
COMDECO: Composable Derivative Contracts
Introducing end-user oriented technologies to Financial Engineering

Markus Reitz∗

Software Technology Group
University of Kaiserslautern

P.O. Box 3049, 67653 Kaiserslautern
Germany

reitz@informatik.uni-kl.de

Abstract: Designing and valuating derivative contracts belongs to a financial engi-
neer’s daily tasks. Their almost unlimited flexibility1 has already created the need for
computer-aided techniques – typically spreadsheet-based software solutions. Lacking
in-depth software development expertise promotes inflexible prototypes individually
developed for each new contract to be designed and valuated. Scalability is worse
and time constraints in general prevent deliberate solutions not tied to specific prod-
ucts. COMDECO2 provides a conceptual and technical framework supporting efficient
design and valuation methodologies for current and future contracts by adapting and
augmenting state of the art software technology concepts. Based on ACTIVE DOCU-
MENTS, end-user oriented composition styles without the need for programming skills
are supported. This paper summarises COMDECO’s overall objectives, illustrates how
ACTIVE DOCUMENT technology is used in financial engineering, and sketches future
directions of work.

1 Introduction

Starting with simple calls and puts about fourty years ago, the demand for all new finan-
cial products results in a steadily growing plethora of derivatives. Albeit having evolved
into an important market segment, design and valuation methodologies have only slightly
changed. Paper-based termsheets specifying contracts using mathematical formulae in
conjunction with textual descriptions have been superseded by spreadsheet-based solu-
tions, but fundamental concepts remain almost the same, making current electronic rep-
resentations tentative solutions. More and more, problems due to increasing complexity
and the inability to easily incorporate modern concepts of software technology become
apparent. Even worse, financial engineers need in-depth software development expertise,

∗Supported by the cluster of excellence Dependable Adaptive Systems and Mathematical Modeling (DAS-
MOD) of Rhineland-Palatinate, Germany.

1“With derivatives you can have almost any payoff pattern you want. If you can draw it on paper, or describe
it in words, someone can design a derivative that gives you that payoff.” (Fischer Black, 1995)

2Composable Derivative Contracts is a subproject of DASMOD (http://www.dasmod.de).

564



Adding a cap Adding the upper bound value

Contract Component Repository

Figure 1: Visually composing a derivative contract by extending an already available one. A cap
component is added, resulting in a transitional document state indicated by a yellow background.
By adding an upper bound, the document reenters the valid state and is ready for valuation again.

because significant programming skills are required in order to perform necessary adap-
tations. In practice, financial engineers usually augment Microsoft Excel spreadsheets
with functionality supplied by dynamic link libraries (DLL), bridged by Visual Basic for
Applications (VBA) glue code or wrapper code. An end-user oriented tool chain letting
financial engineers focus on the design and valuation of derivative contracts without the
need for low-level programming is not existent.

2 Overview of COMDECO

One of COMDECO’s main goals is a clear separation of software engineering and financial
engineering aspects. A conceptual end-user compatible framework for the construction
and valuation of derivative contracts is provided, usable without any programming skills.
End-users utilise components as building blocks to create contracts. Customising and
extending capabilities of the derivative contract development environment is performed
by adding or removing components stored in a repository. The provided flexibility goes
beyond that of simple preference adjustments common in current software systems.

A derivative contract is modeled as an ACTIVE DOCUMENT [Rei06], a combination of
the well-known document metaphor and component-oriented principles. The resulting
hypertermsheet resembles similarities with its fixed representation counterparts, but incor-
porates many advantages of current software technology. Using components as building
blocks, any derivative contract is a piece of software composable by non-expert end-users.
Creating a derivative contract means selecting appropriate components from the system’s
component repository and combining them by intuitive drag and drop gestures (see Fig-
ure 1). Technically, composition is based on the decorator pattern [GHJV97] allowing for
an iterative contract construction by composing appropriate components. Besides compo-
nents as fine-grained building blocks, already designed contracts stored in repositories act
as coarse-grain units a financial engineer can make use of. Repositories grow with every
newly designed contract, making them an important value asset. For long-term persistence,

565



an ACTIVE DOCUMENT modeling a financial contract is rendered to a XML-based repre-
sentation. Besides simplifying interaction with third party tools, this representation is an
alternative to visual composition techniques, too. Being a high-level declarative descrip-
tion3, textual composition is easier to handle for end-users, because of a domain specific
vocabulary removing the impedance mismatch which is present in case of general-purpose
programming language usage4. The provided vocabulary largely maps to components di-
rectly, e.g. Figure 1 demonstrates a composition with contract, floor, cap, constant, ob-
servable, derivative, sell, acquire, and condition as involved components5.

Operating on high-level concepts, e.g. caps and floors, instead of possibly ambiguous
mathematical operators such as min or max provides additional advantages far beyond
improved readability and optimised training curves. Structural constraints such as ”Any
cap component has to be related to either a observable or a constant component.” and
semantical constraints such as ”For the loss protection barrier F and the profit limitation C
applied to an underlying’s performance, the condition F < C should hold.”6 are checkable
by the ACTIVE DOCUMENT runtime system, guiding the user during the composition
phase, possibly providing hints supporting an explorative composition style.

In order to trade contracts, the fair price has to be determined. At least three categories of
methods have to be considered: closed-form solutions, Monte Carlo simulation, and tree-
based algorithms. Although tree-based algorithms represent financial engineering’s swiss
army knife, using closed-form solutions when possible significantly reduces computation-
ally efforts. Under certain circumstances, Monte Carlo simulation might be desirable,
too. Moreover, valuation models such as Black & Scholes or local & stochastic volatility
models have to be taken into account, further complicating the valuation phase of deriva-
tive contracts. Hence, a categorisation scheme making use of additional meta-information
gained by querying the ACTIVE DOCUMENT representing the derivative contract to be
valuated allows for (ideally) automatic selections of best-fitting approaches. Instead of
manual programming efforts, appropriate algorithms & models are automatically selected,
performing fair price calculations with little or no user interaction, removing currently
common error-prone programming tasks without loosing flexibility. As in the case of
vocabulary extensions, available valuation capabilities can be extended by deploying sup-
plemental components. In contrast to common isolated applications, deployment affects
the whole system, i.e. valuation and design facilities, triggering automatic adaptation of
the system to the new configuration.

An end-user oriented approach should be seamlessly widenable to a larger scope of users
without requiring changes to the conceptual model. The following scenario would be a
straightforward extension when web-enabling COMDECO’s tool chain.

The interest of small and medium investors in alternatives to stocks and bonds has been
rising for years, but individually tailored products do not yet exist. Derivative contracts are

3The suitability of functional programming languages such as Haskell for the description of financial contracts
was pointed out in [JE05].

4In fact, COMDECO’s XML description is a domain-specific language.
5For a detailed discussion concerning these and other aspects refer to [RN06].
6In case of F ≥ C, the payoff function characterising the contract (P = min(max(X, F ), C)) would be

independent of X, which is almost always not the intended design.

566



OTC7 products only offered to large scale investors due to high break-even points. Addi-
tionally, small and medium investors cannot be expected to have the necessary know-how
to conduct negotiations autonomously, making the financial engineer carrying out design
and valuation for each contract an important expense factor. Besides not requiring pro-
gramming expertise, COMDECO provides a high-level description language for derivative
contracts which operates on concepts, not formulae, requiring less mathematical knowl-
edge. Investors will be able to construct contracts by themselves, using a specific set
of components provided by next generation online banking systems. The result will be
checked & valuated and acceptance or rejection of the offered conditions is decided just in
time by the investor. The transaction is completed by charging the investor’s account with
the appropriate amount of monetary units in case of acceptance.

3 Conclusions

Financial Engineers are usually not software engineers, creating the need for end-user
compatible frameworks which do not require programming skills to design and valuate
derivative contracts. COMDECO provides such a framework based on ACTIVE DOCU-
MENT technology. Derivative contracts are modeled as ACTIVE DOCUMENTS, combining
state of the art computer science concepts and an intuitive document metaphor, resulting in
a hyperdocument. By making use of end-user oriented technologies, the potential audience
of COMDECO’s derivative contract design tool chain goes beyond financial engineers.
Next generation online banking systems, allowing a person in the street (PITS) [Ras04]
to autonomously design derivatives using an explorative and guided composition style are
possible application scenarios for the concepts and techniques provided by COMDECO.

References

[GHJV97] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1997.

[JE05] S.L. Peyton Jones and J.-M. Eber. How to write a financial contract, volume Fun Of
Programming of Cornerstones of Computing. Palgrave Macmillan, 2005.

[Ras04] J. Raskin. The humane interface: new directions for designing interactive systems.
Addison-Wesley Pearson Education, 2004.

[Rei06] M. Reitz. Active Documents - Taking advantage of component-orientation beyond pure
reuse. In Proceedings of the 11th Workshop on Component-Oriented Programming
(WCOP), 2006.

[RN06] M. Reitz and U. Nögel. Derivative Contracts as Active Documents - Component-
Orientation meets Financial Modeling. In Proceedings of the 7th WSEAS International
Conference on Mathematics and Computers in Business and Economics (MCBE), 2006.

7Over The Counter, i.e. terms and conditions are negotiated between vendor and vendee in contrast to off-
the-shelf financial products.

567


