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Abstract: The transition from fossil fuels to renewable energy is considered as very meaningful to 

mitigate climate change. To integrate weather-dependent energies firmly into the power grid, a 

forecast of the energy yield is very important. This paper is about renewable energy generation by 

photovoltaic (PV) systems. The yield of PV-systems depends not only on weather conditions, but in 

wintertime also on the additional factor “snow cover”. The aim of this work is to detect snow cover 
on photovoltaic plants to support the energy yield forecast. For this purpose, images of a PV-plant 

with and without snow cover are used for feature extraction and then analyzed by using a 

convolutional neural network (CNN). 
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Addresses Sustainable Development Goal 7: Affordable and clean energy 

1. Introduction 

The climate change affects us all. If it is not sufficiently curbed, our planet could become 

uninhabitable in the future. [IP22] To prevent this, for example, CO2 emissions must be 

drastically reduced. [IP21] With energy consumption on the rise, it only makes sense to 

reduce CO2 emissions in the energy production sector as well. This can be achieved by 

switching from fossil fuels to renewable energies. [IE22] One of the weather-dependent 

renewable energy sources is solar power, which is generated by PV-systems. These plants 

can be monitored and based on this data it is also possible to make forecasts for the future. 

[He20] For the forecast, some factors must be considered. PV-systems depending on 

weather conditions and location. Plenty of sunshine is an indicator of high electricity 

yields. However, these can be reduced by objects that cast shadows such as trees or clouds, 

soiling on the plant, or age-related side effects. [Qu11] To make an accurate energy yield 

forecast, these factors, as well as the prevailing weather, must be included in the 

calculation. If the PV-system does not supply as much electricity as predicted, an error 

message is generated in the monitoring system. Which either will be used to coordinate 
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maintenance work or improving the forecast. This is the aim of the research project “PV 
digital 4.0”, which is funded under grant number 13FH020PX6. This work deals with the 
snow-coverage on PV plants and is structured as follows, in chapter 2 the aim of the work 

will be described. Further, this paper involves the detection of snow coating on PV-

systems based on images and a convolutional neural network (CNN), which is discussed 

in detail in Chapter 3. The results are discussed in Chapter 4 and Chapter 5 concludes and 

gives an outlook for the future. 

2. Aim of the work 

The goal of this work is to detect snow coverage on PV systems using pictures. To put it 

into a larger context, this detection is used to label the monitoring data. The labelled data 

allows us to train a standalone neural network, which can detect snow on plants 

independent of their location and orientation towards the sun, just using the monitoring 

data together with weather data. [HBB22] 

This is one of the in chapter 1 mentioned factors, which need to be considered in the project 

“PV Digital 4.0” to increase the accuracy of the yield prediction. 

3. Materials and methods 

In this work a software based on Python has been developed using modules like datetime 

and glob. For downloading image data selenium 4.1.5 was used, to pre-process the data 

the Python library OpenCV 4.5.5.64 was utilized and to train a network which should 

finally detect snow on the PV-systems a CNN was built with keras 2.9.0 (based on 

TensorFlow 2). 

3.1 Overview 

A convolutional neural network (CNN) is a special type of neural networks (NN). The 

neural network is the model used in deep learning. It consists of several layers in which a 

selected number of neurons are located. These neurons have trainable weights and are 

connected to each other. How these connections look like is determined by the type of 

neural network. The architecture, i.e. the number of layers and neurons, is developed by 

the programmer. Typical neural networks learn a global pattern. CNNs, on the other hand 

only ever learn a local pattern, so it can recognize edges, textures, etc. in images and is 

perfectly designed for image recognition. [Ch17] To make this possible, CNN comes up 

with some special methods, which are explained in more detail in following subsections. 



 

3.2 Convolutional neural network 

Convolutional neural networks are typically used for image recognition. The CNN takes 

an image as their input, and so-called kernels (or filters) are applied to extract features. 

The input image data for the CNN is handed over with the shape (image_height, 

image_width, image_channels). A grayscale picture has just one channel, which means 

every pixel in the picture can be described with one value. These values are the input for 

the CNN. The colored pictures used in this work come with three channels (RGB: red, 

green, blue). The kernel is applied on every channel and then summed up. Kernels are 

matrices and the parameters are trained like weights in a neural network. [Ch17] This 3-D 

grid is typically processed in the “convolutional block”, which is a combination of the 

mathematical operation “convolution” (convolutional layer) and the “pooling” method. 

This will be repeated several times. [GBC16] Throughout the convolutional process, the 

first convolutional layer can learn small patterns, like edges. The next convolutional layer 

will combine these small patterns to learn bigger, combined patterns. [Ch17] Once a 

pattern was learned, the CNN will be able to recognize this pattern in any part of the image 

(equivariant representations). After passing through the convolutional blocks, the output 

data will be modified with “flattening”, so the output can be classified by an MLP. [Fr19] 

The mentioned methods are described further in the following paragraphs.  

Convolution 

The convolution is a mathematical operation, which takes the input and overlays a so-

called kernel. This kernel is a matrix, which can also be seen as weights from a typical NN 

and will be used for the whole CNN (parameter sharing). It is smaller than our input, which 

leads to “sparse interaction” and will be used for each channel. So, the kernel is put on the 

input. The single values are multiplied with each other and then summed up. Once 

completely shifted over the whole input a new, smaller matrix, the “feature-map” results. 

If the down scaling is not wanted, (zero-) “padding” can be used, which won't be discussed 

further in this work. [Bi08] 

Pooling 

A part of the convolutional block is pooling. The aim of a CNN is to learn bigger patterns, 

just using the convolution operation would take a long time to recognize such big patterns. 

Therefore, the data is compressed and generalized in the pooling layer to speed up the 

process. The most used pooling approach is the “max-pooling”. Max-pooling is modifying 

the output further by looking at a certain window in the feature-map and only takes the 

biggest value in that to create the output of the convolutional layer, our final feature-map. 

[Fr19] 

Flattening 

Flattening is used to reorder the entries of the 3-D grid resulting from the convolutional 

layers. The grid will be stringed together to a vector, which then can be used to for the 

classification task with the MLP. [Fr19] 



 

3.3 Data base 

 

Fig. 1: Image taken by the camera (due privacy, this picture was cropped). 

For the described experiment, a camera was set up in the center of Germany 173m above 

sea level in Hesse (coordinates: 50.37194660775961, 8.122048403586822). The camera 

is pointing to a private roof with a PV-plant on it (shown in Fig. 1) and is accessible via 

Wi-Fi. A script was written, which can connect to the interface of the camera and allow 

us to receive images. The images were sent as HTTP-request to a LINUX server running 

the script. Via cronjob, this process was executed every five minutes during the day from 

the end of November 2021 to April 2022. Due to transmission errors, the camera was not 

always available, so there were gaps in the data. In total 19.730 images could be collected 

in the experiment. Among these, 111 of the images show snow cover on the PV-system. 

Afterwards, the visible parts of the plant were cut out in rectangles (see Fig. 2) with 

OpenCV and were saved. This resulted in a total of 256 usable images of a snow-covered 

PV-system and a lot more non-snow-covered images, that could be used for training. 

 

 
 

Fig.2: The PV-plant can be divided into three smaller parts.  



 

3.4 Data selection 

For good results, the training data set should be well-balanced with the same number of 

pictures with snow cover and without snow cover. For this purpose, care must be taken in 

selecting days with similar weather conditions, since the position of the sun affects the 

light conditions in the image, as well as the reflection on the solar panels. In addition, 

depending on the time of day, the roof, and dormer casts a shadow (e.g. Fig. 3) on some 

PV-modules.  

 

(a) with snow 

 

(b) without snow 

Fig. 3: In between these two sunny-day pictures are three days. This grants us similar conditions, 

like the angle of the shadow. 

3.5 Pre-processing 

Unfortunately, in the period in which the pictures were taken, it didn't snow often, so the 

amount of data is small. Good results come naturally from good data, so the mass of 

qualitative images is an important factor. To increase the number of images indirectly, the 

ImageDataGenerator of keras was used, which randomly rotates, shifts, shears, and 

zooms into the training images during the training process of the model and changes the 

size of the images to 512 x 512. This is also called “data augmentation”. The data 



 

augmentation is applied for each epoch. So, in each epoch, our CNN gets a randomly 

generated dataset based on the rules set in the ImageDataGenerator and our base dataset. 

[Fr19] 

3.6 Data analysis 

For image recognition we used a CNN (shown in Fig. 4) as described in 3.2. The CNN 

takes an input with the shape (512, 512, 3) because we rescaled all images in 3.5. We used 

RGB pictures, therefore we needed to set the image_channel to three. In total, we used 

four convolutional blocks, a 2-D convolution with the activation function “ReLU” 
followed by a 2-D MaxPooling. The Kernel for the convolution was given the size of 3 x 

3 and the MaxPooling window is set to 2 x 2. This helps us to focus on the important 

features. The first convolution is set to give us an output dimension of 32, so our first 

output shape will be (510, 510, 32). After the MaxPooling we have a shape of (255, 255, 

32). The second convolution is set to 64 and the third and fourth to 128. At the end we got 

a shape of (30, 30, 128) this will be flattened to a 1-D vector with the shape of (115200), 

which is basically the multiplication of the shape of our last convolutional layer 

(30*30*128 = 115200). Our dense layer of the MLP is set to an input of 512 neurons, also 

with the “ReLU” activation function. Followed by a dense layer with one neuron and the 
“sigmoid”-function, which will take the input to give an output between 0 and 1. A 

threshold is then used for the classification, every output above the threshold will be 

classified as 1 for “snow-coverage” and every output below the threshold will be classified 
as 0 for “no snow-coverage”. For the loss function, we used the “binary cross-entropy”, 
which is common for CNNs. [Fr19] The common optimizer “Adam” was chosen for the 
optimization task of this network. The dataset was split into three data sets: 70% train data, 

20% validation data and 10% test data. 

 

Fig. 4: This is a visualization of the used CNN. The first cube represents our input layer 

with the shape (512, 512, 3). The convolution and the MaxPooling process is visualized 

by the blue cutouts pointing to the next cube. Every convolution step is increasing the third 

dimension, which were the RGB-values of the input image in the first step. The 

MaxPooling is decreasing the first and second dimension, which is the height and width 



 

of the image. After a few steps e.g., the sixth cube got a shape of (124, 124, 128), which 

means the image got compressed to a height and width 124 x 124 with 128 features. After 

the eighth cube, the data will be flattened and commit it to our first Dense layer with 512 

neurons. 

4. Results 

The results of the training are visualized in Fig. 5. The accuracy while training achieved 

more than 96%. At the end, the CNN was able to predict 100% of the validation data set. 

The loss value of the training was around 0.16 and for the validation set 0.07. Using the 

test data to test the CNN leads us to 92% accuracy. The gap between the accuracy of the 

test and train data set is caused by overfitting. Also, overfitting led our valid prediction to 

100%. 

Fig. 5: Accuracy and loss visualized. The accuracy value is in between 0 and 1, which can 

be transformed into %. This value shows how much percent of the data set was classified 

correctly. The loss value is given by our loss function (binary cross-entropy), it is the 

feedback-signal for the CNN, which is used in the training process. The aim of the CNN 

is to minimize this value while training. 

Due to randomly generated test, train, and valid data sets one of the rare cases, having 

sunny weather with and without snow (shown in Fig. 3), wasn’t well distributed.  So, the 
case “with snow” on the PV-plant and “sunshine” made it into the train but not into the 
valid data set, while “sunshine without snow” on the other hand made it into both sets. 
Which means the net couldn't validate the special case shown in Fig. 3a. As we used 

images with the same weather conditions (described in 3.4), the CNN could have learned 

to recognize sunshine/shadow pictures as no snow-coverage, even when there was snow 

(see Fig. 6). 



 

Fig. 63: Both pictures are from the test data set. The left one is showing the class "no snow-

coverage", the right one shows "snow-coverage". Both pictures were classified as "no snow-

coverage" by our trained model. 

5. Conclusion 

Even with a small data set we were able to get good results. Overfitting is a problem for 

our CNN because snow on PV-plants won't ever have the same features as shapes and 

density. For this, some techniques like the data augmentation mentioned in 3.5 or adding 

a “Dropout”-layer can be used to prevent this problem. This CNN will be improved with 

new data from the next winter (in 2022/2023). With the new database, we will increase 

the accuracy of the CNN. The plan is to take pictures with more cameras on an industrial 

PV-plant in Germany, which is higher above the sea level and tends to have more snow 

during wintertime. The next step for the automation of the snow data labeling is either to 

improve the CNN to automatically detect the snow coverage in percent or to develop an 

algorithm, which can calculate the snow amount on the plant. With this automated labeling 

process and with more data, we can also improve the work in [HBB22] and train a better 

model to recognize snow coverage on PV-plants just using the monitoring and weather 

data. 
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