A. Schmolitzky, S. Klikovits. (Hrsg.): SEUH 2024,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2024 39

Introducing Tablet-Based On-Site E-exams in a Large
Software Development Course: An Experience Report

Paula Rachow! Christian Rahe? André van Hoorn?

Abstract: For introductory programming and software development courses, an electronic examination
format with programming tasks in an IDE-like environment seems like the natural choice. However, for
our courses at the Universitit Hamburg, with up to 450 exam participants, we have so far still conducted
paper-based exams that are time-consuming to grade. In the context of modernizing the assessment
methods, this paper explores and reflects on introducing tablet-based e-exams in the introductory
module “Software Development 2”. This experience report highlights the motivation, challenges,
setup, outcomes, and lessons learned of this transition. The implementation of e-exams mirrors
industry practices and aligns with the course’s learning objectives. Moreover, the results showcase
improved efficiency in grading, reduced logistical challenges, and enhanced accessibility. However,
adopting e-exams also introduces challenges, including a dependency on a robust technological
infrastructure. This paper offers valuable insights into the advantages and risks for educators seeking
to integrate e-exams into their curriculum. Despite initial challenges, the positive outcomes of this
transition encourage us to continue integrating e-exams into our curriculum in the future.

Keywords: Digital e-exams; Programming education; e-Learning; Automated grading

1 Introduction

In the summer semester of 2023, we significantly changed how we assess students in
the final exams in the foundational programming module “Software Development 2” at
the Universitit Hamburg. We shifted from using traditional paper-based exams to on-site
tablet-based e-exams with the learning management system Moodle# for the summative
assessment. We were driven by our desire to make assessments more practical and efficient.
Since we were already familiar with using Moodle and had learned from our experience with
remote e-exams in 2021 (as a response to the COVID-19 pandemic), we felt prepared for this
change. This paper aims to share the reasons behind this shift, explains how we adapted to
our specific situation, describes the technology we used, and passes on our learned lessons.
We hope to guide other educators who may be considering a similar transition.

1 Universitit Hamburg, Vogt-KélIn-Str. 30, 22527 Hamburg, Deutschland, paula.rachow @uni-hamburg.de

2 Universitit Hamburg, Vogt-KolIn-Str. 30, 22527 Hamburg, Deutschland, christian.rahe @uni-hamburg.de

3 Universitit Hamburg, Vogt-KolIn-Str. 30, 22527 Hamburg, Deutschland, andre.van.hoorn @uni-hamburg.de
4 moodle.org

©®® doi:10.18420/seuh2024_03


paula.rachow@uni-hamburg.de
christian.rahe@uni-hamburg.de
andre.van.hoorn@uni-hamburg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/seuh2024_03

40 Paula Rachow, Christian Rahe, André van Hoorn

2 Background: Digital assessment

E-exams are digital exams conducted through an e-testing system [Ba21] and they can be
held either on-site or remotely. They come in two formats: open-book and closed-book.
Open-book e-exams allow students access to reference materials, encouraging them to
synthesize information and apply critical thinking. Closed-book e-exams require students to
rely solely on their knowledge, skill, and their comprehension of the subject matter.

The whitepaper by Bandelt et al. [Ba21] lists some practical examples of digital exam
implementations at different universities, including e-exams. For instance, the University of
Zurich shares similarities with our approach, but they rely on a large computer pool, and do
not employ tablets as we do [Hal4]. The University of Applied Science Munich provides
the automation framework EXaHM for digital exams to steer the exam process, like the
startup and shutdown of the PCs>. Other papers about digital exams often deal with other
scenarios, e.g., Bottcher et al. [BT23] report about conducting remote open book exams.

More study was devoted to learning management systems and online programming platforms
utilized throughout the semester, such as Artemis [KS18] and OPPSEE [SB23]. However,
there is a notable gap in the literature addressing their specific role in exams. Aspects such
as automated feedback [Be21] and strategies for more effective manual grading of student
exercises [Lal9] are crucial but are less relevant in the context of e-exams. Gandraf3 and
Schmolitzky [GS19] present another Moodle plugin for programming exercises that looks
similar to the CodeRunner plugin used in our setting and described in a later section.

3 Our drivers for switching to an e-exam

For us, a strong motivation for implementing e-exams in the context of the course included
several compelling expectations.

Real-world relevance. E-exams provide a practical assessment environment mirroring real-
world software development, where digital tools like compilers and IDEs are commonplace.
By providing the students with a compiler for coding tasks, students are assessed in a more
realistic environment. It allows them to concentrate on understanding and applying core
programming concepts rather than memorizing syntax.

Constructive alignment. Unlike traditional paper-based assessments, e-exams closely
resemble the learning objectives and the exercise contents. They emphasize comprehension
and application, discouraging mere memorization. This tailored approach ensures that the
evaluation accurately measures whether students have acquired programming skills.

Fast feedback. Grading of e-exams promises a high degree of automation, allowing students
to receive timely feedback on their performance, ensuring that students who failed have
enough time to prepare for the second exam date in the same semester.

5 https://www.hm.edu/lehren/kompetenzzentrum_digitales_pruefen/EXaHM.de.html


https://www.hm.edu/lehren/kompetenzzentrum_digitales_pruefen/EXaHM.de.html

Introducing Tablet-based On-Site E-Exams in a Large Software Development Course 41

Reduced effort. Handling physical exam papers, ensuring fairness in grading, and managing
logistical challenges are time-consuming for educators. E-exams can streamline this process,
enabling instructors to focus more on teaching and content development.

Error mitigation. With e-exams, there are fewer sources for errors while calculating points,
and grading the exams as this is done automatically. Furthermore, changes to the accepted
solutions or grading scheme can be automatically applied to all submissions.

Customized question types. Electronic platforms offer diverse question types beyond
multiple-choice, especially coding exercises, allowing for a more comprehensive evaluation
of the students’ practical programming skills.

Accessibility and inclusivity. E-exams support diverse needs with features like adjustable
fonts, screen readers, and alternative input and, therefore, promote inclusivity and easy
accommodations for students with approved reasonable (special) accommodations.

Environmentally friendly. E-exams reduce the need for physical paper, promoting environ-
mental sustainability by reducing waste.

Data-driven insights. Electronic platforms often generate analytics and reports, providing
educators with valuable data on student performance trends, areas of struggle, and overall
class performance.

Economic. E-exams eliminate the need for printing — cutting costs on paper, ink, and
equipment. There is also less need for physical storage space afterward and no student
assistants have to be employed to help with the grading.

4 Our setting

4.1 Course context

This paper presents a reflection on introducing on-site closed-book e-exams for the
“Software Development 2” module at the Universitdt Hamburg. The module is attended by
approximately 450 students each summer semester. The students, typically in their second
semester, are enrolled in various bachelor programs, including informatics, human-computer
interaction, computing in science, and information systems.

The module provides students with a foundational understanding of software development
principles and practices — with a focus on object-orientation. It comprises one weekly
lecture and a two-hour in-person exercise session. During these sessions, the students work
on programming exercises in pairs or (in the second part of the semester) in groups of
four. In addition to these sessions, students complete mandatory weekly Moodle quizzes —
including programming tasks — to reinforce their learning.

There are two date options to take the exam each summer semester. The exam has a duration



42 Paula Rachow, Christian Rahe, André van Hoorn

of 120 minutes. In the summer semester 2023, 203 students participated on the first exam
date and 108 students participated on the second exam date.

4.2 Lessons learned from a prior remote e-exam

During the COVID-19 pandemic, we had already implemented an e-exam in 2021. However,
this e-exam was conducted remotely and in an open-book format. Through this experience,
we gained a pool of e-exam questions and identified several critical issues that have informed
our decision-making process for the transition to an on-site closed-book e-exam.

Scalability. We encountered significant scalability issues with our Moodle platform —
particularly related to the CodeRunner plugin and back-end. After all the exams were
automatically submitted and the results were calculated, the system experienced a critical
breakdown. Luckily, only the student changes from the last few seconds were lost. This
incident highlighted the need for a more robust and scalable infrastructure to support the
increasing demand for digital assessments. However, it also showed that an e-exam with
many students is possible.

Foundational course. Our module is a foundational course in the second semester. According
to Wollersheim et al. [WMS11], foundational courses primarily target the lower levels of
cognitive learning, which encompass ‘knowing’ and ‘understanding’ [Kr75]. Therefore,
crafting questions for an open-book exam posed a challenge. It is essential to balance that
questions are not easily searchable online and still have a reasonable level of complexity. It
convinced us to perform only closed-book tests in the future.

Cheating. We encountered multiple instances of cheating. Therefore, we were concerned
about the integrity of remote exams, as it is difficult to ascertain who is in front of the
computer and whether any unauthorized assistance is present in the room. Especially
since the Universitit Hamburg does not allow online proctoring of students, which further
complicates the issue. Due to these reasons, we preferred to stay with on-site exams.

Communication. We realized that direct communication on-site with students is notably
easier, especially for delivering announcements and addressing last-minute concerns or
queries. It also simplifies communication among exam supervisors, allowing for seamless
coordination and immediate response to unforeseen circumstances.

Responsibility shift. A take-home exam shifts the responsibility to students for a stable
internet connection and suitable testing conditions, potentially disadvantaging some. Despite
the tablet being less ergonomically comfortable than the students’ usual setups, on-site
e-exams with tablets provide a controlled environment and are a good option when a large
pool of computers does not exist.



Introducing Tablet-based On-Site E-Exams in a Large Software Development Course 43

4.3 Procedure and effort comparison

In this section, we compare procedural aspects and effort involved in conducting an e-exam
instead of a traditional paper-based exam. Table 1 summarizes the processes/tasks and
(estimated) efforts elaborated below. By examining each process step, we aim to provide a
detailed insight into the logistical considerations and administrative workload associated
with both assessment methods. The shift to e-exams alters time allocation, with more even
planning across the semester. During the exam, there are additional technical questions but
after the exam, tasks like grading happen faster. Additionally, a significant portion of the
additional effort is redirected toward the IT administration.

Tab. 1: Effort of processes and tasks for e-exams compared to paper-based exams.

Task 1%t iteration | Future iterations

Preparation ++ 4
Creation of exams ++ +
Organization + o

Execution + +
Supervision + +

Post-processing - --
Grading - --
Analysis -- --
Exam review - --

- - significantly less effort, - less effort, o same effort, + more effort, ++ significantly more effort
4.3.1 Preparation

Creating exam questions is not more complex than with a paper-based exam in ETgX. While
Moodle allows for more complex code tasks, the assurance of the automatic evaluation
induces more effort during setup, in addition to the effort of the course creation, configuration
settings, and student enrollment. However, the organization of the printing is no longer
necessary. In addition, the tasks can be randomized and random questions can be drawn so
that the degree of reuse of the exam tasks is high.

Managing tablets —updating software, charging batteries, and preparing the e-exam
configuration — also entails a higher overhead. However, in our case, the responsibility for
the tablets lies with the IT administration staff.

4.3.2 Execution
We had additional technical assistance from the IT administration team to ensure a smooth

process. They provided technical support and facilitated the delivery and distribution of the
tablets. For us, the necessity of picking up and carrying paper exams has been eliminated.



44 Paula Rachow, Christian Rahe, André van Hoorn

Our university only has 210 tablets (iPads) available for e-exams. Therefore, we used
additional PC pools. In the future, we plan to extend the lecture hall reservation and let the
students write in two cohorts.

4.3.3 Post-processing

Exam grading. With the paper-based exam, we had to organize the exam grading process,
including finding and preparing rooms, graders, and files. The exam grading used to take
up to 4 days with two instructors and multiple student assistants. The grading per exam
took approximately 35 minutes including an additional review of each grading. Grades
were usually published two weeks after the exam. With the e-exam, the grading is done
automatically and the publication on the same day.

Exam review. For the exam review, we had to look for the students’ exams and hand them
out. With Moodle, we can just change the permission for the student to be able to see
the results. There is also less chance that the grading has to be changed since the grading
is performed automatically. Moreover, if we notice a general error in the rules for the
automated grading, we can easily reassess all exams automatically.

5 Technical realization of the e-exam

Fig. 1: Students taking e-exam. Fig. 2: The iPad setup with keyboard.

5.1 Moodle setup

We implemented our e-exam in Moodle, a popular open-source learning management
system. We chose Moodle because the MIN faculty at the Universitit Hamburg operates its
own instance and we and the students were already familiar with using it during the semester.
Each e-exam has a dedicated Moodle course, implemented as a Moodle fest activity with
password protection. Each student has an individual timer of 120 minutes, after which the
test terminates automatically. The timer can be extended for groups or individual students,
especially for those with approved special accommodations, granting them the necessary
extra time for the exam. The setting “Full screen pop-up with some JavaScript security”
ensures an undistracted exam environment by hiding chat and menus.



Introducing Tablet-based On-Site E-Exams in a Large Software Development Course 45

5.2 Hardware setup

Students used 9th generation iPads with integrated keyboards for the exam (see Fig. 2) as they
are portable and easy to manage. Managed through the Jamf School fully supervised MDM
system®, these iPads offer precise control over functionalities, with deliberate restrictions
on features like the microphone, camera, and auto-fill options. Bluetooth is deactivated to
prevent external interferences and the iPad exclusively connects to the eduroam network.
Strict DNS filtering controls access to specific domains, allowing connections only to
designated university servers. The exam link is easily accessible through a home screen
icon (WebClip), ensuring quick deployment. For future reference, the tablet’s device ID is
transmitted during the exam. To maintain a secure testing environment, browser navigation
is disabled during the exam. For the computers, we used the Safe Exam Browser? to limit
access exclusively to the e-exam.

5.3 Question types

We implemented a Moodle test with 33 to 37 questions per exam, summing up to 120 points.
The exam takes 120 minutes so the students can estimate that they should take one minute
per point. These exams closely mirrored the format of previous paper-based exams. The
questions were mostly independent of each other and covered the following question types:

Single choice. We implemented single-choice questions through the multiple-choice question
type in Moodle. E.g., we quizzed the students about the definitions of the SOLID principles.

Drop down. We implemented various drop-down questions: Cloze (gap fill) questions,
selectable short answers, and matching questions. Examples are a cloze for the design-by-
contract model and matching Java streams to their corresponding for-loop versions.

CodeRunner. The CodeRunner? is a plugin for Moodle and was already provided by the
university. Unlike traditional formats, CodeRunner requires students to write and execute
code. By emphasizing the execution of code over memorizing syntax, CodeRunner aligns
with the module’s emphasis on practical application and critical thinking in software
development. Additionally, assessments in the CodeRunner format are equipped with
a compiler, allowing students to concentrate on algorithmic logic and problem-solving
strategies without becoming entangled in syntactical details. This format proves invaluable
in preparing students for the coding challenges they may encounter in their future careers.
In addition, we implemented a graphical UML tool with the CodeRunner plugin to test
the students’ UML knowledge. Fig. 3 shows a CodeRunner example question where the
students had to rewrite the code with a lambda expression.

¢ https://www.jamfschool.com/
7 https://safeexambrowser.org
8 https://moodle.org/plugins/qtype_coderunner


https://safeexambrowser.org
https://moodle.org/plugins/qtype_coderunner

46 Paula Rachow, Christian Rahe, André van Hoorn

Lambda-Expressions

Given is a method call that uses an anonymous inner class to implement the functional interface
Messagelistener.

_chatService.addMessageListener(
new MessagelListener()

@Override
public void messageReceived(Person sender, String message)

System.out.println(sender.getName() + ": " + message);

Task:

Rewrite the source code to use a lambda expression instead.

Answer: (penalty regime: 0 %)
Reset answer

1 _chatService.addMessagelistener((Person sender, String message) ->
p System.out.println(sender.getName() + ": " + message));

Precheck

Hints:

« If the behavior of the operation (the content of the expression) has been changed, the
assignment will score O points.

Fig. 3: A programming question about lambda expressions.

Excluded question types. We excluded question types like drag-and-drop because they
were not consistently working on the tablet. We also excluded the “Random Short-Answer
Matching question type” in the second exam because there was a bug with the evaluation®.
Moreover, we did not use free text or similar question types because we wanted to be able to
evaluate everything automatically.

5.4 Moodle extensions

We implemented minor UI enhancements using a Moodle text block in the exam course’s
sidebar, containing a script tag and incorporating browser-side JavaScript for page modifica-
tion. One such improvement involved displaying each student’s name and ID number at
the top of the browser window. This streamlined the identity verification process for exam
supervisors, eliminating the need for students to navigate or scroll to their profile, thereby

9 https://tracker.moodle.org/browse/MDL-76676



Introducing Tablet-based On-Site E-Exams in a Large Software Development Course 47

expediting the process. Additionally, we modified the submission timer in Moodle to only
display seconds during the last ten minutes, reducing visual distractions.

When a quiz is submitted in Moodle, all answers, including CodeRunner questions with
potentially resource-intensive testing logic, are automatically processed for grading. Cur-
rently, there is no option to disable this feature. Recognizing the potential strain on our
infrastructure from a surge of simultaneous submissions, we took proactive measures to
prevent exams from being submitted manually in the first place.

Preventing auto-submissions. We configured the exam test activity with the timing option
“Attempts must be submitted before time expires, or they are not counted”. Using JavaScript
injection, we prevented the timer from expiring automatically, thus avoiding premature
grading. This way, for students with an expiring timer, no automatic grading was initiated.
Students were informed in advance that their exam status would show as ‘“Never submitted”.

Preventing manual submissions. In our exam setup, students were able to exit the exam
early. To prevent unintended automatic grading while others were still working, we disabled
the “Submit” button. Instead, we instructed students to seek a supervisor’s assistance for
submission. The supervisor would then apply a user override to conclude the exam, resulting
in the “Never submitted” status and averting automatic grading.

5.5 CodeRunner extensions

The Java template in CodeRunner combines student answer code and test code in a single
compilation unit. If the student code doesn’t compile or the test code accesses missing
elements, the raw compilation error is presented. This can be confusing for students due to
line number offsets and errors referencing code they have neither written nor seen before.

Missing methods. In exams, we consider it essential to award part of a question’s points for
incomplete answers wherever possible. To enable testing of student code with only a subset
of required methods, we utilized the Java Reflection API for property accesses, constructor,
and method calls. This approach allows specific test cases to fail with a runtime exception,
rather than rendering the entire answer invalid.

Compilation errors. For the majority of code questions, compilation was required to
receive credit. In some cases, however, we wanted to recognize partially correct answers
even if they had syntax errors. To ensure we could still run test code if the student code did
not compile, we inserted the student submission into our CodeRunner test template as a
string and compiled it in memory using the JavaCompiler class. This approach allowed
us to analyze properties of the submitted source code, e.g. to award partial credit for the
presence of certain methods or constructs, even if we could not test its runtime behavior.

Introducing an additional computational cost per question granted us valuable flexibility
in question design. For instance, in one question, students needed to identify and fix three



48 Paula Rachow, Christian Rahe, André van Hoorn

separate compilation errors in a provided code snippet. We were able to award partial credit
even if errors persisted in the student’s code.

6 Lessons learned

In this section, we explore lessons learned from implementing e-exams, covering general
and technical insights, each rooted in one of the expectations that led to this transition.

Real-world relevance: We were able to pose more complex coding tasks and the students
were able to use a compiler to iteratively solve them. An IDE would have been even better
and closer to practical programming, but it also comes with additional effort.

Constructive alignment: The students were already familiar with the type of questions
and the environment from the Moodle quizzes during the semester and could focus on the
questions rather than the technical infrastructure.

Fast feedback: If there are no complications in grading— such as server overload or
solutions — the grades can be published on the same day.

Reduced effort: Efficiency improved significantly with reduced grading efforts. However,
there is an increased effort for the initial question creation, mainly because we wanted to
be able to grade each question automatically. However, we hope that the incorporation of
randomization rendered questions highly reusable. For the coding questions, the students’
answers usually must be compilable for us to grade them automatically. While this poses a
slight disadvantage for students with partially correct answers, we believe it remains feasible
and fair, thanks to the compiler’s availability and unlimited compiler runs for the students.

There was a considerable demand for IT system administration. To further optimize the
process, dedicated exam rooms with proper technological infrastructure could mitigate
technical issues and provide a controlled, focused examination environment.

Error mitigation: We enhanced accuracy by eliminating error-prone steps, including
manual grading, manual data calculation, and manual transfer to Excel and Stine'°, the
information system of the Universitit Hamburg. This transition to automated grading
significantly enhanced accuracy in the assessment process. This also became obvious when
there were no grade corrections after the exam review and no significant changes in the
automatic assessment.

Customized question types: Moodle questions offer students a more intuitive answering
experience by making the desired type of answer clearer. Moodle questions are also easier
for instructors to create compared to paper-based exams in IXTEX, which can be more
time-consuming and may not provide the same level of customization.

10 https://www.stine.uni-hamburg.de/



Introducing Tablet-based On-Site E-Exams in a Large Software Development Course 49

Accessibility and inclusivity: While we acknowledge the advantages, we did not need it for
the initial two e-exam instances.

Environmentally friendly: For the previous exams, we had to print 10,500 pages for the
two exams that are now no longer necessary.

Data-driven insights: Moodle automatically provides the facility index and discriminative
efficiency for each question!. It also indicates which questions need a review depending on
the grading. Currently, the grade distribution appears to be absent and there is only a point
distribution diagram in increments of ten points.

Economic: There was no need to pay any student assistants to help with the grading.

7 Risks and Constraints

Despite the many advantages of e-exams, there are also additional risks and constraints:

Strong dependency on infrastructure. Successful e-exams rely heavily on technological
components such as tablets, Wi-Fi, platforms like Moodle, and authentication services, all
requiring reliable operation. In large organizations like universities, avoiding maintenance
during exams poses a challenge. In our case, a pre-scheduled and non-reschedulable
maintenance window coincided with the first exam. Fortunately, all systems operated
smoothly on the day. Going forward, we have proactively planned around maintenance dates
to preempt any potential disruptions to the examination process.

Limited infrastructure capacity (scalability): Implementing e-exams places a significant
demand on the infrastructure. The system must be robust enough to handle a large number
of students simultaneously accessing resources, submitting responses, and interacting with
the assessment platform. Scaling up the infrastructure to accommodate a surge in usage
during exam periods is essential to prevent potential technical bottlenecks.

Capacity of devices, rooms, and resources: With only 210 available tablets, accommodating
more students necessitates a sequential exam approach which takes more time and can
potentially lead to scheduling conflicts. This year, we had to let some students participate in
the PC pool because we could not extend the lecture hall reservation. For the future, we
booked double the amount of time to allow for two cohorts.

Additional error sources: In e-exams, potential errors can stem from technical settings
and human factors. For instance, incorrect configurations or platform settings can disrupt
the exam process. Additionally, students may face challenges with passwords, leading to
delays. To ensure a smooth assessment, educators must carefully set up the digital exam
environment and have plans to address any unforeseen issues swiftly.

I https://docs.moodle.org/403/en/Quiz_statistics_report


https://docs.moodle.org/403/en/Quiz_statistics_report

50 Paula Rachow, Christian Rahe, André van Hoorn

8 Conclusion

In conclusion, introducing e-exams in our software development course has proven highly
beneficial. Positive student feedback reaffirms the effectiveness of this transition aligning
with the findings of Martin et al. [Ma22] that digital formats reduce stress and anxiety.
Notably, we observed no significant differences in grade distribution compared to previous
paper-based exams. By entrusting the technical tasks and responsibilities to the dedicated
team at the university, we have significantly reduced our administrative workload. This
shift allows us to concentrate our efforts on the core aspects of teaching and content
refinement. Looking ahead, we anticipate that the long-term benefits will outweigh the
initial implementation expenses.

References

[Ba21] Bandtel, Matthias et al.: Digitale Priifungen in der Hochschule. Hochschulforum
Digitalisierung, 2021.

[Be21] Bernius, Jan Philip et al.: A machine learning approach for suggesting feedback
in textual exercises in large courses. In: Proc. 8th L-AT-S. 2021.

[BT23] Béttcher, A.; Thurner, V.: Digitale Priifungen fiir Softwareentwicklung im
“Bring Your Own Device, Open Book, Open Web”-Format. In: SEUH 2023.
2023.

[GS19] GandraB3, N.; Schmolitzky, A.: Automatisierte Bewertung von Java-
Programmieraufgaben im Rahmen einer Moodle E-Learning Plattform.
In: Proc. ABP. 2019.

[Hal4] Halbherr, Tobias et al.: Making examinations more valid, meaningful and
motivating: The online exams service at ETH Zurich. In: EUNIS Journal of
Higher Education. 2014.

[Kr75] Krathwohl, David R et al.: Taxonomie von Lernzielen im affektiven Bereich.
Beltz, 1975.

[KS18] Krusche, S.; Seitz, A.: Artemis: An automatic assessment management system
for interactive learning. In: Proc. 49th ACM SIGCSE. 2018.

[Lal9] LaB, Christopher et al.: Stager: Simplifying the Manual Assessment of Pro-
gramming Exercises. In: SEUH 2019. 2019.

[Ma22] Martin, Robert J et al.: Digital, Online, Take-Home—University Students’
Attitude towards Different Examination Formats. In: IEEE GeCon. 2022.

[SB23] Schmolitzky, A.; Burau, H.: OPPSEE-Eine Online-Plattform zum Program-
mieren Uben. In: SEUH 2023. 2023.

[WMSI11] Wollersheim, H.-W.; Mérz, M.; Schminder, J.: Digitale Priifungsformate. Zum

Wandel von Priifungskultur und Priifungspraxis in modularisierten Studiengéin-
gen. Zeitschrift fiir Pidagogik 57/3, 2011.



	Titelseite
	Vorwort
	Tagungsleitung
	Programmkomitee
	Organisationsteam
	Inhaltsverzeichnis
	SEUH 2024
	Session 1
	Herausforderungen und Angebote für heterogene Kohorten in der Softwareentwicklung – Veronika Thurner, Axel Böttcher
	Ein kombiniertes Rahmenmodell zum Programmierenlernen – Robert Ringel, Hermann Körndle
	Introducing Tablet-based On-Site E-Exams in a Large Software Development Course: An Experience Report – Paula Rachow, Christian Rahe, André van Hoorn

	Session 2
	EvalQuiz – LLM-based Automated Generation of Self-Assessment Quizzes in Software Engineering Education – Niklas Meißner, Sandro Speth, Julian Kieslinger, Steffen Becker
	TILE and MASS, a retrospective – Steffen Dick, Teresa Dreyer, Christoph Bockisch
	SWTbahn: An Embedded Software Demonstrator in Symbiosis with Embedded Software Education – Bernhard M. Luedtke, Eugene Yip, Gerald Lüttgen

	Session 3
	Was heisst ``Programmieren'' im Zeitalter von LLM-basierten Programmier-Assistenten? – Thomas R. Gross

	Session 4
	A Conceptual Framework to Transform Coding Education in Times of Generative AI – Stefan Bente, Natasha Randall, Dennis Wäckerle
	Lernräume unter Verwendung von generativen Sprachmodellen – Victoria Geisel, Christian Schindler, Nils Stein, Stefan Bente


	Autor:innenverzeichnis

