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Abstract: Sequence and secondary structure analysis can be used to assign

putative functions to non-coding RNAs. However sequence information is changed

by post-transcriptional modifications and secondary structure is only a proxy for

the true 3D conformation of the RNA polymer. In order to tackle these issues we

can extract a different type of description using the pattern of processing that can

be observed through the traces left in small RNA-seq reads data. To obtain an

efficient and scalable procedure, we propose to encode expression profiles in
discrete structures, and process them using fast graph-kernel techniques.

We present BlockClust for both clustering and classification of small non-

coding RNA transcripts with similar processing patterns. We show how the

proposed approach is scalable, accurate and robust across different organisms,

tissues and cell lines. BlockClust was successfully applied on a comprehensive

set of eukaryotic data. It is the first tool for eukaryotic non-coding RNA analysis

available on the galaxy framework.

1 Motivation

The study of non-coding RNAs (ncRNAs) is nowadays becoming important to fully

understand cellular functions. On the one hand, most of the transcribed DNA is non-

protein-coding [Jac09]; on the other hand ncRNAs play a vital role in many cellular

processes. Although up to 450 000 ncRNAs were predicted in the human genome

[RBT+10], the large majority is still missing functional annotation. Sequence and

secondary structure analysis can be used to assign putative functions to ncRNAs,

however sequence information is changed by post-transcriptional modifications

[FLSH11], and secondary structure is only a proxy for the true 3D conformation of the

RNA polymer. A different type of information that does not suffer from these issues and

that can be used for the detection of RNA functional classes, is the pattern of processing
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that can be observed through the traces left in small RNA-seq reads data. For example

the primary microRNA transcript cleaved by the Drosha complex and forms hairpin like

pre-miRNA with 2-nt 3' overhang where Dicer binds and processes into double stranded

miRNA and (complementary) miRNA* duplex [GST+08]. The miRNA strand then

binds to Ago2 proteins to form RNA-induced silencing complex, which subsequently

targets mRNA for regulation while the remaining miRNA* strand is degraded. Traces of

this process are often observed in RNA-seq data of miRNA precursor as two adjacent

piles of reads separated by few bases (length of hairpin). While one of the pile that

corresponds miRNA strand is expressed, the other one that corresponds to the miRNA*

strand, is not. Computational approaches such as mirDeep [FCA+08] rely on this

miRNA biogenesis for annotation. Other examples involve snoRNAs, where snoRNA-

derived fragments size and position distributions are conserved across species

[TGL+09]. The tRNA molecules also undergo post-transcriptional cleavage to form

smaller tRNA fragments which carry distinct expression levels and possibly different

regulatory functions [GP13].

In this article, we propose BlockClust [VRCB14] as a novel technique to capture

these processing patterns and detect transcripts that can have evolutionary relationship.

2 Methods

The core idea of the BlockClust is to characterize transcripts from small RNA-seq

data by extracting characteristic attributes from their expression profiles. Those

attributes are encoded into compact discrete structures, which can be processed using

fast graph-kernel techniques to find similar expression profiles.

Given the mapped reads we consider only unique reads in the sample (tags). For each

tag, the expression is normalized by dividing the number of reads associated with that

tag by the number of times the tag is mapped to the reference genome. The notion of tags

allows the elimination of duplicated data, hence speeding up subsequent processing. We

use the blockbuster tool [LBSH+09] to identify consecutive tags with high

expression and group then into blocks. Adjacent blocks, that are either overlapping or

that are within a small distance, are then grouped into larger blockgroups. Here we

assume that a ncRNA gene can span at most a single blockgroup. Each blockgroup is

then encoded as a discrete graph. We consider different types of information, ranging

from the information available for each individual block, to the relation between two

consecutive blocks and finally also the information available globally on the whole

blockgroup. For the whole blockgroup we measure quantities such as: the entropy of

read starts, the entropy of read ends, the entropy of read lengths, the median of

normalized read expressions and the normalized read expression levels in the first

quartile. For each block we measure: the number of multi-mapped reads, the entropy of

read lengths, the entropy of read expressions, the minimum read length and the block

length. All measures are then discretized into a small number of discretization levels

using an equal-frequency algorithm. The discretized attributes are then used to label the

nodes of the resulting graph representation.
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Figure 1 shows the graph encoding of a blockgroup with actual attributes used in the

method. Each graph is made up of two disconnected components: the first one is used to

encode the blockgroup attributes (shown as BLOCKGROUP ATTRIBUTES in Figure

1), while the second one represents the sequence of individual blocks and their attributes

(shown as BLOCK ATTRIBUTES in Figure 1) . Finally, the resulting graphs are

processed using a fast graph kernel called Neighbourhood Subgraph Pairwise Distance

Kernel (NSPDK) [CG10]. This type of kernel evaluates the similarity between two

graphs as the fraction of neighbourhood subgraph pairs that are in common. This

similarity notion is parametrized by the maximal size of the neighbourhood subgraphs

and by the maximal distance allowed between the subgraphs in each pair. Intuitively this

approach can be considered as an extension of the gapped k-mer similarity for strings to

the graph domain. Formally: a neighbourhood graph is a subgraph specified by a root

vertex v and a radius R, consisting of all vertices that are at a distance (the distance

between two vertices v and u on a graph is defined as the number of edges in the shortest

path between v and u) not greater than R from v. All pairs of such neighbourhood

subgraphs whose root vertices are at a maximum distance D are extracted by the kernel

(see Figure 2 for an illustration of the subgraph pair extraction by NSPDK). Since

neighbourhood subgraphs can be efficiently enumerated in near linear time, the resulting

approach has in practice linear complexity and can be used in large scale settings.

Figure 1: Graph encoding of the expression profile using

descretized block and blockgroup attributes.
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The resulting pairwise similarity matrix can be used with several existing clustering

algorithms. In this work we used the Markov Cluster Algorithm (MCL) [EVDO02] on the

nearest neighbour adjacency matrix.

When functional annotation is available, we can design a supervised task and build a

classifier for each specific ncRNA family using kernelized Support Vector Machine

models. Currently, we offer models for three families, namely: miRNA, tRNA and CD-

box snoRNA.

3 Results and Discussion

We applied BlockClust on several datasets to evaluate the predictive performance

and its robustness. Finally we have compared BlockClust to other state-of-art tools.

3.1 Datasets and processing

To train our predictive models we have used NGS data generated by Illumina

sequencing of human embryoid body and embryonic stem cells, H1 cell line and IMR90

cell line (Development Data). In order to compare to other tools and evaluate the

robustness of BlockClust we have used a comprehensive collection of test datasets

(Benchmark Data), that includes 32 samples from human, mouse, fly, chimp, worm

and plant in a variety of tissues and cell lines.

BlockClust is a pipeline that combining several tools namely: blockbuster,

NSPDK and MCL. In order to achieve optimal predictive performance, we have

optimized the hyper-parameters of each tool. For the blockbuster tool we need to

specify the minimum distance between two blockgroups (cluster distance) and the

standard deviation of a single read (scale); for NSPDK the radius and the distance are the

parameters of choice in order to extract the neighbourhood subgraph pairs; in MCL the

cluster granularities were controlled via the inflation and pre-inflation parameters.

Figure 2: Extraction of subgraph pairs rooted at B1 with

radius 2 and distance 5. All possible roots which are at

distance 5 from B1 are selected and neighbourhood

subgraphs of radius at most 2 are extracted.
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In addition to the parameter optimization of the tools used, we also have to choose the

number of discretization levels for attributes and select the most discriminative

attributes. Table 1 shows the overview of the value ranges, the search step size and the

selected optimal values for the aforementioned parameters.

Component Parameter Interval Step Optimum

blockbuster Cluster distance 20–100 10 40

blockbuster Scale of standard deviation 0.2–0.8 0.1 0.5

Encoding Discretization bins 3, 5, 7 2 3

NSPDK Radius R 1,3,5,7 2 5

MCL Inflation 1–30 0.3 20

MCL Pre-inflation 1–30 0.3 20

Table 1: Parameter optimization. Overview of tools and probed parameter values and selected

optimal values. Note that distance is defined as a function of radius: D = 2×R+1.

All the parameters were optimized by splitting the Development Data into

train/validation/test sets with sizes 35/35/30% respectively. Hyper-parameter were set

using the train and validation sets, whereas the predictive performance is reported on the

test set alone.

3.2 Performance of BlockClust

To assess the quality of the similarity notion generated by our approach, we measured

the tendency for transcripts of functionally identical RNAs to be neighbours. We

computed the Area Under the Curve for the Receiver Operating Characteristic (AUC

ROC) using the distance as a predictor function to evaluate the quality of the induced

metric; in addition we computed the purity of the partition generated by the MCL

approach to evaluate the clustering quality (see Table 2).

ncRNA class #transcripts AUC #clusters cluster purity

miRNA 168 0.896 10 0.855

tRNA 173 0.741 17 0.837

C/D-box snoRNA 78 0.731 7 0.683

H/ACA-box snoRNA 4 0.838 0 0

rRNA 20 0.872 2 0.956

snRNA 7 0.637 0 0

Y_RNA 8 0.685 0 0

Weighted average 458 0.805 36 0.813
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Table 2: Clustering performance of BlockClust averaged over 10 random test splits of
Development Data.

Out of 458 known transcripts in the test set miRNA, tRNA and C/D-box snoRNAs

contribute to the majority. There are quite less number of known profiles from the

remaining four classes. After clustering with MCL, we could capture only 2 clusters of

rRNAs out of these four classes, while for the majority classes we got a decent number

of clusters. On average we observed a good AUC of 0.8 for the the similarity notion. The

best performance was found for miRNA in terms of similarity notion and cluster

precisions, followed by rRNAs, tRNAs and C/D-box snoRNAs. Though H/ACA-box

snoRNAs have a good AUC, due to their low population MCL could not cluster them

together. Poor performance can be seen for Y_RNA and snRNA classes.

In Table we report instead the classification performance on the test set split of

Development Data when we train family specific models in a one-vs-all setting. We

chose Positive Predictive Value (PPV) and Recall as performance measures. The PPV

for all three classes are very good (≈ 0.9). The miRNA model could successfully

retrieve 89% of the miRNAs, while 80% and only 48% recalls were observed for tNAs

and C/D-box snoRNAs respectively.

ncRNA class #transcripts PPV Recall

miRNA 168 0.901 0.886

tRNA 173 0.899 0.796

C/D-box snoRNA 78 0.870 0.474

Table 3: Classification performance of BlockClust averaged over 10 random test splits of
Development Data.

3.3 Comparison with other tools

We compared BlockClust to other tools that can process read profiles of small

ncRNAs from RNA-seq data and perform predictions or clustering. The

deepBlockAlign [LPE+12]) is a tool which uses a variant of Sankoff algorithm to

align all input blockgroups and cluster them. DARIO [FLB+11] is a web server which is

used for annotating miRNA, tRNA and snoRNAs from deep sequencing data using a

random forest classifier. The comparison with deepBlockAlign was done on the

whole Benchmark Data.

Note that since DARIO is not available as a standalone tool, we considered only one of

the Benchmark Data (Gene Expression Omnibus
1
(GEO) sample id: GSM769510)

for comparison.

1
http://www.ncbi.nlm.nih.gov/geo/
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To compare the similarity notion of BlockClust and deepBlockAlign we

computed AUC ROC on similarity matrices of both tools. Compared to

deepBlockAlign, BlockClust performs better on average (AUC 0.84 vs. 0.7) and

also in each individual class. See Table 4 for AUCs of both tools for each individual

class and weighted average over all classes. In terms of computational complexity

BlockClust is very competitive, achieving a 60-fold speed-up (50 seconds as

compared to 58 minutes of deepBlockAlign on a dataset of ≈600 profiles). This is

due to BlockClust quasi-linear complexity compared to the O(m
2
)O(n
6
) complexity

of the Sankoff algorithm used in deepBlockAlign (where n is the number of blocks

per instance and m is the number of sequences).

ncRNA class #transcripts BlockClust

AUC ROC

deepBlockAlign

AUC ROC

miRNA 3869 0.925 0.714

tRNA 4988 0.795 0.701

C/D-box snoRNA 731 0.762 0.615

H/ACA-box snoRNA 142 0.859 0.720

rRNA 770 0.873 0.759

snRNA 240 0.698 0.610

Y_RNA 244 0.694 0.656

Weighted average 11061 0.839 0.700

Table 4: Comparison of BlockClust vs. deepBlockAlign on whole Benchmark Data.
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In order to compare the precision of the clusters that can be obtained from

BlockClust and deepBlockAlign, we applied MCL on similarity matrices from

both tools. We used one sample from the Benchmark Data (GEO sample id:

GSM450239) for comparison. The inflation and the pre-inflation parameters of MCL

affect the cluster granularity, so by varying these parameters we obtained varying

number of clusters for both tools. Figure 3 depicts the median cluster purities for number

of clusters obtained at different inflations. In theory, with increasing number of clusters,

the cluster sizes decrease. In turn, the smaller clusters tend to be more pure than larger

ones. At all inflation settings, BlockClust produced less number of clusters with

higher median precisions compared deepBlockAlign. Hence BlockClust

potentially produces larger clusters with a higher precision.

Please note that the deepBlockAlign is an algorithm designed and optimized to

identify similar processing patterns regardless of the ncRNA class. Therefore it might

not give optimal results when used to cluster the ncRNAs into the families of their

primary function.

miRNA tRNA snoRNA C/D-box

ncRNA class PPV Recall PPV Recall PPV Recall

BlockClust 0.88 0.89 0.95 0.80 0.74 0.39

DARIO 0.85 0.81 0.92 0.88 0.46 0.52

Table 5: Comparison of classification performance of BlockClust against DARIO.

Compared to DARIO, BlockClust exhibits a better precision for all three ncRNA

classes and also slightly better recall for miRNAs. Whereas, DARIO achieves a better

Figure 3: Cluster purities BlockClust (red) vs.

deepBlockAlign (blue). The median of cluster

precisions with respect to number of clusters generated by

MCL clustering algorithm at different inflation values.
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recall for the remaining two classes. Please refer to Table 5 for comparison of

BlockClust and DARIO. Note that since DARIO is available only as a web server we

could not reliably assess its run times.

3.4 Clustering analysis

To examine whether the BlockClust encoding of the attributes is discriminative

enough to cluster ncRNA classes, we analysed the clusters generated by the

BlockClust as follows. First we clustered all blockgroups in one sample from

Benchmark Data (GEO sample id: GSM768988) using BlockClust. Then for

each ncRNA family, we considered the clusters with highest precision. The hierarchical

clustering of these cluster instances along with the representative expression profiles are

shown in Figure 4.

From clustering (Figure 4), we observed that the tRNA (blue) branch is constitute two

different representative profiles for 5'- and 3'- derived fragments. For miRNAs (purple),

the classic 2-block profile can be found, where expressed block represents the miRNA

and non-expressed block represents the degraded miRNA*. According to literature

[TGL+09], the CD-box snoRNAs are mostly 5'-derived fragments. Surprisingly, in our

example dataset, we observe CD-box snoRNAs with consistent 3'-derived fragments.

Finally, we investigate the tRNA (marked with *) that was clustered together with the

miRNAs. Similar to miRNAs the read profile of this tRNA has a precisely cut 5'-derived

Figure 4: Hierarchical clustering of the BlockClust clusters of each family with highest

precision. One representative read profile for miRNAs and snoRNAs, and two for tRNAs are

shown. The annotation of the ncRNA can be seen under each profile as an horizontal bar.
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fragment (see top right corner box in Figure 4). It has been already demonstrated that

such 5'-derived tRNA fragments could possibly processed by dicer as miRNAs [GP13]

and have functional characteristics of miRNAs [MSS+13].

4 Conclusion

We presented BlockClust, an approach that can exploit processing traces of small

ncRNAs to reliably and efficiently identify functional non-coding genes. We encode

read expression profiles in compact discrete structures in order to use fast graph kernel

approaches, obtaining competitive predictive performance and a significant speed-up

compared to existing approaches. The complete work-flow of BlockClust and its tool

dependencies are easily installable and usable from the galaxy [GNT+10] main toolshed:

http://toolshed.g2.bx.psu.edu/view/rnateam/blockclust_workflow
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