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Abstract:

Service-oriented architectures (SOA) based on Web service technology play an
increasingly important role in many different application areas. The current service
invocation methodology suffers from performance problems and heavy resource con-
sumption when services are used to process large amounts of data. A number of so-
lutions to this problem have been proposed. Unfortunately, these modified invocation
methodologies are applicable only to a limited number of business scenarios, because
they do not provide all features of the traditional methodology. In this paper, we intro-
duce a new service invocation methodology that allows large volume data processing
and does not limit applicability. Our approach macerates the existing request-response
paradigm and incorporates stream semantics into the Web service invocation method-
ology without reducing its features. We describe our stream-based service invocation
and present evaluation results that show the advantages of our approach.

1 Introduction

The paradigm of service-oriented architectures (SOA) becomes more and more attrac-
tive to a variety of application areas. The base concept of SOA is a service. A service
represents a mechanism to enable access to one or more capabilities using a prescribed
interface [OAS06]. Web services [W3CO02] are the de-facto standard for implementing
such a mechanism and thus service-oriented infrastructures. To use a Web service, a client
sends a request to the service interface. The service processes this request and afterwards,
according to the offered functionality, sends a response back to client. This so called
request—response paradigm is a foundation of service-orientation and guarantees loosely-
coupled and autonomous services.

The communication between a client and the services it invokes is message-based. The
size of these messages is performance critical. The well investigated memory con-
sumption and performance problem in the XML-based message communication arises
when serializing or de-serializing XML messages to or from other programming lan-
guage paradigms [CGB02, MF05, CYZ"06, HPL*07]. This inefficiency is owed to
the impedance mismatch between the hierarchical XML model and the (mostly object-
oriented) programming language model that processes the XML content [VEO3]. Thus a
conversion needs to be done, which devours up to 90% of the processing time [DA03]
and up to ten times the in-memory size of its correspondent text-based XML representa-
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tion [VEO3] when creating the whole Document Object Model (DOM) tree. If large data
sets have to be exchanged between client and service, these issues become more evident.

Streaming is a much more efficient way to process large sets of equally structured data
items — well studied in the field of data stream system. However, the stream process-
ing paradigm is hard to realize with the current Web service concept, mainly because the
request—response paradigm of Web service communication does not support service invo-
cations with continuous data. The message serialization and de-serialization is processed
in a single step before the whole message is send and after the whole message arrived, re-
spectively. The straight forward approach of mapping every data items to a single service
invocations proved to be very inefficient [GYSDO08]. Additionally it strongly restricts the
business logic of the service, since it does not allow to process data items in a common
context.

In this paper we introduce a concept to add stream semantics to the Web service invo-
cation and its execution. Our innovative Web service invocation approach macerates the
traditional request—response paradigm to incorporate stream-based semantics and estab-
lishes, thereby, an efficient way to transmit and process continuous and large-scale data
sets by a specific service. Our concept is (i) more efficient in memory consumption and
performance, (ii) provides a common context for all data item in a large volume data set
and (iii) allow for more functionality like intermediate results.

The reminder of the paper is organized as follows. First, we present our approach for
stream-based Web service invocation and execution in detail (Section 2). Second, we
evaluate our approach against current techniques for data transmission on Web service
level, as they can be found in current infrastructures, in terms of response time (Section 3).
Finally, we conclude and give a short outlook on future work (Section 4).

2 Stream-based Web Services

In this section we introduce our approach to incorporate stream semantics into the Web
Service invocation and its execution. It enables clients to transfer large scale and continu-
ous data to a service as a stream. Furthermore, it enables the service to process this data
in a stream-based fashion. This leads to lesser memory consumption within the service
instance, a higher throughput and instant response items of already finished data parts.
These statements are evaluated against other approaches in Section 3.

To provide a formal foundation for the upcoming sections, let D be a data set with n data
items d; so that D = (dy,ds, . ..,d,). Each data item d; represents some kind of equally
structured XML data. A given data set D also can be seen as an amount of single-item
messages with an equally structured content. So the content of a single-item message
corresponds to one data item d; and data set D corresponds to the sum of all single-item
messages sent to the service. This mapping provides a unified view of all data that emerges
between a client and a service and allows for the usage of our stream-based approach in a
consistent and a more general way.
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Figure 1: Invocation model with stream semantics.

2.1 Overview

The foundation of SOA is the request—response paradigm. Therefore, our stream-based
Web Service invocation and its execution in this architecture should retain this fundamen-
tal building block. So to incorporate stream semantics into the Web Services invocation
model and to preserve the fundamental paradigm, three adjustments have to be made. An
overview of the adjustments described below is depicted in Figure 1 and includes the ref-
erence to the specific sections.

First we define a request message R containing data set D of size n as an input stream
S for the service. Furthermore a response message R’ returned by the service containing
data set D’ is defined as an output stream Sp. Since the input stream is limited to the
size of D a stream is only established for the time D is transmitted. Hence it represents a
request in a traditional point of view. Every request I2; with one separate D; creates a new
input stream .S ; and, depending on the service’s functionality, an output stream So ; (see
Figure 1). This implies that every {S; ;, So ;} pair belongs to exactly one client request
R; and one service instance WW; processing I2;. Now we have two streams which preserve
a common context for all data items in D.

Second, data set D has to be modified somehow to be processed by the service in
a stream-based fashion. So data set D is divided into [ processing buckets b; with
B = (b1, b, ..., b) that can be executed by the service in one step. The size and structure
of all processing buckets B are predetermined by the service and have to be described in
the service description (Section 2.3).

Third, in the traditional service invocation model the way a service processes the XML
data has to be adjusted. Traditionally, one service instance W;, which is instantiated by
one service request 17, can randomly access the whole data set D; of its request. W;
builds D§ as the content for R; until D; is processed completely. To incorporate a stream-
based data processing into the service execution, the service instance must be aware of an
input queue where items d; ; arrive and an output queue where response items dg ; have
to be delivered to. Both queues work concurrently that means the instance can already
deliver response items while still receiving request items. In the following subsections we
will describe the three modifications in more detail.
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Figure 2: Stream-based SOAP message.

2.2 Stream Definition

The streams are realized by taking the SOAP specification. Remember a SOAP message
consists of a header containing meta data and a body containing the user data that means
the data set D. We structure the stream in the same way. The header comprises meta
data about the stream itself and is used for negotiation. The body contains the data set
distributed over ! processing buckets b;. Figure 2 depicts the structure of this stream. Ac-
tually, the whole stream of a request message R can be seen as stretched SOAP message.

To transfer R with stream semantics, the SOAP header is sent with all information that
would normally be specified within the traditional SOAP header including all WS-* ex-
tensions. This opens the lower level HTTP connection. Since the whole message is already
streamed using TCP/IP and HTTP, these lower level protocols are used as a channel to es-
tablish the stream and to stream structured XML content.

After establishing the input stream S, the starting SOAP body tag is transmitted. Now
the client can send data set D with the help of processing buckets b;, which actually are
XML snippets of the data set D with a predefined structure and size (see Section 2.3).
Note that the buckets are transmitted in a deeper XML hierarchy level than the already
transfered body tag. When the client has finished sending D, it transmits the closing
SOAP body tag, which resides on the same hierarchical level like the starting body tag,
and the closing SOAP envelope tag. This triggers the disconnection of S;.

The output stream S from the service to the client is established when the first response
bucket b/ has to be sent. This behavior conforms to the traditional approach of sending the
response message. The establishment of output stream So works in the same methodology
as the input stream S7. Since one processing bucket b; can be processed by the service
in one step, the response bucket b; can be streamed back immediately after successfully
processing b; and while still receiving further buckets. So is closed when the last bucket
by, the closing body tag and the closing envelope tag is sent. The advantage of sending
the corresponding body and envelope tags as stream delimiter is that the whole stream
itself forms one large SOAP message. Therefore it can be read by a traditional service,
which buffers the whole XML stream and process the full DOM tree at once.
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2.3 Bucket Definition and Description

In this section, we define the structure of processing buckets in detail and how these pro-
cessing buckets are described within the service description. As already mentioned in 2.1
we divide D into [ processing buckets. This enables D to be processed in a stream-based
fashion since one bucket defines the granularity of D, that is transmitted over the stream
and to the service in one step. Furthermore the concept of processing bucket acts as an
intermediate layer between D and its data items d; and adds conceptional flexibility for
further extensions shortly described in Section 4.

Remember, data set D represents an array of equally structured data items d;. We define

one bucket b; containing m data items with b; = (dy,...,d,,). Each bucket is simply a
collection of single data items in pure XML notation without further information. So one
bucket has the simple textual form of b; = (eq, ..., e,,) with ¢; denotes the root element

of data item d; enclosing all its children elements.

The number of data items in each processing bucket can differ between a request bucket
b; and its response bucket b,. The most common assumption is, that every data item d;
generates exactly one response item d;. This describes a N : N relationship where N data
items generate [V response items. If one data item generates a number of response items,
a 1 : N relationship is reflected. An example is a service that returns all invoices for a
given customer id as single response items. With both relationships, the response stream
allows to stream back response items although not all request items have been processed
completely.

A different case is the N : 1 relationship as it can be found in services implementing
several aggregate functions that, e.g., computes the average value of all data items. Since
the exact average value is computed with the arrival of the last data item d,,, the client has
to wait for D to be processed completely. Thus no response items can be streamed back
in between. But in certain scenarios, preliminary values may be already used for further
processing or for a definition of stop criterions. To avoid this drawback, the application
logic on service side can be extended to put preliminary values to the output stream. These
preliminary values can be flagged with the help of an additional attribute, which can be
easily added to the response item’s XML structure within the service description.

The definition of processing buckets is predetermined by the service. Since the service
provides the implementation to process the buckets, its definition must reside within the
WSDL document of the service. The client uses this bucket definition to transmit the given
data set accordingly. In addition, the WSDL must indicate the capability of the stream-
based service. To describe these two parts, we augment the WSDL document in two sec-
tions. First, we add an attribute st reaming in its own namespace to the operation
element in the porttype section to indicate the stream-based processing capability of this
operation. Second, we augment the XML Schema definition for the request message and
the response message of this operation. Since data set D is an array of equally structured
data items d;, the XML Schema definition describes an unbounded set of complex ele-
ments containing the structure of every data item. To define processing buckets, we add
an attribute processingBuckets to the element that forms the envelope for one data
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<xs:element name="opl"> data set XML structure
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" .../>
<xs:complexType name="..."
nstud:processingBucket="true" nstud:maxsize="10">

<porttype name="..."> porttype section
<operation name="opl"

nstud:streaming="true"> stream-based processing

<i seo I N
e ' operation bucket ... <!--structure of all data items-->
<output ... />
</operation>
< 8 >
</porttype> /xs:complexType

</xs:element>
</xXs:sequence>
</xs:complexType>
</xs:element>

Figure 3: WSDL extensions within porttype section and the data set XML structure.

item. Additionally, an attribute maxsize prescribes the maximum number of data items
that can be bundled as one processing bucket. This attribute allows optimizing the data
transfer for small data items. Figure 3 depicts the WSDL extensions for the op1 operation
to flag it for its stream-based capability and to define its processing buckets. The process-
ing bucket definition for response items is not shown but is labeled in the same fashion as
the request items.

2.4 XML Processing Model

For a stream-based XML processing of D on service side, the traditional XML process-
ing model and hence the programming model have to be adapted. To access the XML
document transmitted to the service, current approaches and implementations stores the
whole XML message in a buffer and the Document Object Model (DOM) tree is built. A
reference of this tree, that is, the reference of its root element is passed to the functional
implementation which can randomly access all nodes of the document. The document D
is processed and a response document D’ is built. Only after processing D successfully,
D’ is returned to the framework. This execution model serves well in the context of the
strict request-response and hence stepwise execution model. In the context of stream-
based document processing three modifications have to be done to the application logic
and to the framework hosting it.

As a first modification we introduce an input queue ;. Since we are not able to guarantee
that all data items d; can be processed in the speed the processing buckets arrive, the input
queue buffers all processing buckets b; and provides an interface for the application logic
to access the application data within these buckets. This input queue @ is instantiated for
every service instance W; and is already depicted in Figure 1.

Second, we incorporate a cursor-like, forward-only XML processing model within the ap-
plication logic. We assume that not all data items d; fit into the service instances main
memory at once, thus the incoming data items have to be accessible in a cursor-like,
forward-only fashion and the application logic has to apply some window semantics to
operate on all d;. The application logic of W} pulls every processing bucket out of the

412



input queue 7 ; and processes it accordingly. Since a processing bucket consists of a list
of data items in pure XML text, these data items can be parsed and a partial DOM-tree can
be built representing all data items in one processing bucket.

The third modification for our approach is the supply of an interface to place already
processed data items d; € D’ in output queue Qo which is used by the hosting framework
to send intermediate results over the output stream. This allows the framework for sending
response buckets b’ while still receiving the request. The framework bundles the items in
Qo into processing buckets according the service description. This output queue Qo is
instantiated for every service instance W; and is already depicted in Figure 1.

3 Evaluation

In this section, we evaluate our stream-based Web service invocation and execution ap-
proach. We investigate how efficiently a large data set can be processed by a Web service.
Assume a large data set D = (dy,ds, ... ,d,) with thousands of equally structured busi-
ness items d;. Furthermore, assume a client, which wants this data set D to be processed
by a Web service W. The client requires a certain number % of service invocations (re-
quests) 7; to process the whole data set. We denote the set of all required invocations as R
with R = (r1,72,...,7%).

We investigate four invocation models, that means four ways to process D with the Web
service W. One of those four is our stream-based message transfer approach. We compare
our approach with the three traditional invocation models bulk message transfer, single-
item message transfer and chunk-based message transfer. Bulk message transfer is the
straightforward way to process data set D with a Web service W. Utilizing bulk message
transfer, we pack the whole data set D with size sp = > sq, into one request and send
it to the service with one service call r so that | R| = 1. After receiving the whole request
message r and thereby the whole data set D, the service W processes the complete data
set. As result W creates a response message ' and sends it back to the caller. Single-item
message transfer is the opposite way to process a data set D with a Web service W. In
single-item message transfer we put every item d; € D in one separate service request
r; so that [R| = |D|. After one item d; has been processed by the service W and we
have received the response, we send a new request containing the next item d; 1. Chunk-
based message transfer is the generalization of the two aforementioned models and was
first formally considered in [SMWMO6]. The main idea is to distribute the items d; of
the data set D to k different service requests r; so that |[R| = k with 1 < k < |D|.
If the items are uniformly distributed, r; contains % data items of D. Obviously, bulk
message transfer corresponds to chunk-based message transfer with k = 1 and single-item
message transfer corresponds to chunk-based message transfer with k = | D|. The chunk
size significantly influences the response time and can be tuned accordingly. For example,
[GYSDOS] proposes an approach to automatically optimize the chunk size.

To evaluate the performance behavior of the four invocation models, we conducted a series
of experiments. In detail, we measured the response time of a Web service invoked with a
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Figure 4: Total response time of different invocation models.

data set D for different numbers of concurrent invocations and different sizes of D. The
service and the clients were hosted on a single machine with 2GB RAM. 512MB RAM
have been assigned to the server as heap size for hosting this single service. Response
times were measured on client side. All results are an average of 30 runs. For chunk-based
message transfer we chose a chunk size of 100 data items. Other chunk sizes showed
worse results.

Figure 4 illustrates the server’s total response time, that means how long the client had to
wait for all data items being processed. Figure 4(a), Figure 4(b) and Figure 4(c) show the
results for one client, two concurrent clients and four concurrent clients, respectively. As
we see, the number of concurrent clients influences the response time of the server by a
constant factor independently of the used invocation model. Accordingly, we see similar
results for each number of concurrent clients. Single-item message transfer has the worst
total response time. Putting every single item in a single message leads to a significant
overhead in message size and message parsing, which results in longer response times.
The overhead arises because the message header is sent and parsed in total n times. Bulk
message transfer and stream-based message transfer do not involve such overhead and,
consequently, show better response times. Although chunk-based message transfer also
leads to overhead, its overhead is significantly smaller and is compensated by advantages
in message processing. Bulk message transfer shows the best performance of all invocation
models for small data sets. For larger data sets, it is outperformed by chunk-based message
transfer and our stream-based message transfer approach. Stream-based message transfer
shows for large data sets the lowest total runtime of all invocation models.

Figure 4 also illustrates the scalability of the four invocation models. Of course, for all
invocation models the response time increases linearly with the size of the data set D. But
the increment differs from model to model. Single-item message transfer scales worst,
since its overhead increase with the size of the data set D. Bulk message transfer scale
better as long as size of D remains within the memory limit (40.000 data items in our
experiment); close to the memory limit, the performance breaks down; beyond the memory
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limit, bulk message transfer is not applicable anymore. Chunk-based message transfer and
stream-based message transfer scale similarly good as bulk message transfer does below
the memory limit. But since both have a constant memory usage they scale also for data
sets larger than the memory.

Aside from their performance behavior, the four invocation models differ in their func-
tional properties. For many business scenarios, the application logic essentially requires
to process data items within a common context. Single-item message transfer does not
provide a common context since every item is processed separately. Chunk-based mes-
sage transfer processes data items chunk-wise; therefore a common context exists for all
items of one chunk. Nevertheless, many scenarios need a common context for all data
items. Bulk message transfer and stream-based message transfer provide such a common
context inherently and are in this respect not restricted to certain business scenarios.

To conclude, the evaluation shows that large data sets cannot be processed efficiently with
common approaches. Bulk message transfer as the traditional invocation model maps di-
rectly to the request—response paradigm. It preserves one common context for all items
of the data set it and enables the service to be implemented stateless. But it suffers from
long latency, i.e., the time until a client receives the first response message, and bad scal-
ability. In contrast, the invocation model single-item message transfer packs every data
item into a single request message. This results in low latency, but it shows a worse per-
formance and does not provide one common context. Chunk-based message transfer, as
the generalized approach, shows the best performance if the optimal chunk size is cho-
sen. But it has mediocre latency and lacks a common context for all data items. Our new
stream-based message transfer approach proves to be superior to the traditional invoca-
tion models. With shortest total response time and the best scalability it shows the best
performance [PVHLOS]. It offers low latency, so the client receives first responses after a
short time. Additionally, it is applicable to a wide range of use cases, because it inherently
provides a common processing context for all data items.

4 Conclusion and Outlook

In this paper, we have extended the Web service environment to enable stream-based invo-
cations and XML processing. Thereby, we utilize the existing protocols and specifications
to lift the already existent streaming in low-level protocols up to the application layer. We
also implemented our approach within an existing SOAP engine and evaluated the perfor-
mance benefits in comparison to other common techniques. In general, our stream-based
approach consists of (i) an extended service interface, (ii) an enhanced SOAP message in-
terpretation with a stream bucket concept, and (iii) an appropriate XML processing model
on application layer. From the evaluation, we can conclude that our stream-based approach
decreases memory consumption and CPU usage for large scale data, while preserving full
applicability.

However, the proposed data bucket concept is considered as a first step, because one bucket
consists only of pure application data and no further information is annotated. This results
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in a compatible but not very robust stream management. A more sophisticated bucket
design incorporating metadata about a bucket allow for more flexibility in bucket process-
ing, more robust data transmission and fine-grained exception management. To annotate
a bucket with metadata, the application data in one bucket can be enclosed with a bucket
envelope in a separate namespace. This envelope comprises metadata like a unique bucket
identifier for a request item and response item correlation or other information like perfor-
mance hints or service status that the client framework can use to optimize its transfer. A
fine-grained exception management can be achieved by replacing certain response items
with warnings or exceptions that apply only to these items. All of this was not scope of
this paper and is considered as future work.
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