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Abstract: In this contribution, we deal with time-stepping schemes for geometrically
nonlinear multiplicative elasto-plasto-dynamics. Thereby, the approximation in space
as well as in time rely both on a Finite Element approach, providing a general frame-
work which conceptually includes also higher-order schemes. In this context, the al-
gorithmic conservation properties of the related integrators strongly depend on the
numerical computation of time integrals, particularly, if plastic deformations are in-
volved. However, the application of adequate quadrature rules enables a fulfilment
of physically motivated balance laws and, consequently, the consistent integration of
finite elasto-plasto-dynamics. Using exemplarily linear Finite Elements in time, the
resulting integration schemes are analysed regarding the obtained conservation prop-
erties and assessed in comparison to classical time-stepping schemes which commonly
adopt a time-discretisation procedure based on Finite Differences.
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1 Introduction

On the one hand, computational modelling of materials and structures often demands the
incorporation of inelastic and dynamic effects. On the other hand, the performance of
classical time integration schemes for structural dynamics, as for instance developed in
[HHT77, New59], is strongly restricted when dealing with highly nonlinear systems. In a
nonlinear setting, advanced numerical techniques are required to satisfy the classical bal-
ance laws as for instance balance of linear and angular momentum or the classical laws of
thermodynamics. Nowadays, energy and momentum conserving time integrators for dy-
namical systems, like multibody systems or elasto-dynamics, are well-established in the
computational dynamics community, compare e.g. [BB99, BBT01a, BBT01b, Gonz00,
KC99, ST92]. In contrast to the commonly used time discretisation based on Finite
Differences, one-step implicit integration algorithms relying on Finite Elements in space
and time were developed, for instance, in Betsch and Steinmann [BS00a, BS00b, BS01].
Therein, conservation of energy and angular momentum have been shown to be closely
related to quadrature formulas required for numerical integration in time. Furthermore,
specific algorithmic energy conserving schemes for hyperelastic materials can be based on
the introduction of an enhanced stress tensor for time shape functions of arbitrary order,
compare Gross et al. [GBS05]. However, most of the proposed approaches are restricted
to conservative dynamical systems. Nevertheless, the consideration of plastic deforma-
tions in a dynamical framework, involving dissipation effects, is of cardinal importance for
various applications in engineering. In the last years, notable contributions dealing with fi-
nite elasto-plasto-dynamics have been published by Meng and Laursen [ML02a, ML02b],
Noels et al. [NSP06] and Armero [Arm05, Arm06, AZ06]. In this contribution, we follow
the concepts which have been proposed for hyperelasticity in [BS01, GBS05] and pick-
up the general framework of Galerkin methods in space and time, developing integrators
for finite multiplicative elasto-plasto-dynamics with pre-defined conservation properties,
compare Mohr et al. [MMS06a, MMS07c, MMS07a, MMS07b]. By means of a repre-
sentative numerical example, the excellent performance of the resulting schemes, which
base on linear Finite Elements in time combined with different quadrature rules, will be
demonstrated and compared with the performance of well-accepted standard integrators.

2 Semi-Discrete Dynamics

To set the stage, we start with some basic notation of geometrically nonlinear continuum
mechanics. First, the nonlinear deformation map ϕ(X, t) : B0 × [0, T ] → Bt shall be
introduced as a mapping from the reference to the spatial configuration. As proposed
by Lee [Lee69], the resulting deformation gradient F := Xϕ(X, t) is assumed to be
multiplicatively decomposed into an elastic and a plastic part

F
.= F e · F p , (1)

implying an additional intermediate configuration related to purely plastic deformations, as
illustrated in Fig. 1. In contrast to the modelling of elasticity, additional internal variables
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Figure 1: Resulting configurations within the framework of finite multiplicative plasticity

are included in the Helmholtz energy density ψ for the plastic case to model the loading
history. By assuming an additive structure and elastic isotropy, the Helmholtz energy
density ψ can be written in terms of the eigenvalues iλ cCe

of the elastic right Cauchy-
Green strain tensor

Ce := F t
e · F e (2)

of the intermediate configuration and the internal variables κ = [κmac, κmic]

ψ(F , κ) = ψmac(1λ cCe
,2 λ cCe

,3 λ cCe
) + ψmic(κmic) . (3)

For thermodynamical aspects, it is accepted to introduce the so-called conjugated thermo-
dynamical forces β := − κψ. To differ between elastic and plastic deformation states, the
yield function Φ is introduced which defines the elastic range Eβ := {β |Φ(β; κ) < 0}.
In view of thermodynamically consistent modelling, the dissipation inequality – corre-
sponding to the second law of thermodynamics – should be fulfilled, namely

D = β, κ̇ ≥ 0 . (4)

For more detailed information, we refer to Simo [Sim98]. Subsequently, we apply a stan-
dard Finite Element discretisation in space for the reference configuration of a solid con-
tinuum body. Using the spatial approximations for the nonlinear deformation map, the
semi-discrete map ϕ : B0 × [0, T ] → Rndim can be written by means of the spatial shape
functions NA(X) in the form:

ϕ(X, t) ≈
nnode

A=1

qA(t)NA(X) (5)

90



Consequently, the approximations in space of the spatial velocity v := nnode

A=1 q̇A NA,
the deformation gradient F = nnode

A=1 qA ⊗ XNA, and the right Cauchy-Green strain
tensor

C := F t · F =
nnode

A,B=1

qA · qB XNA ⊗ XNB (6)

can be computed straightforwardly. To obtain a semi-discrete system of equations of mo-
tion, we combine the placements of the spatial nodes q = [q1, ..., qnnode

]t and the nodal
generalised momenta p := M · q̇ = [p1, ...,pnnode

]t to a vector of the canonical phase-
space variables z := [q, p]t. Furthermore, the kinetic and free energy

T (p) =
1
2

p ·M−1 · p respectively Ψ =
B0

ψ dV (7)

are introduced for the semi-discrete case. Motivated by the well-known Hamiltonian H
for conservative systems, the sum consisting of kinetic energy, free energy, and possibly
an external potential V ext will be denoted by

H(q, p; κ) = T + Ψ + V ext . (8)

Dealing with dissipative systems, the global accumulated dissipation

D :=
B0

d dV based on d :=
t

0

D dt (9)

has to be taken into account. Analogously to the purely elastic case, the resulting (canoni-
cal) equations of motion can still be written in a compact format of the Hamiltonian-type

ż(t) = J · zH(z; κ) with J =
0 I
−I 0 , (10)

representing a system of ordinary differential equations of first order. Therein, the gradient
with respect to the global variables z can be specified by

zH =
F int − F ext

M−1 · p
, (11)

involving the definition of the internal load vector

F int(S) := q
B0

ψ dV (12)

based on the Piola Kirchhoff stresses S = 2 C ψ. In the following, especially this highly
nonlinear internal load vector plays a crucial role with regard to the discretisation in time
and, consequently, concerning the resulting conservation properties of the Galerkin-based
time-stepping schemes.
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3 Discretisation in Time

As mentioned above, in the proposed concept not only the approximation in space but also
the approximation in time relies on a Finite Element approach, see also [BS00b, Bot97,
EEHJ96]. We start with a decomposition of the time interval [0, T ] = N

n=0[tn, tn+1] and
a map of each sub-interval to the reference time interval [0, 1] via the function α(t) :=
[t − tn]/hn, involving the time-step size hn = tn+1 − tn. For the time approximation, a
continuous Galerkin method (or short: a ‘cG(k) method’) shall be applied. Therefore, the
approximations in time for the unknown and the test function

zh =
k+1

j=1

Mj(α) zj δzh =
k

i=1

Mi(α) δzi (13)

are introduced 1. In a compact notation the resulting weak form in time is given by the
integral

1

0

J · δzh · Dαzh − hn J · zH(z; κ) dα = 0 . (14)

Inserting the approximations in time (13) in Eq. (14) renders the discrete system of equa-
tions of motion

k+1

j=1

1

0

MiMj dα zj − hnJ ·
1

0

Mi zH(z; κ) dα = 0 ∀ i = 1, ..., k (15)

involving a time-integrated internal load vector. Thereby, higher-order integration schemes
are included within this general framework. Further details can be found in Betsch and
Steinmann [BS01]. Dealing with time-stepping schemes, special emphasis should be al-
ways placed on resulting algorithmic conservation properties which strongly influence the
numerical performance. In this context, it is often desirable to transfer as many as possi-
ble of the conservation properties from the continuous to the completely discrete system,
especially, regarding the underlying physics and the robustness of the related integration
scheme. For the proposed concept, the approximation of the time-integrated internal load
vector

F̄
int
i :=

1

0

Mi(α) F int(S) dα with i = 1, ..., k (16)

is the crux concerning the offered conservation properties of Galerkin-based time-stepping
schemes. In fact, integrators with pre-defined conservation properties can be designed,
adjusting the applied quadrature rule.

1It is important to emphasise that the time shape functions Mj ∈ Pk are polynomials of degree k, whereas
the reduced shape functions fMi ∈ Pk−1 are only of degree k − 1.
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3.1 Standard quadrature

Involving I = nnode

A=1 pA and L = nnode

A=1 qA × pA, the application of a standard
Gauss quadrature rule for the approximation of the time integral given by Eq. (16) already
enables the conservation of both momentum maps (for vanishing external loads)

Iα=1 − Iα=0 = 0 Lα=1 −Lα=0 = 0 , (17)

if an adequate number of integration points in time is incorporated, compare Betsch and
Steinmann [BS01]. Nevertheless, an additional conservation of the total energy for elas-
tic deformations, for instance, cannot be generally offered by means of such a standard
quadrature rule. Moreover, the incorporation of physical dissipation effects related to
plastic deformations poses further challenges for the applied quadrature rule. To tackle
potential problems concerning algorithmic conservation properties, nonstandard quadra-
ture rules must be taken into account.

3.2 Nonstandard quadrature

First, a nonstandard quadrature rule is introduced to guarantee the thermodynamical con-
sistency of the integrator, in addition to the mechanical consistency which includes the
conservation of both momentum maps corresponding to Eq. (17). Thermodynamically
consistent integrators for elasto-plasto-dynamics are characterised by the conservation of
the total energy in the elastic case

Hα=1 −Hα=0 = 0 with ΔD = 0 (18)

and by the (strictly) positive dissipation for plastic deformations represented by

Hα=1 −Hα=0 < 0 combined with ΔD > 0 , (19)

compare Mohr et al. [MMS06a]. Finally, the application of an appropriate nonstan-
dard quadrature rule renders energy-consistent Galerkin-based time-stepping schemes 2.
Thereby, energy-consistency includes the conservation of the sum consisting of the total
energy and the dissipation represented by

Hα=1 −Hα=0 = −ΔD (20)

for elastic (ΔD = 0) as well as for plastic (ΔD > 0) deformations, whereby the ful-
filment of Eq. (20) can be offered within the calculation accuracy. Detailed background
informations concerning the consistency of a Galerkin-based integration of finite elasto-
plasto-dynamics and corresponding technical details, like for instance the local integration
of the plastic evolution equations, are presented in Mohr et al. [MMS07c].

2In the following, the thermodynamically consistent and mechanically consistent cG method will be referred
to as ‘TCMC-cG method’ and the energy-consistent, mechanically consistent scheme as ‘ECMC-cG method’ to
abbreviate the notation.
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4 Numerical Examples

In this section, the performance of the outlined Galerkin-based concepts is analysed by
means of a representative numerical example, evaluating the featured algorithmic conser-
vation properties for the elastic as well as for the plastic case. As an appropriate example,
the free motion of a ‘Flying Frame’ with the mass density ρ, consisting of 48 isoparamet-
ric 4-node elements in space, will be investigated. To start the free flight, the frame is
equipped with a given initial velocity ||v0|| = 85 and, furthermore, some external loads
F ext are applied during the loading period Tload. Thereby, the norm of the external load
vector ||F ext

A || = f(t) (at the spatial node A) is prescribed by the piecewise linear func-
tion f(t) with the maximum value fmax, as illustrated in Fig. 2 a). For the following
computations, linear Finite Elements in time have been applied as a fundamental exam-
ple. The constitutive law relies on a Helmholtz energy density ψ of the Hencky-type with
the material parameters λ, µ and on a v. Mises-type yield function Φ, involving the yield
stress Y0 and the modulus of linear isotropic hardening H .

4.1 Standard vs. nonstandard quadrature

First, the differences between the abovementioned standard and nonstandard quadrature
rule for the approximation of the time-integrated internal load vector (16) will be stud-
ied in detail, regarding the purely elastic as well as the plastic case. In this context,
a standard cG(1) method is compared with the ‘TCMC-cG(1) method’ respectively the
‘ECMC-cG(1) method’. For the present computations, we have incorporated the parame-
ters λ = 10 000, µ = 5000, Y0 = ∞|500, H = 500, ρ = 5.0, fmax = 100, Tload = 1.0,
and hn = 0.1. Some snapshots of the motion are pictured in Fig. 2 b), whereby the plastic
motion is displayed below the elastic case. The global accumulated dissipation D is, as
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Figure 2: Configurations: a) initial mesh, b) sequence of the motion (elastic & plastic case) for
t ∈ {0.1, 10, 15, 30, 45}
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expected, equal to zero for each of the considered Galerkin-based integrators if the defor-
mations are purely elastic, and it is (strictly) positive if plastic deformations are involved
due to the application of an adequate local update algorithm for the plastic variables, com-
pare Fig. 4. Furthermore, it can be clearly seen in Fig. 6 that mechanical consistency,
related to a conservation of both momentum maps, can be guaranteed not only for time-
stepping schemes which base on nonstandard quadrature rules, but also for the classical
cG method which adopts a standard Gauss quadrature rule. Nevertheless, the influence of
the applied quadrature rule becomes obvious when a plot of the total energy H is consid-
ered, as displayed in Fig. 3. In the elastic case, the total energy calculated by means of
the standard cG method is characterised by strong oscillations, whereas the ‘TCMC-cG
method’ as well as the ‘ECMC-cG method’ guarantee both the conservation of the total
energy. Moreover, the cG method features an unphysical increase of the total energy in the
plastic case. Contrariwise, both schemes based on nonstandard quadrature rules guarantee
a monotonic decrease of the total energy caused by the (strictly) non-negative plastic dissi-
pation. However, a physically correct decrease of the total energy H respectively increase
of the dissipation D – related to a conservation of the augmented Hamiltonian H + D – is
guaranteed exclusively by the ‘ECMC-cG method’, as illustrated in Fig. 5.

4.2 Standard vs. nonstandard integrator

Finally, the performance of the proposed Galerkin-based integration schemes, represented
by the ‘ECMC-cG method’, will be compared with the results calculated by means of
standard time integration schemes. In this context, we have exemplarily chosen two of
the most-established integrators at all: the classical Newmark scheme with γ = 0.5,
β = 0.25 and the Hilber-Hughes-Taylor method (abbreviated by ‘HHT method’) with
the parameters γ = 0.8, β = 0.422, and α = −0.30, as proposed in [Hug87]. Both stan-
dard integrators have been developed originally for linear dynamical systems, whereby
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Figure 3: Total energy H: a) purely elastic case, b) plastic case
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Figure 4: Accumulated dissipation D: a) purely elastic case, b) plastic case
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Figure 5: Augmented Hamiltonian H + D: a) purely elastic case, b) plastic case

for the chosen parameters the Newmark scheme is related to the (undamped) trapezoidal
rule and the ‘HHT method’ has been specifically designed to provide a numerically dis-
sipative behaviour. Once more, the ‘Flying Frame’ has been used for the computations,
whereby the initial setup remains unchanged, only the applied parameters have been al-
tered: λ = 500, µ = 250, Y0 = 40, H = 100, ρ = 3.0, fmax = 20, and Tload = 1.0.
Moreover, small as well as large time-step sizes have been applied to assess fairly the of-
fered performance of the different time-stepping schemes and, additionally, the time-step
sizes have been changed during the calculation, namely from hn = 0.02 to hn = 0.06
respectively from hn = 0.1 to hn = 0.3 after t = 2.2, to check the robustness of the inte-
grators. A sequence of the motion, including contour plots of the hardening variable, can
be regarded in Fig. 11 and the local evolution of the hardening parameter is pictured exem-
plarily for two points of the frame in Fig. 12. However, in the following, special emphasis
is placed on the resulting consistency properties. Considering Fig. 8, the accumulated
dissipation D is, once more, (strictly) non-negative due to the chosen local update and the
results of the different integrators are qualitatively similar, especially if small time-step
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Figure 6: Momentum maps: a) linear momentum I (elastic case), b) component of the angular
momentum L (plastic case)

sizes are applied. Nevertheless, the results differ quantitatively, whereby the application
of the ‘HHT method’ results in the lowest physical dissipation, which seems to be signifi-
cantly underestimated when dealing with large time-step sizes. Moreover, the differences
in the total energy H between the classical integrators and the Galerkin-based ‘ECMC-cG
method’ are quite impressive, compare Fig. 7. It can be clearly seen that the standard
integrators are not able at all to feature a physically correct monotonic decrease of the
total energy. Rather, both classical integration schemes suffer from oscillations in the total
energy which increase drastically for large time-step sizes, especially if the widespread
Newmark method is applied. One might think that such aspects are only of theoretical
interest, but in fact, on the one hand, a physically correct time integration is essential for
a qualitatively correct simulation of the dynamical behaviour and, on the other hand, the
evolution of the total energy is directly related to the robustness of the integrators. This ac-
cepted fact is also confirmed by the present example, since the application of the Newmark
method results in a critical energy blow-up when large time-step sizes are taken into ac-
count 3, compare Fig. 7 b). Contrariwise, the ‘HHT method’ offers an unphysical decrease
of the total energy caused by its numerically dissipative character. Please note furthermore,
that this strong decrease of the total energy is not accompanied by a high physical dissi-
pation D, as discussed above. To investigate the relation between the decrease of the total
energy and the increase of the accumulated (physical) dissipation in detail, the augmented
Hamiltonian H + D is plotted in Fig. 9. Once more, the results of both standard integra-
tors show an unphysical behaviour which is characterised by oscillations and an increase
respectively decrease of the augmented Hamiltonian. Solely, the ‘ECMC-cG method’
captures the conservation of the augmented Hamiltonian, respecting the energy balance
(20). Furthermore, the standard integrators violate the conservation of angular momen-
tum, whereas the Galerkin-based scheme features the mechanical consistency, as pictured
in Fig. 10. It is important to emphasise that the abovementioned consistency properties
of the ‘ECMC-cG method’ are guaranteed for small as well as for large time-step sizes,

3A program abort within the calculations is displayed by means of a vertical dashed line in the plots.
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Figure 7: Total energy H: a) small time-step size, b) large time-step size

0 10 20 30 40 50 60
0

100

200

300

400

500

time

ac
cu

m
ul

at
ed

di
ss

ip
at

io
n

(z
oo

m
)

6 7 8 9 10 11 12 13 14
462

464

466

468

470

time

Newmark

HHT method

ECMC−cG method

Newmark

HHT method

ECMC−cG method

0 10 20 30 40 50 60
0

100

200

300

400

500

time

ac
cu

m
ul

at
ed

di
ss

ip
at

io
n

(z
oo

m
)

2 4 6 8 10 12 14
380

400

420

440

460

time

Newmark

HHT method

ECMC−cG method

Newmark

HHT method

ECMC−cG method

a) b)

Figure 8: Accumulated dissipation D: a) small time-step size, b) large time-step size
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Figure 9: Augmented Hamiltonian H + D: a) small time-step size, b) large time-step size
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Figure 10: Component of the angular momentum L: a) small time-step size, b) large time-step size
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Figure 11: Contour plot of the hardening parameter (large time-step size): a) t ∈ {0.1, 0.8, 2, 4}, b)
t ∈ {58.3, 59.2, 60.1, 61.3}

unaffected by changes of the step size during the calculation. Consequently, the proposed
consistent Galerkin-based integration schemes enable an exceedingly robust integration of
finite elasto-plasto-dynamics that is of particular importance for long-time simulations.

5 Conclusions

In the present paper, we have proposed time integration algorithms based on Finite Ele-
ments in time for nonlinear dynamics including plastic deformations, whereby the kine-
matic description of the applied plasticity model adopts a multiplicative decomposition
of the deformation gradient into an elastic and a plastic part. With regard to a physically
correct integration, nonstandard quadrature rules are required to feature thermodynamical
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Figure 12: Evolution of the hardening parameter (large time-step size) in: a) point 1, b) point 2

consistency respectively energy-consistency. In this context, special emphasis has been
placed on the assessment of the resulting schemes, especially, in comparison to classical
integrators which are in particular well-established for linear (elastic) dynamical systems.
Thereby, the superior performance of the proposed methods has been clearly confirmed,
whereby particularly the ‘ECMC-cG method’ covers essential conservation properties of
the continuum formulation for elastic as well as for plastic deformations. Recapitulating,
Galerkin-based time-stepping schemes combined with adequate quadrature rules are also
preeminently appropriate for geometrically nonlinear elasto-plasto-dynamics, providing
an excellent numerical performance with pre-defined conservation properties.
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