Tamper Protection of Online Clients through
Random Checksum Algorithms

Gisle Grimen, Christian Monch, Roger Midtstraum

Department of Computer and Information Science

Norwegian University of Science and Technology
{grimen, moench, roger} @idi.ntnu.no

Abstract: We describe a new purely software-based, self-checking mechanism de-
signed to prevent tampering of client programs in client/server-applications like
online-games, peer-to-peer networks, or online auction systems. Our mechanism
consists of randomly creating checksum algorithms at the server. The checksum
algorithms are integrated into autonomous short-lived software code, called Mobile
Guards, which are downloaded to a client program during its execution. The client pro-
grams are designed to be functionally dependent on the execution of a Mobile Guard.
The randomly created checksum functions and the concept of Mobile Guards enable
a highly dynamic protection mechanism, capable of rapidly evolving as new threats
arise.

1 Introduction

A number of online services are structured as client/server-applications, where the client is
executed on the user’s computer. This gives the user the possibility to analyze and modify
the client program. This can pose problems, for example in media streaming applications
where data has to be kept confidential from the user, because a user might modify the
client program in order to copy the media stream. Another example, where users might
have an interest in modifying the client program are multi-user online applications like
online games, peer-to-peer networks, or online auction systems. In online games user
might modify the client program to gain unfair advantages over other users. In peer-to-
peer networks users might modify the client to provide lower upload bandwidth and in
auction systems they might be interested in automated bidding systems.

Such modification could result in a service becoming unpopular and as a consequence lead
to great financial loss for the service providers. Service providers are therefore interested
in protecting client programs against modifications. But in most cases they can, for ex-
ample, not request the installation of special hardware. Users would not accept such an
inconvenience in order to participate in an online game. Therefore those clients can usu-
ally only be protected by software-based mechanisms. The problem with software-based
mechanisms is that they are executed in the same environment as the client program itself
and are therefore as vulnerable to attacks, as the client program. A malicious user could
analyze and modify the protection mechanisms, thereby circumventing it.

67

The attack on the protection mechanisms becomes possible in current solutions because
they are usually based on a fixed set of mechanisms, for example one checksum algorithm.
In addition, the protection mechanisms are usually embedded in the client program and
are therefore fully exposed to an attacker. Such solutions can not solve the problem of
tampering with clients. Especially not in a time, where one skilled person can create a
patch to circumvent the mechanism and distribute this patch worldwide at virtually no
cost.

In this paper, we present a new purely software-based solution to prevent user side modi-
fication of client programs. We enforce a continuous exchange of protection mechanisms
between client and server. Each individual protection mechanism is only employed for a
brief time interval and this time interval is too short to successfully analyze and attack the
mechanism. Our solution can be instrumented to additionally detect modification attempts
on client programs.

The remainder of the paper is structured as follows. In section 2 related work is discussed.
The problem of client modifications in an untrusted environment and the goal of our ap-
proach are described in section 3. Our solution to the problem with the two main con-
cepts of our approach, the mobile guard and random checksum algorithms are described
in section 4. How random checksum algorithms are created and how mobile guards are
protected is described in section 5 and section 6 respectively. Section 7 discusses how our
mechanisms can be applied to counter dynamic attacks and section 8 concludes the paper.

2 Related work

Several mechanisms for creating tamper-resistant software have been developed. The ma-
jority of the mechanisms rely on some form of checksum algorithm to provide the software
with a self-checking capability. We present a short survey over related work within soft-
ware tamper-resistance below.

Aucsmith [Auc96] presents a method based on Integrity Verification Kernels (IKV). The
IKV is embedded into the software and contains a set of tasks that are crucial for the pro-
gram to function. Each task is divided into subtasks that are randomly grouped together in
small segments called cells. Self-checking is achieved by including an accumulator func-
tion in each cell that gradually computes a result from the cells that have been executed.

Chang and Atallah [CAO2] present a method of protecting software by embedding guards
into a program. The guards can be programmed to do a certain tasks like calculating a
checksum over the program code. The security comes from the multitude of guards used,
resulting in a distributed network of independent guards that must all be neutralized in
order to bypass the protection. A similar idea is present in [HMSTO1]. Their idea consists
of embedding hundreds of linear hash functions in a program that each checks overlapping
segments of the programs memory. They take great care in making sure their checksums
are stealthy integrated into the program and that it is possible to embed a unique watermark
into the program at install time without invalidating the self-checking mechanism.

68

Chen et al. [CVCT03] present a different approach to checksumming software. Instead
of calculating a checksum over the programs code, they calculate a checksum based on
intermediate results from the program execution. The advantage of [CVC'03] compared
to [CA02] and [HMSTO1] is that the results from the executed instructions are check-
summed and not just the sequence of instructions in memory.

The major problem with self-checking approaches like [Auc96, CA02, HMSTOI,
CVC103] is that they are embedded into the programs they are designed to protect. Al-
though one can apply several techniques that make them “stealthy” and obfuscate the pro-
gram, it is impossible to prevent a determined attacker from circumventing the mechanism.

Kennell and Jamieson [KJ03] present a technique to establish the genuinity or trustwor-
thiness of both the software and hardware of a computer system. They claim that by
calculating a checksum over the instructions of the software along with side effects of the
actual computation they are able to distinguish between a genuine and a modified system.
The reason for this is that the side effects especially the memory hierarchy are difficult to
simulate without large performance reductions. A later paper by Shanker et al. [SCT04]
presents an attack on the Genuinity system presented in [KJO3]. Their attack relies on
knowledge about the checksum algorithm. Without the time to analyze the system and to
obtain knowledge about the checksum algorithm it would be considerable more difficult
to successfully mount such an attack.

Seshadri et al. [SPvDKO04] present a similar approach to Kennell and Jamieson for embed-
ded devices. For their method to work they require knowledge about the hardware char-
acteristics and the expected memory content of the device. They then verify the memory
by traversing it based on a pseudorandom sequence. During the traversing of the mem-
ory a checksum is calculated and returned to an external part that verifies the computed
checksum. The verification procedure is designed such that even the insertion of a single
if-statement is visible to the external part. This approach is not well suited for von Neu-
mann architectures because the checksum would have to include not only code but also
all data, which is dependent on the current state of the device. The state of the device is
usually not known to the external part, which makes it impossible to verify the checksum
result.

3 Problem description and goal

For the scope of this paper we assume the following scenario. A service is created by
a service provider and implemented on a server in a trusted environment. The service
provider also creates a client program, that allows access to the service. Users of the
service acquire and execute the client program on their computers. We assume, that the
provided service requires a frequent, e. g. once a second, exchange of data between the
client and the server. In addition we assume that the data that is exchanged between the
client and the server does not have to be kept confidential from the user.

In order to guarantee that the service is provided as defined by the service provider, the
service provider has to be considerably sure, that only unmodified client programs access

69

the service. But since the client program is executed on the user’s host and since the user
has full control over the execution environment, he is able to modify the client program
and change its semantics.

3.1 Attacks on client programs

If a user modifies the semantics of a client program we refer to this as an attack on the
client program. We distinguish between two basic kinds of attacks on client programs,
static attacks and dynamic attacks.

Static attacks A static attack is a modification of the client program that is completely
performed, before the client is executed. A static attack is created with a static set
of information, which has been gathered before the execution of the client. This
information may include, for example, the client’s program code, a trace of the
protocol between the client and the server, or a runtime trace of the client.

Dynamic attacks A dynamic attack is a modification of the semantics of the client pro-
gram that might use all information available in a static attack. In addition a dynamic
attack uses additional information gathered during runtime of the client to modify
the semantics of the client during its execution.

A typical static attack would be the application of a patch to a client program before it is
executed. A number of such patches are available for online-game clients.

Is should be noted that dynamic attacks, in contrast to static attacks, usually demand con-
siderably more computational resources on the user’s side. A dynamic attack that moni-
tors, for example, CPU register contents and modifies the execution semantics of the client
accordingly, requires a sophisticated virtualisation environment. Depending on its capa-
bilities and the underlying hardware, such an environment will slow down the execution
considerably.

3.2 Goal

The goal of our research is to create software-based mechanisms to protect client programs
that handle non-confidential data against static attacks. More specific the created protec-
tion mechanisms should have the following three properties in order to protect the client
program:

Difficult to break It should be very resource intensive to break the protection mecha-
nisms. That is, breaking should require much more resources than the average user
is willing or able to spend.

Break once, break everywhere resistance It should not be possible to generalize an at-
tack to the protection mechanisms. Every attempt to circumvent the solution should
require the same amount of resources.

70

Facilitate detection The protection mechanisms should support the detection of attacks.
This allows the service provider to react on attacks, for example by excluding the
attacker from the service.

Typical examples for services that could be protected by our system are online-games,
online-auctions, and peer-to-peer networks, because the success of these services depends
on the provision of equal conditions for all users. We confine ourselves to the prevention
of static attacks here, because we believe, that the average user of such a service does not
have the necessary resources to perform a dynamic attack.

4 Mobile Guards and Random Checksum Algorithms

Our solution for protecting the client program against static attacks is based on contin-
uously creating protection code on the server that is downloaded into the client. This
code contains algorithms that are then executed in the client’s environment and verify the
client’s integrity. We refer to the protection code as a Mobile Guard.

The task of a Mobile Guard is to verify the integrity of the client for a short time interval,
which we refer to as a trust interval, before it is replaced by the next Mobile Guard. Each
Mobile Guard contains a checksum algorithm that is randomly created by the server. The
random creation of checksum algorithms ensures that they are unknown to an attacker
and thereby prevent replay attacks. We refer to these checksum algorithms as Random
Checksum Algorithms (RCSAs).

In order for a Mobile Guard to effectively prevent static attacks on a client, the following
is necessary:

Protect the Mobile Guard against tampering The Mobile Guard has to be itself pro-
tected against analysis and modification by an attacker. It should not be possible for
an attacker to extract the RCSA or to modify the Mobile Guard before it is replaced
with a new Mobile Guard.

Ensure the execution of the Mobile Guard It has to be made sure, that the calculation
of the correct checksum is necessary for the proper operation of the client. Together
with the protection of the Mobile Guard, this will ensure that the Mobile Guard has
to be executed.

In the remainder of this section we concentrate on how we ensure the execution of the
Mobile Guard. The protection of the Mobile Guard is described in section 6.

Our approach ensures the execution of the Mobile Guard by making the calculation of
the correct checksum a precondition for the proper operation of the client program. Since
the user can not modify the Mobile Guard and since the random nature of RCSAs makes
it impossible to predict the checksum, he has to perform the calculation to obtain the
checksum. We therefore assume that the calculation of the correct checksum can only be
performed by a Mobile Guard that is executed in an unmodified client program.

71

Given this assumption, there are a number of ways to make the knowledge of the correct
checksum a precondition for the use of the client program. We elaborate two possible
schemes in more detail, checksum integration and checksum verification.

Checksum integration In the checksum integration-scheme the server encrypts the data
it delivers to the client program in such a way that it can only be decrypted with the correct
checksum. The Mobile Guard decrypts all incoming data, using the calculated checksum
as decryption key. As a result the data can only be accessed by the client, if the checksum
is correct, i. e. if the client is unmodified.

Checksum verification The main idea of the checksum verification-scheme is that the
server verifies the checksum. The Mobile Guard sends the calculated checksum back to
the server and the server will only send further data, if the checksum is correct.

In the verification-scheme the checksum is removed from the context of the Mobile Guard
and the client program and sent over an insecure communication channel. Due to this
additional communication step we have to take additional measures to make sure, that the
checksum was actually calculated by a Mobile Guard that is executed in the context of
the client that is to be verified. If this is not ensured, a man-in-middle attack could be
performed by copying the correct checksum from the communication of an unmodified
client with the server and patching it into the communication between a modified client
and the server.

To prevent this attack, we tie the checksum to the client in whose context it was calcu-
lated. In order to do so, the Mobile Guard hides the checksum in an opaque data structure.
The Mobile Guard builds this structure by first choosing a random number that is then
integrated into the checksum calculation. The resulting checksum and the chosen random
number are then interleaved in a way that is specific to the Mobile Guard, yielding the
opaque data structure. When the server receives this data structure, it extracts the check-
sum and the random number from it and verifies the checksum. If the checksum is wrong,
the server stops sending data to the client. If the checksum is correct, the server encrypts
the data sent to client so that it can only be decrypted with the random number. This en-
sures that only the client that created the checksum and the random number can process
the data.

4.1 Integration versus verification

The main difference between the integration- and the verification-scheme is that the inte-
gration scheme does not require the client to send data back to the server. It can therefore
be used in situations where users are concerned about their privacy and prefer the client
to not “phone home”. The main disadvantage of the result integration-scheme is that the
server can not detect modifications of client programs.

One advantage of the checksum verification-scheme is that it allows the server to detect
modifications and to take appropriate measures, e.g. banish a malicious user. Another

72

advantage is that the server can time the execution of the Mobile Guard in order to detect
virtualisation attacks. Yet another advantage of the checksum verification-scheme over
the checksum integration-scheme is that is does not use bandwidth to send data to com-
promised clients that will not be able to process the data anyway.

5 Random checksum algorithms

Randomly created checksum algorithms are a key component of our protection mecha-
nism. In order to protect the client against tampering, RCSAs have to possess certain
properties:

Deterministic RCSAs have to be deterministic to support their verification and their use
as decryption keys.

Detecting RCSAs should have a fair probability to detect changes.

Diverse The result calculated by different RCSAs on the same input should be distinct
with a high probability.

5.1 Detection probability with the application of » different checksum algorithms

If checksum algorithms are created randomly, their properties might not be completely
known. This includes the probability for detecting changes. But even if a single checksum
algorithm should not have a high probability for detecting a modification, the application
of a number of different unknown checksum algorithms dramatically increases the prob-
ability for detecting changes. Let us assume that we created n RCSAs and that p; is the
probability that RCSA number ¢ detects a change. Then the overall probability p to detect
a change in a program if it is checked by all n RCSAs is: p = 1 — []"_,(1 — p;). For
every p; > 0 the probability p grows towards one. Therefore we do not demand that every
RCSA has a proven high probability to detect changes.

5.2 Creating Random Checksum Algorithms

There are many possibilities to create RCSAs. In our solution we concentrate on two of
them, input filter and function composition. While it would be possible to create a random
checksum algorithm by just appending a random number to the input of a known checksum
algorithm, we did not use this approach. We favor the creation of different algorithms
because it gives us more freedom in diversifying the Mobile Guards and therefore allows
for a better protection of the Mobile Guard.

73

5.2.1 Creating RCSAs with input filters

The input filter approach is based on using an existing, well known checksum algorithm
and modifying its input by passing the input through a randomly generated input filter. In
order to create an RCSA with the input filter approach it suffices to randomly create input
filters and combine them with the implementation of a known checksum algorithm. In our
prototype we used input filters that divide the input data into blocks and permute the order
in which theses blocks are provided to the checksum algorithm. As checksum algorithm
we selected MD3.

To randomly create an input filter we create a random sequence of blocks and create a finite
automata (FA) of type Mealy that outputs the order in which the blocks are to be read. The
creation of the FA is itself randomized in order to increase the structural diversity of the
implementation of the RCSA.

The creation of the FA starts from a given sequence b of blocks, an input alphabet ¥ and an
output alphabet I'. It produces a FA and an input string w. If the FA is executed on the input
string it will successively output the numbers of the sequence b. In our implementation the
sequence numbers are encoded to base 10. Number representations are separated by the
special character e.

In order to increase the diversity of the created FAs, a number of their characteristics
are randomly chosen. The digits for the sequence number representation in the output
string are randomly selected from I'. In addition the sequence number encodings, the
output string contains “noise”, i. . characters that are not used in the encoding of sequence
numbers. If a transition is added to the FA, and at least one state without maximum fan-out
exists, then an existing state will be reused with a probability of % Otherwise, a new state
will be created. At current the FAs are table-driven implementations with a fixed transition
logic, only the tables are changed in the creation process.

The checksum algorithm performs transitions of the FA until the next number is com-
pletely output, ignoring all “noise” characters in the output. It then decodes the number
and continues the checksum calculation on the appropriate block.

The process described here is just one way to create an input filtered checksum algorithm.
An alternative way would be to decompose a known checksum algorithm and reassemble
in a way that it reads the input in a given sequence. This approach would remove the static
transition logic that our prototype uses.

5.2.2 Creating RCSAs by composing functions

This approach is based on randomly creating a checksum function from scratch. To create
a checksum function, we split the input into parts of [words, a word is 32 bit wide. We
then create a function f that reads [words from the input and m words from a variable
area and outputs a word.

The function f is composed of Elements, Terms and Expressions. An Element is a word
from the input block, a word from a variable area or a constant:

Element := Input[¢] | Variable[j] | Constant

74

where ¢ € {1,...,l} and j € {1,...,m} are randomly selected. Elements can be com-
bined to Terms by applying a random number of the following transformations:

Term := Element | Term A Term | Term V Term | Term & Term | —Term

where a @ b stands for: a exclusive or b. Terms are combined into Expressions by applying
a random number of the following transformations:

Expression := Term | Expression + Expression | Expression < Constant

where a < b stands for: a circular shifted left b times. During the creation of expres-
sions, we allow only the operations addition and circular left shift to prevent reducing the
dimension of the result. The result of every expression is assigned to a random variable:

Assignment := Variable[j] = Expression

The function f consists of a random number of assignments that are performed one after
another. Note that the execution of assignment might change the variables. The result
of the execution of f is the sum modulo 232 — 1 of all variables, i.e. Z;n:l Variable[j].
Function f is applied to all parts of the input. The checksum is then the sum modulo
232 — 1 of all results of the application of f.

The composing functions-approach has the advantage that almost all code of the checksum
algorithm is randomly created, leading to more structural diversity in the code. Since the
building blocks of the code are quite small, it also allows for an easier interleaving with
other algorithms than the input filter method. A disadvantage is that in contrast to the input
filter-approach, the properties of the checksum algorithm are not known a-priori.

5.3 Properties of the checksum algorithms

We implemented generators for the input filter-based and the composing functions-based
approach and tested their detection capabilities and their functional diversity.

Detection probability As the composing functions method randomly creates checksum
algorithms, their ability to detect changes is unknown. To determine how well they detect
modifications we generated 1000 algorithms and 1000 datasets each with only one bit
changed compared to an original dataset of 1 MB. Each algorithm calculated a checksum
on each of the 1 000 datasets, resulting in one million checksum results. The probability to
detect a single bit change using our composing function-scheme was 0.99, which is more
than sufficient, especially if considering that the algorithm will be replaced regularly. For
completeness we also run the same test on the input filter method with the MDS5 algorithm,
which detected every change.

75

Functional diversity Another important property of our RCSAs is how functional di-
verse they are with respect to computing different results given the same input. For the
input filter the diversity comes from the number of permutations of the order in which
blocks are provided to the MDS5 algorithm. If we have n blocks, we have n! ways of pro-
viding them to the MDS5 algorithm. The diversity of the composing functions comes from
the random way in which data is processed.

To examine the diversity of our algorithms we generated 100 000 algorithms of each type
and executed them on the same input of 1 MB. The number of blocks used in the in-
put filter was 10. In our experiment, each of the 100 000 algorithms generated its own
unique results, resulting in zero duplicated results. From our experiment we find that both
methods provide more then adequate diversity, making the correct checksum sufficiently
unpredictable to an attacker.

6 Protecting the Mobile Guard

As the protection mechanism is downloaded into the program, it is itself vulnerable to the
same threats as the program. But any sensible attack to the Mobile Guard requires a thor-
ough understanding of its algorithms and gaining this understanding requires knowledge,
time and is usually a trial and error process [JLO3]. To prevent intellectual attacks from
succeeding, we create each Mobile Guards differently and restrict its lifetime. Because
the algorithms in the Mobile Guards differ from one another, a new attack has to be per-
formed on each Mobile Guard. By restricting the lifetime of a Mobile Guard to a few
dozen seconds we are able to effectively prevent intellectual attacks on an active Mobile
Guard.

The only feasible attacks on the Mobile Guard are then fully automated attacks. That
automated attacks are possible at all seems surprising since we do not merely modify an
existing program to create a Mobile Guard, but create completely new programs for every
Mobile Guard. This freedom is the very reason, that a single intellectual attacks can not
succeed. So why should an automated attack be possible? The answer is that the checksum
algorithms are also created automatically and that the generators that create the checksum
algorithms might introduce exploitable structures into the Mobile Guard. Such an ex-
ploitable structure could be a fixed memory location where the input filter stores the block
sequence or a fixed memory location where the composed function stores the checksum
result. We do not expect an automated attack to be able to autonomously identify ex-
ploitable structure. Instead an automated attack will rely on the intellectual identification
of those structures. If we modify the structure of each Mobile Guard sufficiently, this kind
of information will not be available and a fully automated attack will not be possible.

We vary the structure of the Mobile Guards by randomly positioning variables and by
randomly positioning code blocks in the Mobile Guard. We are also considering to apply
the techniques described in [CTL98, ASCB05, WHKDOO].

76

Randomizing positions of variables An RCSA generator positions variables that are
used by the Mobile Guard randomly in the Mobile Guard’s memory. As a result, an at-
tacker can not rely on the assumption, that a certain value is stored in a certain memory
location. Instead the location of a variable has to be determined every time a new Mobile
Guard is encountered.

Randomizing code locations An RCSA generator splits the Mobile Guard’s instruc-
tions into basic blocks and positions them randomly in the Mobile Guard’s memory. This
includes the entry point of the Mobile Guard. In order to be able to transfer control to a
new Mobile Guard, the RCSA generator creates the memory layout of the Mobile Guard
number n 4 1 when generating Mobile Guard number n. The entry point of Mobile Guard
number n 4 1 can then be encoded into Mobile Guard number n.

6.1 Structural diversity of the generated Mobile Guards

The input filter-based RCSAs were created with a static, table-driven implementation of
the state transformations. The instructions of different Mobile Guards are therefore iden-
tical, except from the location dependent instructions, which are modified during the ran-
domization of variable and code positions. The main differences between input filter-
based RCSAs are due to the different transition tables. The tables of 1000 randomly
generated RCSAs with 19 input blocks contained between 76 and 142 different states and
between 136 and 352 transitions. The input strings had the according length and all input
strings differed from each other.

The composing function-based approach was examined by generating 1 000 composing
function-based RCSAs. As expected, their code differed greatly from one another. The
generated RCSAs contained between 597 and 3 839 instructions. Except from the first few
bytes at the entry point, all RCSAs differed from each other.

Despite the random positioning of basic blocks in the different Mobile Guards, the entry
point might still be found by applying a pattern based search on the instructions. This
provides a starting point for the only attack that seems possible, the simulation of the
execution of the RCSAs with the goal to calculate the checksum. But this approach would
still require the automated identification of the memory location in which the checksum is
stored and the identification of the moments in the execution, when the correct checksum
value is stored in this location. We believe that it is unlikely that an automated tool can
perform this analysis.

7 Remarks on dynamic attacks

While a pure static attack on the Mobile Guards is unlikely to succeed within the time
limit, checksum algorithms are vulnerable to dynamic attacks because their operations
are easily identifiable. Checksum algorithms perform data accesses to memory locations

77

that contain instructions. These operations stand out from the all other operations per-
formed by a typical program. Wurster et al. present a generic attack based on this ob-
servation [WvOSO05, vOSWO05]. The attack can be generalized by treating data reads and
instruction fetches differently. Data is read from a memory region that contains an un-
modified version of the program, while instructions are fetched from a memory region
that contains a modified version of the program. The two protection mechanisms that are
presented in [CA02] and [HMSTO1] are susceptible to this attack.

The self checking approach that is resistant to this attack is [CVCT03]. The reason is that
this approach differs from typical checksum algorithms in the way that it does not verify
the memory image of the instructions, but calculates a checksum over the side effects these
instructions have on the data in memory.

A general approach to prevent the generic attack is to make the proper execution of the
protected program depending on data accesses to the programs instructions, as described
in [GMMOS5]. This approach makes it impossible for an attacker to use data reads on
instructions as a criteria to identify checksum operations. Instead the attacker has to trace
the calculations performed on the data that was read in order to identify its use, which is a
very difficult problem.

8 Conclusion

We presented a new purely software-based, self-checking mechanism designed to prevent
tampering of client programs in client/server-applications like online-games, peer-to-peer
networks, or online auction systems. We take advantage of the fact that the clients have a
continuous need to communicate with the server. By making the knowledge of the correct
checksum a precondition for the access to the communicated data and by using random
checksum algorithms we enforce the execution of Mobile Guards in the client program.

The Mobile Guards are protected against modifications in two ways. A short lifetime
prevents intellectual attacks. Diversification of the memory layout and of the instructions
of the Mobile Guard prevents automated attacks. Our generators have created Mobile
Guards with significant differences in structure.

We presented two ways to create random checksum algorithms, the input filter-scheme
and the compose function-scheme. Both methods generate checksum algorithms that have
high probabilities to detect changes. In addition all generated checksums algorithms cal-
culate different results on identical inputs, making them well suited for their application in
Mobile Guards.

Our work shows that, although checksum algorithm alone can not prevent all threats to
software, they are an important component. Their strength is that they are capable of
verifying that the correct instructions are present and that they can be used to enforce the
execution of additional protection mechanisms.

Further work will concentrate on additional methods to diversify the Mobile Guards in
order to improve its resistance against automated attacks. This includes an investigation
of the possibilities that the random creation of algorithms offers.

78

References

[ASCBO5]

[Auc96]

[CAO02]

[CTL98]

[CVCT03]

[GMMO5]

[HMSTO1]

[JLO3]

[KJO3]

[SCTO04]

[SPvDKO04]

[vVOSWO5]

[WHKDOO]

[WvOSO05]

Bertrand Anckaert, Bjorn De Sutter, Dominique Chanet, and Koen De Bosschere.
Steganography for Executables and Code Transformation Signatures. In the 7th Inter-
national Conference on Information Security and Cryptology, volume 3506 of LNCS,
pages 425-439. Springer, 2005.

David Aucsmith. Tamper Resistant Software: An Implementation. In Proceedings
of the First International Workshop on Information Hiding, pages 317-333. Springer-
Verlag, 1996.

Hoi Chang and Mikhail J. Atallah. Protecting Software Code by Guards. In DRM "01:
Revised Papers from the ACM CCS-8 Workshop on Security and Privacy in Digital
Rights Management, pages 160—175. Springer-Verlag, 2002.

Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing Cheap, Re-
silient, and Stealthy Opaque Constructs. In Principles of Programming Languages
1998, POPL’98, pages 184-196, 1998.

Yuqun Chen, Ramarathnam Venkatesan, Matthew Cary, Ruoming Pang, Saurabh
Sinha, and Mariusz H. Jakubowski. Oblivious Hashing: A Stealthy Software Integrity
Verification Primitive. In IH '02: Revised Papers from the 5th International Workshop
on Information Hiding, pages 400—414. Springer-Verlag, 2003.

Gisle Grimen, Christian Monch, and Roger Midtstraum. Software-based copy protec-
tion for temporal media during dissemination and playback. In the 8th International
Conference on Information Security and Cryptology, volume 3935 of LNCS. Springer,
December 2005.

Bill Horne, Lesley R. Matheson, Casey Sheehan, and Robert Endre Tarjan. Dynamic
Self-Checking Techniques for Improved Tamper Resistance. In Digital Rights Man-
agement Workshop, pages 141-159. Springer-Verlag, 2001.

Hongxia Jin and Jeffery Lotspiech. Proactive Software Tampering Detection. In ISC,
pages 352-365, 2003.

R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer systems.
In Proceedings of the 12th USENIX Security Symposium, pages 295-308, Aug 2003.

U. Shankar, M. Chew, and J. Tygar. Side effects are not sufficient to authenticate
software. In Proceedings of the 13th USENIX Security Symposium, August 2004.

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: Software-based attestation
for embedded devices. In IEEE Symposium on Security and Privacy, 2004., 2004.

Paul C. van Oorschot, Anil Somayaji, and Glenn Wurster. Hardware-Assisted Circum-
vention of Self-Hashing Software Tamper Resistance. IEEE Trans. Dependable Sec.
Comput., 2(2):82-92, 2005.

Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Software Tamper Re-
sistance: Obstructing Static Analysis of Programs. Technical Report CS-2000-12, Uni-
versity of Virginia, 12 2000.

Glenn Wurster, Paul C. van Oorschot, and Anil Somayaji. A Generic Attack on
Checksumming-Based Software Tamper Resistance. In IEEE Symposium on Security
and Privacy, pages 127-138, 2005.

79

