
A Scanning Tool for PC Root Public Key Stores

Adil Alsaid and Chris J. Mitchell
{A.Alsaid, C.Mitchell}@rhul.ac.uk

Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK.

Abstract: As has recently been demonstrated, a malicious third party could insert a
self-issued CA public key into the list of trusted root CA public keys stored on an
end user PC. As a consequence, the malicious third party could potentially do severe
damage to the end user computing environment. In this paper, we discuss the problem
of fake root public keys and suggest a solution that can be used to detect and remove
them. We further describe a prototype implementation of this solution.

C. Wolf, S. Lucks, P.-W. Yau (Eds.): WEWoRC 2005, LNI P-74, pp. 45–52, 2005.
c� Gesellschaft für Informatik e.V.

1 Introduction

Many internet applications, e.g. online banking and e-commerce, rely on Public Key In-
frastructure (PKI) [FB01] functionality to support the security services necessary to ensure
the authenticity, integrity, and confidentiality of the communications. The correct func-
tioning of a PKI relies on trusted third parties known as Certification Authorities (CAs)
operating correctly. Moreover, users of a PKI must have trusted copies of the public keys
of one of more of these CAs in order to be able to verify the public key certificates that the
CAs produce. Such CA public keys are usually referred to as root public keys.

The main task of a CA is to issue, i.e. digitally sign, digital certificates (see, for exam-
ple, [NDJB01]). A typical certificate issuing process involves verifying the identity of the
entity requesting the digital certificates. When the entity identity is verified, the CA uses
its own private key to digitally sign the public key certificate.

One of the most widely used applications of PKI is web server SSL/TLS [DA99]. The
detailed operation of the SSL/TLS protocol is outside the scope of this paper. However, the
part of the protocol that is of interest to the discussion here is the web server response to the
ClientHello protocol message. When a user requests a secure web page, the web browser
sends a ClientHello message to the web server. The web server replies by sending a copy
of its certificate, in addition to other protocol data. The browser checks the certificate
against the list of trusted root CA public keys installed on the user’s PC. If the received

45

certificate was signed by any of the trusted root CAs whose public keys are installed on
the user’s PC, the browser uses the appropriate public key to verify the server certificate.
If the necessary CA public key is not present, or if the verification fails, the browser may
give the user a warning message or abort the communications.

A malicious third party could insert a fake root public key into the list of trusted root public
keys, as demonstrated in [AM05]. The insertion of a false public key allows arbitrary
numbers of rogue applications to be executed on a PC, at any time in the future. This
means that installing a rogue root CA public key is an attack that “cascades”. Moreover, a
false public key is undetectable by current attack detection software, whereas a malicious
application will often be detected by such software. Detecting and addressing this security
threat is an important issue that does not appear to have been previously addressed.

In this paper, a tool to detect the insertion of fake root CA public keys is discussed, and
the implementation of a prototype tool is described. The rest of the paper is organised as
follows. Section 2 outlines ways in which a root key insertion attack might be conducted.
Section 3 discusses possible means to deal with unauthorised insertion of root public keys.
Section 4 describes a tool to detect and remove suspicious root CA public keys. A proto-
type implementation of the tool discussed in Section 4 is described in Section 5.

2 Root Key Insertion Attacks

A malicious third party could insert a self-issued public key [ES00] into the list of trusted
root public keys on the end user’s PC, as demonstrated in [AM05]. As a consequence, the
malicious third party could potentially do severe damage to the end user computing envi-
ronment. For example, the malicious third party could sign applets, macros, and emails
and claim that they originate from a reputable software company or web site. A possible
scenario for such an attack is discussed in the following paragraph.

One possible means by which a fake root public key insertion attack could be exploited is
through web spoofing [FBDW97]. In such an attack, the malicious third party installs the
fake root public key into the victim PC, e.g. using the technique described in [AM05], and
then convinces the victim to visit a spoofed secure web site. When the victim’s navigates to
the spoofed secure web site, the victim’s browser will receive an applet apparently signed
by a legitimate party. Depending on the security settings, the browser will either run this
applet without notifying the user, or will ask the user’s permission to execute it whilst
providing (false) assurance to the user regarding the provenance of the applet. Detecting
such an attack would be difficult for an average user. One possible way to detect the
attack is to examine the URL of the visited web site. However, a determined malicious
third party could fake the browser bar that displays the URL of the genuine web site, as
discussed in [YYS02]. The web spoofing attack scenario shows how dangerous fake root
insertion can be. Other attack scenarios exist.

The following paragraphs outline possible means by which a fake root key insertion attack
could be launched, as described in [AM05].

First, a malicious third party creates a self issued root public key using freely available

46

tools, such as Microsoft’s makecert.exe [Cor04a]. Second, the self-issued root public key
needs to be inserted into the user’s root public key repository. Three possible approaches
to implementing a root key insertion attack are discussed below.

1. Inserting the root public key under user control.

In this approach, the attacker requires physical access to the victim’s PC. The at-
tacker creates the fake root public key in advance, using another PC with the re-
quired tools, and transfers it to a removable medium. Using the removable medium,
the fake root public key is transferred to the victim’s PC. On the victim’s PC, the
attacker launches an Operating System certificate management program to insert
the fake root public key into the root public key repository. The attacker needs to
interact with the OS certificate management program to complete the attack.

The attacker would typically rely on the operating system programs and utilities.
For example, in the Microsoft Windows operating system, the attacker could use
the ‘Microsoft Certificate Import Wizard’ program to insert the fake root public key.
An obvious limitation of this approach is that the attacker needs physical access to
the victim’s PC. Physical access is required to transfer the fake root public key to
the victim’s PC, and to interact with the OS-specific program that handles the root
public key insertion process. The next two approaches avoid this limitation.

2. Writing directly to the root certificate store.

When writing directly to the root certificate store, the attacker does not need to have
physical access to the victim’s PC. The attacker bypasses the OS root certificate han-
dling programs and utilities and interacts directly with the root certificate store. In
this approach, the attacker needs to create malicious code to conduct the attack and
also needs to find a means to execute this code on the victim device. As discussed
in [AM05], so far it has not been possible to implement such an attack because of a
security protection mechanism deployed on the certificate store that require special
access privileges.

3. Installing the root public key without user intervention.

In this approach, the root public key is inserted into the root public key store using
the OS certificate management program to overcome the special access control pro-
tection set by the OS, as discussed in the previous paragraph. The attacker creates a
special program, e.g. a virus or trojan horse, to interact with the OS certificate man-
agement program. The main objective of the attacker’s special program is to hide
all warning messages or security alerts displayed by the certificate management pro-
gram. An implementation of this attack has been described in [AM05].

The focus of this paper is on measures to address attacks after they have occurred, rather
than on preventative measures. Such preventative measures are a topic for future study. In
the next section, possible means to deal with unauthorised insertion of root public keys are
discussed.

47

3 Addressing Root Key Insertion Attacks

It would be very difficult for the vast majority of users to detect the insertion of a false
root key without the aid of supporting tools or utilities. However, general strategies can be
devised to facilitate the detection of such an attack. The possible strategies are discussed
in the following paragraphs.

One possible strategy to detect and possibly eliminate inserted root keys is by using a root
public key scanning tool. The scanning tool searches the user’s root public key store for
fake root public keys. When a fake root public key is found, the scanning tool provides the
possibility to delete, view, or backup the fake root public key. This strategy is discussed in
more detail in Section 4.

Another possible strategy is the use of integrity check tools. Here, a tool is used to
compute an integrity check value (ICV), e.g. a cryptographic hash code (see, for exam-
ple, [MvOV97, Chapter 9]) on the root public key store. The ICV can be recomputed
at any time and compared with the previously computed value. If the two values do not
match, the tool could alert the user of the fact that changes have been made to the root
public key store. However, it would not be possible for the tool to distinguish between a
malicious or an innocent insertion of a root public key. Moreover, such a check will not
reveal exactly which root public key is causing the check values to be different.

A third possible strategy is to check the status of the certificate online using a protocol
similar to the Online Certificate Status Protocol (OCSP). When adding a new root public
key to the root public key repository, its authenticity should be checked online. However,
a motivated attacker might set up a rogue server to engage in such a protocol and fake the
status of the newly added root public key.

A fourth strategy is to use backup tools. Here a backup tool maintains a separate copy of
the root public key store. On demand, the backup tool compares the current root public
key store with the backup copy and reports any differences. Such a tool could detect newly
inserted root public keys and, if required, delete them. It would also be possible for such a
tool to restore the root public key store to a previous state.

4 The Scanning Tool

The main objective of a root public key scanning tool is to detect and remove fake root pub-
lic keys. The scanning tool requires the following two functionalities in order to achieve
its objectives.

1. The tool should have access to the root public key store, which holds the root public
keys currently installed on the user’s PC. The appropriate access right is required to
allow the tool to remove fake root public keys.

2. The tool should have some means of distinguishing between ‘genuine’ and ‘fake’
root public keys.

48

A possible technique for distinguishing between ‘genuine’ and ‘fake’ root public keys is
to maintain a list of known genuine root public keys. The tool compares the list of genuine
root public keys with the set of keys found on the user’s PC to detect any mismatch. Once
a mismatch is found, the scanning tool has detected a ‘suspicious’ root public key. This
technique is the basis of the prototype discussed in Section 5. The scanning tool cannot
guarantee that a detected root public key is actually a fake, because users may add their
own root public keys. The scanning tool would need a separate list of known fake root
public keys in order to be able to mark any key as certainly ‘fake’. The list of genuine root
public keys could be obtained in various ways. One possible approach would be to bundle
with the tool the list of root public keys supplied by the manufacturer of the browser. This
list can be updated to include newly added root public keys.

Another technique for distinguishing between ‘genuine’ and ‘fake’ root public keys is to
maintain an online repository of fake root public keys. The repository is continuously
updated with newly discovered fake root public keys. The scanning tool consults the
online repository to check the status of a given root public key, to discover whether it is
a known fake. The technique mentioned in the previous paragraph can be combined with
this technique to achieve better scanning results.

5 A Prototype Implementation

In this section, a prototype implementation of the root public key scanning tool is discussed
and analysed1. The tool was implemented on the Microsoft Windows XP operating system
and the main user interface for the scanning tools is shown in Figure 1. When executed,
the tool performs the following steps.

1. Loads a list of ‘genuine’ root CA public keys from the tool’s database.

2. Loads the list of root CA public keys currently installed on the user’s PC.

3. Compares the installed list to the ‘genuine’ list. When an entry that is not present in
the ‘genuine’ root CA public keys list is found, the tool marks it.

The prototype is implemented using Microsoft Visual Basic .NET and the Microsoft Win-
dows Cryptographic Application Programming Interface (CryptoAPI) [Cor04b]. Cryp-
toAPI contains procedures needed to interact with the root public key repository. The main
procedures making up the tool are ‘LoadGenuineCAs’ and ‘LoadAndCheckInstalledCAs’.
The following paragraphs discuss these two procedures.

The main task of the LoadGenuineCAs procedure is to load the genuine root CA public
keys list from a file. The file is created when the tool is installed and it contains a list of
thumbprints of the genuine root CA public keys. The thumbprint is a hash-code computed
as a function of the certificate. The list of genuine root CA public keys was generated at
the time of tool development by importing the current default root CA public keys on a

1The tool can be downloaded from http://www.isg.rhul.ac.uk/˜cjm/cascan.zip

49

Figure 1: The Scanning Tool main interface

Microsoft Windows platform. Regular updates of the file are required in order to add new
genuine CA public keys.

Once the list of genuine root CA public keys is loaded, the LoadAndCheckInstalledCAs
procedure is executed and performs the following steps.

1. Open the root public keys store using the ‘Open’ method of the ‘Store’ CryptoAPI
object, as shown in Figure 2. The ‘CertificatesStore’ is an instance of the ‘Store’
object, which is used to obtain the list of installed root public keys on the user PC.
Three flags need to be passed to the ‘Open’ method. The first flag indicates the
location of the certificate store. The name of the certificate store is given in the
second flag, and the third flag indicates open mode.

2. Once the previous step has been completed, the tool enumerates all installed root
CA public keys and search for any root certificate that is not included in the genuine
root CA public keys list, as shown in Figure 2. If the tool finds a root certificate that
is not in the genuine list, the root certificate is marked as ‘suspicious’. The tool uses
thumbprints to compare root certificates.

3. The results of the previous steps are displayed to the user, with the suspicious cer-
tificates marked. The tool offers the user the possibility to remove a suspicious
certificate or display the contents of a certificate.

50

Private Sub LoadAndCheckInstalledCAs()
Dim CertificatesStore As New CAPICOM.Store

......

CertificatesStore.Open(CAPICOM.CAPICOM_STORE_LOCATION.CAPICOM_CURRENT_USER_STORE,
CAPICOM.Constants.CAPICOM_ROOT_STORE,
CAPICOM.CAPICOM_STORE_OPEN_MODE.CAPICOM_STORE_OPEN_READ_WRITE)

......

Dim CertIndex As System.Collections.IEnumerator
CertIndex = CertificatesStore.Certificates.GetEnumerator()
While CertIndex.MoveNext()

If Not (ValidCAs.Contains(Cert.Thumbprint)) Then
’ the Certificate thumbprint was not found in the
’ ValidCAs list, mark the certificate as suspicious

End If
End While
......

End Sub

Figure 2: Source code of the Root CA scanning tool

6 Conclusions and Future Work

As discussed and illustrated in this paper, the fake root certificates attack is potentially
a serious threat. The single point of trust, i.e. the list of root CA public keys, creates the
problem. By default, web browsers trust the list of installed root CA public keys on the user
machine without distinguishing between original root CA public keys, i.e. those shipped
with the browser, and added root CA public keys. Distinguishing between the two would
be useful when the browser is engaged in a secure transaction. When the browser receives
a certificate signed by an added root CA, it could alert the user and wait for confirmation
before continuing the transaction.

The scanning tool was implemented on the Microsoft Windows operating system and uses
Microsoft Windows CryptoAPI services to access the root public key store. It would be
possible to enhance the tool to support other browsers and operating systems, e.g. Netscape
on Linux.

One limitation of the discussed tool is that, although it can detect fake root public keys,
it cannot distinguish between those deliberately added and ‘true’ fakes. A database of
known fake root certificates could be used to help support this functionality. The fake
root certificate database could be created by using previously discovered or reported fake
root certificates. When a ‘suspicious’ root certificate is found, the tool would consult the
fake root certificate database to search for the ‘suspicious’ certificate. If it is found in the
database, then the tool could guarantee that the root certificate is certainly fake. Another
method to overcome this limitation is to create a process to monitor the root public key
repository. This process would continuously monitor the root public key repository, and
whenever an attempt is made to insert a new root public key, the tool would request user
confirmation.

Another limitation of the tool is that it relies on the services provided by the Microsoft

51

CryptoAPI. Some of the Microsoft CryptoAPI functions require user input to operate. For
example, when the user requests the scanning tool to delete a suspicious certificate, the
tool makes a call to a CryptoAPI function to delete the certificate. In turn, the CryptoAPI
function displays a message box asking the user for confirmation. Implementing a library
to interact with the root public key store would be helpful in this situation, and is a topic
for further study.

One problem with the scanning tool is that it can be manipulated by an attacker to hide the
existence of added root public keys. This problem is shared by all software designed to
detect system manipulation, such as antivirus and antispyware packages.

More research is needed on possible means of protecting end users against root key inser-
tion attacks. It may be the case that trusted computing technology [BCP+03] is useful in
this context.

References

[AM05] Adil Alsaid and Chris J. Mitchell. Installing Fake Root Keys on a PC. In D. Chad-
wick and G. Zhao, editors, EuroPKI 2005, volume 3545 of Lecture Notes in Computer
Science, pages 227–239. Springer-Verlag, Berlin, July 2005.

[BCP+03] Boris Balacheff, Liqun Chen, Siani Pearson, David Plaquin, and Graeme Proudler.
Trusted Computing Platforms: TCPA Technology in Context. Prentice Hall PTR, Upper
Saddle River, New Jersey, 2003.

[Cor04a] Microsoft Corporation. Certifi cate creation tool (makecert.exe), May 2004.
http://msdn.microsoft.com/.

[Cor04b] Microsoft Corporation. Cryptography, CryptoAPI, and CAPICOM, May 2004.
http://msdn.microsoft.com/.

[DA99] Tim Dierks and C. Allen. The TLS Protocol 1.0. RFC 2246, Internet Engineering Task
Force, January 1999.

[ES00] Carl Ellison and Bruce Schneier. Ten Risks of PKI: What You’re not Being Told about
Public Key Infrastructure. Computer Security Journal, XVI(1):1–7, 2000.

[FB01] Warwick Ford and Michael S. Baum. Secure Electronic Commerce: Building the In-
frastructure for Digital Signatures & Encryption. Prentice Hall PTR, Upper Saddle
River, New Jersey, 2001.

[FBDW97] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. Web Spoofi ng:
An Internet Con Game. In Proceedings of 20th National Information Systems Security
Conference, pages 95–103, October 1997.

[MvOV97] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied cryptogra-
phy. CRC Press, Boca Raton, Florida, 1997.

[NDJB01] Andrew Nash, William Duane, Celia Joseph, and Derek Brink. PKI: Implementing and
Managing E-Security. Osborne/McGraw-Hill, Berkeley, California, 2001.

[YYS02] E. Ye, Y. Yuan, and S. Smith. Web Spoofi ng Revisited: SSL and Beyond. Technical
Report TR2002-417, Dartmouth College, Computer Science, Hanover, NH, February
2002.

52

