show significantly higher homogene-
ity between gene and corresponding complex clusters than expected by chance.

2 A multiplicative update rule for fuzzy k-partite clustering

Recently, an algorithm for the partitioning of k-partite graphs has been put forward in
[LWZYO06]. It clusters each node set of the graph separately; then the clusters are con-
nected via a smaller, weighted k-partite graph. The algorithm consists of an alternating
minimization procedure: first the nodes in each layer are clustered in order to minimize
the distance to the small representative graph (change). Then the hidden graph (backbone
graph) is updated according to the same cost function.

A key assumption made in [LWZYO06] is that the assignment in the first step is made in a
binary fashion. This hard clustering is a feature that often is achieved by soft clustering
algorithms when not forcing explicit cluster overlap [Bez81]. However it can be easily
seen that the cost function put forward in [LWZYO06] is not fully minimized by this ap-
proximation.

Here, we address the minimization using a multiplicative update algorithm. In contrast to
the above method, by not choosing any binary assignment a priori, we observe a close to
binary assignment mostly in the hidden nodes, whereas the clustering in each node-type is
soft. The resulting algorithm is similar in structure to multiplicative algorithms for NMF,
with the difference that we address a three-matrix factorization problem, see e.g. [DS06],
and have to deal with a multi-summand cost function.
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Figure 1: (a) definition of a 3-partite graph GG with notation used. (b) approximation of G using a
smaller 3-partite graph H defined on fuzzy node clusters.

2.1 Definitions and factorization model

A k-partite graph is a graph G = (V, E') and a partition of the vertices V' into & disjoint
sets V; such that no two vertices in the same subset are adjacent. So edges are only allowed
between different subsets (‘colors’). Let n; := |V;| be the number of vertices in partition i.
We represent the graph as a set of n; X n; matrices A7) with 1 < i < j < k. Commonly,
each matrix element is either O or 1, but we only restrict the matrices to have non-negative
coefficients thereby allowing weighted graphs as well. We can readily include directed
instead of undirected k-partite graphs by specifying incidence matrices also for ¢ > j. Itis
easy to see that the following cost function and optimizations generalize to this situation.

We want to approximate G by a smaller cluster network H (backbone network), which is
defined on fuzzy clusters of each G-partition V;. For simplicity we for now fix the number
of V;-clusters to m;. We say that a non -negative n; x m;-matrix C'%) is a fuzzy clustering
of V;, if it is right-stochastici.e. ) , ckl = 1 for all k. Then we search for a k-partite graph
H with m; x m; incidence matrices B() and fuzzy clusterings C' := (C( ))171,...,1@ such
that the connectivity explained by H is as close as possible to G after clustering.

We can measure this difference in many different ways. In [LWZYO06], this choice has
been circumvented by specializing on arbitrary Bregman divergences, which still allow
efficient reformulation of gradient-type algorithms without knowing the specific formula.
This is also possible in our case of multiplicative update rules, as has been shown for
NMF in [DS06]. However, for simplicity, we choose the minimum square distance as cost
function. This implies minimization of

F(H,C) : ZHA(M) CcOBE) (CUNT HF 1)
1<j

where ||.[|% denotes the squared Frobenius norm, i.e. the square sum of the matrix ele-
ments. The model, the used definitions and the approximation are illustrated in figure 1.
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2.2 Derivation of the algorithm

We want to minimize f(H, C') from (1) using a local algorithm extending gradient descent.
We assumed an undirected k-partite graph, so A (%) is undefined for i > j. Hence, we
now set A7) := (AU fori > j (and similarly for B(¥7)). Then we find

% — 9 ((C(n)TA(ij)C(j) _ (C(i))TC(i)B(ij)(C(j))TC(J’)>
by Ts
8{) = _QZ (A(ij)c(j)(B(ij))T — C(i)B(ij)(C(j))TC(j)(B(ij))T) )
oer — rs
TS j#i

Minimizing f by alternating gradient descent, we now simply start from an initial guess
of B C( and alternate between updates of the B(*) and the C*) with according
learning rates. Such update rules however have two disadvantages: for one, the choice of
update rate 7 (possibly different for B, C and i, j) is unclear; in particular, for too small
7 convergence may take too long or may not be achieved at all, whereas for too large n
we may easily overshoot the minimum. Moreover, the resulting matrices may become
negative. Therefore, we follow Lee and Seung’s idea for NMF [LS99] and rewrite this
into multiplicative update rules. Hence, let us choose update rates

. b(ij)
nl) = : T . :
e 2 ((C(Z))TC(Z)B(U)(C(J))TC(J))TS
(7)
i Crs
0 =

2 (z#i cmB(m(co))Tc(j)(B(z‘j))T)

s

Plugging this into the gradient descent equations, this results in the desired multiplicative
update rules

((C(i))TA(ij)c(j))
((c(i))Tc(i)B(ij)(C(j))Tc(j))rs &

(Z#i A(ij)g(j)(Buj))T)m N
<Zj;é7l c(i)B(ij)(c(j))Tcm(B(ij))T>

b o)

& e ef)

T8

2.3 Algorithm formulation and relation to other work

We note that we can readily show that these update rules do not increase the cost function
(1). This can be shown via auxiliary functions similar to NMF [LS01] and multi-factor
NMF [DSO06], which has been applied in a related model for co-clustering of microarray
data [CDGSO04]. This theoretical result implies convergences of the update rules. However
in contrast to early statements in NMF [LS01], this does not necessarily imply convergence
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Figure 2: Toy example of a bipartite graph (a) from [LWZY06], with its backbone network and fuzzy
clusters (b). Note that neither of the two clusterings are binary.

to stationary points of the Euclidean norm (zero of the differential from (1)), since the
update steps may be too small to reach those points. Another possible drawback of such
multiplicative updates is the fact that once a matrix entry has been set to zero (which may
happen due to zeros in A(“) or to numerics), the coefficient will never then be able to
become positive again during learning.

We have not yet taken into account the constraint that the cluster matrices C*) are re-
quired to be right-stochastic i.e. CWe = e for e = (1,...,1). For simplicity, we force
this constraint by regularly projecting each row of C(*) onto the sphere of the 1-norm.
Alternatively, we may introduce this constraint as Lagrange parameter, and get modified
cost function with weighted Lagrange parameters. We can still prove non-increasingness
of the multiplicative update rule along the lines of [DS06]. The final fuzzy k-partite clus-
tering algorithm is summarized in algorithm 1. An implementation is freely available at
http://cmb.helmholtz-muenchen.de/fuzzyclustering. In figure 2, we
illustrate the feasibility of the algorithm on a small bipartite toy example.

Our algorithm contains two nested loops over the number of partitions. The update steps
are fully vectorized and contain only matrix products of non-square matrices. The total
time complexity of the algorithm can therefore be estimated as

#iterations X (9(k‘2 Tomax] Pmax2 Mmax ) - %)

Here, nmax1 and npmaxe denote the sizes of the largest and the second-largest partition, mm,x
is the maximum number of clusters to extract within any partition. Hence, the algorithm
is fast and efficient. The runtime is linear in each partition size and grows only quadratic
in the total number of nodes in the case of graphs with similarly large partitions.

In order to extend cost functions in (unipartite) data clustering to include fuzzy clusters,
commonly a so-called fuzzification factor m > 1 is introduced [Bez81,Dun73]. Instead of
squared norm minimization of the residuals, a higher residual power is minimized, which
results in overlapping non-trivial cluster assignments. However, we will find that already
the standard case m = 1 may suffice to introduce non-trivial overlapping clusters. This is
because we are interested in co-clustering, which is different from standard data clustering
where only a unipartite graph and hence C*) = C(V is assumed.
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Algorithm 1: fuzzy k-partite clustering

Input: k-partite graph G with possibly non-negatively weighted edge matrices A7), i <
7, number of clusters mq,...,my

Output: fuzzy clustering C(*) and k-partite cluster graph H given by matrices B (%)

Initialize C*), B(Y) to random non-negative matrices.
Normalize c£§> — c&? />, cfft)) for all i, r, s
repeat
update fuzzy clusters
fori«—1,...,kdo
cW  cg (Z#i A(U)C(J)B(U)T) % (Z#i C(Z)B(U)C(J)Tc(J)B(w)T)
Normalize ¢\ — c{¥ A0 cﬁ.?) forall r, s
end
update k-partite cluster graph H
fori—1,...,k—1do
forj —i+1,...,kdo
‘ B — Bl g (C(i)TA(ij)C(j)) % (C(i)Tc(i)B(ij)C(j)Tc(j))
end
end
until convergence;
Note: ® and © symbolize elementwise multiplication and division, respectively.

3 Fuzzy clusters and backbone of a gene-complex hypergraph

In order to illustrate the applicability of our method to heterogeneus biological data we
employ the Corum core set [RBDK108] that reflects a non-redundant catalogue of experi-
mentally verified mammalian protein complexes manually annotated at MIPS. A bipartite
graph G = (V, E) with |V| = 4877 and | E'| = 8738 was constructed from these data. The
two disjoint node sets are represented by protein complexes and their associated genes fur-
ther referred to as V,, and V, respectively. We then focused on a reduced data set G’ with
[V'| = 4090 and |E’| = 7946 retrieved by extracting the maximally connected subgraph.
The remaining graph consisted of 1728 complex (V,.) and 2362 gene (V) vertices.

The determination of the number of clusters for each node type, in which the graph has
to be decomposed, is difficult, and even in the case of unipartite k-means does not al-
low a direct and computationally simple answer. To address this issue we approximated
the number of clusters to be found in the complex and the gene partition respectively by
limiting the maximal number of clusters k. for V. according to k. = [+/|V¢|/2], and
then scaled the number of clusters k4 for V,, by kg = [key/|Vy|/|Ve|]. We calculated
the value of the cost function for each pairwise combination starting from k.=1. Due
to random initial conditions, the algorithm is inherently indeterministic. Therefore, we
discuss performance over 10 runs each. Figure 3(a) shows the distribution of cost func-
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Figure 3: (a) Approximation of cluster numbers k., k4. (b) Distribution of cluster sizes for k. =
5,ky = 5. Hierarchical clustering of (c) complex and (d) gene clusters (see fig 4(c) for backbone
network for k., kg = 5). The clustered backbone for k. = 11, k; = 12 is shown in (e).

tion values for the particular parameter settings. As final parameters k. and %k, we chose
(ke, kg) € {(5,5), (11,12), (19, 22) }, where we observe significant drops of the cost func-
tion. With this, we detect organizational structures on different levels of resolution. In the
following we will mostly discuss the smallest graph with 5 clusters each (see figure 3(b)).

Figure 3 shows that our method is able to identify overlapping clusters. In the resulting
five clusters, the majority of elements is assigned to a single cluster. However, there exists
a considerable amount of nodes assigned to several clusters simultaneously, see figures
3(c,d). Almost ten percent of complexes (193) and genes (187) are assigned to two clusters
with p >= 0.3. For instance, the genes ITGB2 and MCRS1 are even part of threes clusters
with p >= 0.3. This clearly demonstrates the need for a fuzzy approach. The clusters
vary strongly in size (figure 3(b)). and their interconnectivity is sparse, see figure 4(c).
However, in the case of k.=11 and k,=12 we already have a resolution level that is fine
enough to see details, and several binary clusters become apparent (figure 3(e)).

In order to evaluate whether both the extracted clusters and their interconnections given
by the backbone graph are biologically feasible, we employed FunCat classifications. For
all genes we mapped Gene Ontology associations to their according FunCat categories to
achieve comparability between the node types (http://mips.gsf.de/proj/funcatDB/). Usu-
ally, complexes and genes are annotated with the lowest FunCat category or GO term
respectively. In our analysis we took a subset of 13 FunCat main categories. Subcategory
annotations were mapped to the according main category terms for consistency reasons.
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Figure 4: (a,b) FunCat annotation profile for complex and gene clusters. (c) shows the normalized
backbone connectivity, and (d) the normalized positive crosscorrelations of the FunCat profiles from
(a) and (b). (e) Shows statistics over 1000 random networks, proving significance of the clusters
(dashed line) with a p-value of p < 1073,

From figure 4(a) and (b) we see that the extracted clusters can be easily interpreted bi-
ologically, as most of them have a high fraction of functional annotations with a certain
FunCat term. Moreover, from visual comparison, see figure 4, we see that interconnected
clusters also seem to be functionally correlated. In order to quantify this, we determined
for each cluster how it is associated with each of the 13 FunCat categories by weighting a
cluster elements FunCat classification by its degree of membershipto the particular cluster
and calculated Pearson correlation of FunCat annotations of the complex and gene clus-
ters. As expected, we find a high similarity between the clusters interconnectivity and their
functional correlation. This shows that our fuzzy partitioning approach yields biologically
meaningful results by identifying functionally related clusters.

To evaluate the significance of these results we compared our findings with the results of
a random model. Assuming that a random network does not form functionally related
clusters, we applied a bipartite randomization procedure to our original network. We gen-
eralized the degree-preserving rewiring for complex networks, first introduced by Maslov
and Sneppen [MSO02]: In every randomization step we randomly picked two edges and ex-
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changed their endpoints of one type (either proteins or complexes) without creating multi-
ple edges or self-loops. This rewiring procedure leads to a loss of degree-correlations be-
tween first and second neighbors. Hence, one can observe the degree of randomization by
the course of these quantities over the process. This also tells us how many randomization
steps are needed. In practice, degree-correlations vanished after around one randomization
step per edge. So, for our analyses we used five times this number as in [WAH108].

We determined the clusters’ FunCat profiles and calculated normalized positive correla-
tions. To have a distance measure, we calculated the difference between the normalized
backbone connectivity and the normalized positive cross-correlation matrix. Comparing
these distances to clusterings using the hard approach from [LWZY06], we found much
smaller values. As an example, a histogram is shown in figure 4(e), which illustrates that
out of 1000 iterations only a single random entry is smaller than the 0.89, resulting in a
p-value < 10~3. This shows the significance of our results.

4 Conclusion

In this contribution, we presented a novel computationally efficient and scalable graph
partitioning algorithm. Unlike other methods in the field it allows for the identification
of overlapping clusters in k-partite graphs of heterogeneous data. It is based on an ef-
ficient minimization procedure, mimicking the multiplicative update rules employed in
algorithms for non-negative matrix factorization. We verified our approach on a bipar-
tite network of protein complexes where we demonstrated that we successfully identified
functionally correlated clusters.

Partitioning on a local level, i.e. aiming at detecting quite small clusters, our algorithm
will enable reclassification, annotation or even detection of misclassified elements in het-
erogeneus data sets. Partitioning into large-scale clusters, we focus on understanding their
global organization. For instance, simple bipartite graph analysis has recently brought
insights into the organization of microRNA interactions [RKS'10]. At the moment, we
extend this work by integrating predictions of microRNA target sites with protein com-
plexes, disease information and different types of annotations.
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