
Heaps’n Leaks: How Heap Snapshots Improve Android Taint

Analysis

Manuel Benz1, Erik Krogh Kristensen2, Linghui Luo3, Nataniel P. Borges Jr. 4, Eric

Bodden5, Andreas Zeller6

Abstract: The assessment of information flows is an essential part of analyzing Android apps, and is
frequently supported by static taint analysis. Its precision, however, can suffer from the analysis not
being able to precisely determine what elements a pointer can (and cannot) point to. Recent advances
in static analysis suggest that incorporating dynamic heap snapshots, taken at one point at runtime,
can significantly improve general static analysis. In this paper, we investigate to what extent this also
holds for taint analysis, and how various design decisions, such as when and how many snapshots are
collected during execution, and how exactly they are used, impact soundness and precision. We have
extended FlowDroid to incorporate heap snapshots, yielding our prototype Heapster, and evaluated it
on DroidMacroBench, a novel benchmark comprising real-world Android apps that we also make
available as an artifact. The results show 1. the use of heap snapshots lowers analysis time and memory
consumption while increasing precision; 2. a very good trade-off between precision and recall is
achieved by a mixed mode in which the analysis falls back to static points-to relations for objects for
which no dynamic data was recorded; and 3. while a single heap snapshot (ideally taken at the end of
the execution) suffices to improve performance and precision, a better trade-off can be obtained by
using multiple snapshots.

Keywords: points-to analysis; heap snapshot; taint analysis; Soot; Android

1 Introduction

Android is the world’s most popular mobile operating system. Its official marketplace,

Google Play Store, holds more than 3.3 million apps, which can be installed on billions of

devices. To perform their tasks, apps frequently interact with sensitive information—from

private images to banking details. Research shows that security-related bugs introduced by

developers frequently put this sensitive information at risk [En11; En14; Gr12; Ra15].

To identify such sensitive information leaks, taint analysis detects potential leaks by

determining if data acquired on a sensitive source reaches a sink, where the information

would no longer be secure. Such taint flows can be detected statically or dynamically. A

static taint analysis, which we focus on in this paper, reasons about all possible execution

1 Paderborn University, Department of Computer Science manuel.benz@codeshield.de
2 Aarhus University, Department of Computer Science erik@cs.au.dk
3 Paderborn University, Department of Computer Science linghui.luo@upb.de
4 CISPA Helmholtz Center for Information Security, Department of Computer Science nataniel.borges@cispa.

saarland
5 Paderborn University & Fraunhofer IEM, Department of Computer Science eric.bodden@upb.de
6 CISPA Helmholtz Center for Information Security, Department of Computer Science zeller@cispa.saarland

cba doi:10.18420/SE2021_02

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 23

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_02
mailto:manuel.benz@codeshield.de
mailto:erik@cs.au.dk
mailto:linghui.luo@upb.de
mailto:nataniel.borges@cispa.saarland
mailto:nataniel.borges@cispa.saarland
mailto:eric.bodden@upb.de
mailto:zeller@cispa.saarland
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_02


paths in a program and aims to achieve (close to) perfect recall, i.e., it seeks to identify

virtually all potentially sensitive information leaks. Static analyses, though, often suffer from

a trade-off between accuracy and scalability. Although existing taint analysis tools such

as FlowDroid [Ar14] can be configured to conduct a relatively precise flow, context, and

field-sensitive analysis, such configuration needs to be identified by possibly inexperienced

users—and imprecise configuration causes the taint analysis to report substantial amounts

of false positives [LBS18].

A recent approach by Grech et al. addresses this problem by extending static pointer analysis

with information extracted from heap snapshots, collected at runtime. As the authors

show, one can improve soundness [Gr17] by augmenting statically computed points-to

information with additional data from the heap snapshots. Conversely, one can improve

precision by restricting static points-to computation to such information present in the heap

snapshots [Gr18].

In this work, we present an empirical study in which we seek to reproduce the original

experiments revised by Grech et al. but also go significantly beyond them to address these

open questions. We make the following original contributionsȷ

Using heap snapshots for Android taint analysis. We investigate how heap snapshots

impacts the soundness and precision, not just of simple pointer analysis, but of a concrete

client analysis, a static Android taint analysis.

Assessment of design decisions. We investigate how various essential design decisions

impact precision and soundness of the analysis. In particular, we evaluate the impact of two

novel extensionsȷ

• information not only from a single heap snapshot but multiple ones, e.g., collected at

various times during the execution; and

• dynamic heap models collected at runtime (precise, but possibly unsound) versus

pure static heap models (sound, but possibly imprecise) versus mixed models that

seek to define a sensible middle ground between those two extremes by focusing on

precision and enhancing a dynamic model with static information.

Implementation and Benchmark. To evaluate the above decisions, we implemented

Heapster, an extension to FlowDroid that can incorporate heap dumps. Additionally, we

created DroidMacroBench, a set of 12 real-world Android applications that we manually

labeled with ground truth for taint analyses.

Evaluation. We explore the impact of different design decisions about when to collect and

how to consume heap snapshots. In our evaluation we show thatȷ

• adding heap snapshots can significantly improve the precision of taint analysis (from

50.3% to up to 94.7%);

• while restricting points-to information to that of the heap snapshots offers high

precision it significantly harms recall. Our mixed mode solution, however, provides

24 Manuel Benz, Erik K. Kristensen, Linghui Luo, Nataniel Borges Jr., Eric Bodden,

Andreas Zeller



both good precision (77.1%) and good recall (68.4%). Its F1 score is the highest

among all configurations;

• in all evaluated scenarios, incorporating heap snapshots significantly lowers the

amount of computational resources required by the taint analysis, moreover, in 90%

of the scenarios it also improves the analysis performance; and

• while a single heap snapshot, taken at the end of the runtime, suffices to significantly

increase the analysis precision, additional snapshots, taken at different times, are

beneficial for the analysis recall, achieving the best overall F1 score.

For details please consider the full paper accessible at https://dl.acm.org/doi/10.1145/

3377811.3380438 and https://www.hni.uni-paderborn.de/pub/10027.

References

[Ar14] Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Traon, Y. L.;

Octeau, D.; McDaniel, P. D.ȷ FlowDroidȷ precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for Android apps. Inȷ ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’14,

Edinburgh, United Kingdom - June 09 - 11, 2014. Pp. 259–269, 2014, urlȷ

http://doi.acm.org/10.1145/2594291.2594299.

[En11] Enck, W.; Octeau, D.; McDaniel, P. D.; Chaudhuri, S.ȷ A Study of Android

Application Security. Inȷ 20th USENIX Security Symposium, San Francisco, CA,

USA, August 8-12, 2011, Proceedings. USENIX Association, 2011, urlȷ http:

//static.usenix.org/events/sec11/tech/full%5C_papers/Enck.pdf.

[En14] Enck, W.; Gilbert, P.; Chun, B.-G.; Cox, L. P.; Jung, J.; McDaniel, P.; Sheth, A. N.ȷ

TaintDroidȷ An Information-Flow Tracking System for Realtime Privacy Moni-

toring on Smartphones William. Communications of the ACM 57/3, pp. 99–106,

2014, issnȷ 00010782, arXivȷ 1005.3014, urlȷ http://dl.acm.org/citation.

cfm?doid=2566590.2494522.

[Gr12] Grace, M. C.; Zhou, W.; Jiang, X.; Sadeghi, A.ȷ Unsafe exposure analysis of

mobile in-app advertisements. In (Krunz, M.; Lazos, L.; Pietro, R. D.; Trappe, W.,

eds.)ȷ Proceedings of the Fifth ACM Conference on Security and Privacy in

Wireless and Mobile Networks, WISEC 2012, Tucson, AZ, USA, April 16-18,

2012. ACM, pp. 101–112, 2012, urlȷ https://doi.org/10.1145/2185448.

2185464.

[Gr17] Grech, N.; Fourtounis, G.; Francalanza, A.; Smaragdakis, Y.ȷ Heaps don’t lieȷ

countering unsoundness with heap snapshots. PACMPL 1/OOPSLA, 68ȷ1–68ȷ27,

2017, urlȷ https://doi.org/10.1145/3133892.

HeapsŠn Leaks: How Heap Snapshots Improve Android Taint Analysis 25

https://dl.acm.org/doi/10.1145/3377811.3380438
https://dl.acm.org/doi/10.1145/3377811.3380438
https://www.hni.uni-paderborn.de/pub/10027
http://doi.acm.org/10.1145/2594291.2594299
http://static.usenix.org/events/sec11/tech/full%5C_papers/Enck.pdf
http://static.usenix.org/events/sec11/tech/full%5C_papers/Enck.pdf
http://dl.acm.org/citation.cfm?doid=2566590.2494522
http://dl.acm.org/citation.cfm?doid=2566590.2494522
https://doi.org/10.1145/2185448.2185464
https://doi.org/10.1145/2185448.2185464
https://doi.org/10.1145/3133892


[Gr18] Grech, N.; Fourtounis, G.; Francalanza, A.; Smaragdakis, Y.ȷ Shooting from the

heapȷ ultra-scalable static analysis with heap snapshots. Proceedings of the 27th

ACM SIGSOFT International Symposium on Software Testing and Analysis -

ISSTA 2018/, pp. 198–208, 2018, urlȷ http://dl.acm.org/citation.cfm?

doid=3213846.3213860.

[LBS18] Luo, L.; Bodden, E.; Spčth, J.ȷ A Qualitative Analysis of Taint-Analysis Results,

tech. rep., Heinz Nixdorf Institute, Paderborn University, Aug. 2018.

[Ra15] Rasthofer, S.; Arzt, S.; Hahn, R.; Kohlhagen, M.; Bodden, E.ȷ (In)Security

of Backend-as-a-Service. Inȷ blackhat europe 2015. Nov. 2015, urlȷ http:

//bodden.de/pubs/rah+15backend.pdf.

26 Manuel Benz, Erik K. Kristensen, Linghui Luo, Nataniel Borges Jr., Eric Bodden,

Andreas Zeller

http://dl.acm.org/citation.cfm?doid=3213846.3213860
http://dl.acm.org/citation.cfm?doid=3213846.3213860
http://bodden.de/pubs/rah+15backend.pdf
http://bodden.de/pubs/rah+15backend.pdf

