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Abstract:

Cryptographic algorithms — even when designed for easy implementability on gen-
eral purpose architectures — still show a huge performance gap between implementa-
tions in software and those using dedicated hardware. Such hardware is usually only
able to deal with one single algorithm or a very narrowly defined set of algorithms.
The tradeoff between speed/throughput and flexibility can be eased by programmable
crypto architectures. These can be existing general purpose architectures enhanced
by specialized functional units which fulfill the requirements of typical cryptographic
algorithms. Alternatively, a fully custom architecture can be designed.

In this paper we describe the methods used to design a programmable crypto ar-
chitecture from scratch. We will introduce a set of typical cryptographic algorithms,
investigate their requirements, and finally show the weighted result leading to our
Cryptonite architecture.

1 Introduction

Although recent cryptographic algorithms have been designed to be easy to implement
on such standard architectures, they still greatly benefit from special functional units and
architectural features. Several hardware cores exist which support either a single cryp-
tographic algorithm or a set of these needed for typical applications such as IPsec. So
far, only few fully programmable (as opposed to parameterizable) architectures exist: the
probably most well-known one is CryptoManiac [WWAO1], which is based on a com-
mon RISC-style architecture which was extended to especially support cryptographic al-
gorithms. This extension evolved from an instruction set architecture (ISA) [BMAOO]
based on exhaustive algorithm analysis.

In contrast, our CRYPTONITE architecture [Bu02, OBHO03, BHO04] was designed from
scratch. Aim was to keep the architecture as simple as possible while ensuring maximum
performance for a broad range of algorithms at minimal manufacturing costs. A typical
set of cryptographic algorithms was analyzed to determine the architectural requirements.

318



The results of the analysis were then collected and weighted against current and future
proliferance/importance/use of each algorithm.

We will start with an overview over the selected algorithms and the analysis results and
will then discuss the influence of each algorithm on the architecture and finally sum up
the architectural features of our architecture!. We will also give an example of how we
implemented the AES algorithm using the architecture’s special features.

2 Algorithm Analysis

We chose the following algorithms for analysis:

DES: The Data Encryption Standard was developed in the early 1970s and became the
official encryption standard in 1977. Despite its age it is still widely used, but will most
likely be replaced by the new Advanced Encryption Standard (see below). Unlike modern
algorithms, DES is very hardware-centric.

AES: The new encryption standard was introduced in 2001. When the work on the
Cryptonite architecture started, it was not yet clear which algorithm participating in
the AES competition would be chosen as the new standard. Therefore, we selected the
most favored candidates, Rijndael and RC6.

IDEA: The International Data Encryption Algorithm was mainly selected because of its
16-bit design. Its most prominent application is within the Pretty Good Privacy (PGP)
software where it is used for securing email transmissions.

MDS and SHA1: We also selected the two hashing algorithms MD5 and SHAT; these
algorithms are used within IPsec for authentication purposes, especially MDS5 is also fre-
quently used to provide fingerprints of download data used to ensure data integrity or
detect unauthorized alterations.

These algorithms divide into two main classes, hardware-oriented algorithms, repre-
sented by DES, were originally modelled to run on dedicated hardware. Because of this,
they are sometimes problematic to be efficiently implemented on general purpose archi-
tectures. DES, for example, is operating on a wide set of data sizes.

The second class are the software-oriented algorithms; although designed for easy im-
plementation in software, these algorithms usually prefer certain data sizes. In addition, a
huge performance gap might exist between a straight-forward and an optimized version.
AES is an example for an algorithm where the implementation strategy has huge impact
on performance.

We will now give an overview over the selected algorithms and the observations made
regarding these algorithms. The interested reader is referred to [Bu02] for a more detailed
elaboration.

1A detailed discussion of the CRYPTONITE architecture will be given on the ARCS’04 conference held in
conjunction with this workshop.
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2.1 DES

As already mentioned, DES [BGP93] is a hardware-oriented algorithm. It takes two 64-bit
input quantities, data and key, to produce a 64-bit output. The main encryption process
is a series of applied transformations, some of which are simple bit-transformations, and
others non-linear transformations based on table lookups. Although the input and output
data size of DES is 64 bits, we find numerous data sizes during DES computation: within
round computation 32- and 48-bit sizes are used. The round key generation, in term, uses a
2x28-bit representation. These various operand sizes get transformed into each other using
bit-permutation which are easy to realize in hardware but expensive on general purpose
architectures, and table-lookup functions.

With the round key computation being independent from the encryption process, coarse-
grained parallelism can be exploited by two parallel computation units. These need to be
able to forward results to its sibling unit.

DES greatly benefits from an 8-parallel lookup mechanism supporting the S-box permuta-
tion. Apart from this, DES is resource friendly requiring only two registers per computa-
tion unit. Then, a swapping mechanism is needed to exchange the encryption variables L
and R. In addition, basic loop support with the ability to use the loop counter for memory
addressing (round constant lookup) and conditional branching is needed.

Further speedup of DES is only possible by the introduction of very specialized monolithic
functions performing a sequence of bit-permutation and XOR operations. Otherwise only
minimal speed-up compared to general purpose architectures can be achieved.

2.2 AES

The AES algorithm was chosen through a competition. Although it was not entirely clear
which algorithm would win the competition when this work started, there was already
a strong bias towards two algorithms. Therefore, we took both candidates — RC6 and
Rijndael - into account.

2.2.1 RCeo

Much like DES, RC6 [RRSY98] can be easily analyzed through its round data flow graph:
It shows, that the round computation separates into two almost independent strands. Round
key generation was omitted, since it is rather heavyweight and might lead to performance
issues [RRYO0O] caused by heavy use of multiplication and modulo operations. In this
respect, RC6 reminds more of IDEA and is quite different from DES and Rijndael.

Although it looks like two operands per strand might be enough for RC6, a closer look
reveals the need for additional storage to forward intermediate results to later computation
stages; to ease register pressure, four computation registers per strand are recommended.

RCG6 is not bound to a specific data and key size. It is rather defined as RC6-w/r/b where
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w denotes the size of data chunks in bits, 7 the number of computation rounds and b the
length of the encryption key in bytes. For AES configuration, RC6 has been locked to
RC6-32/20/16, i.e. 32-bit data chunks, 20 rounds of computation and 16-byte (128-bit)
keys. Referring to this configuration, all computations are based on 6 distinct operations
which are integer addition, subtraction and multiplication (all modulo 232), bitwise XOR,
plus left- and right-rotation of 32-bit operands by the least significant 5 bits of a second
operand.

Recalling that we already defined the operand size as 64-bit for DES and RC6 requires
twice as much registers but at half the size, it is quite natural to solve RC6’s requirements
by introducing a mechanism which splits the existing 64-bit registers into two 32-bit reg-
isters. Similarly, carry-based arithmetic operations such as addition and subtraction can
be implemented in a way that propagation between bits 32 and 33 will take place (64-bit
operation) or not (32-bit operation).

Memory access requirements of RC6 are moderate: only the precomputed round key has
to be fetched from memory. Computation speed definitely benefits from memory access
being done in parallel to computation.

2.2.2 Rijndael

Our analysis of Rijndael [DRO1] is quite exhaustive and fills a paper on its own. We
therefore refer the interested reader to [OBHO3]. At this point, we will only concentrate
on the main points of this analysis.

It can be shown that the parallelism scheme required for RC6 also serves Rijndael. Two
strands with parallel arithmetic and memory access operations are sufficient. Similarly,
Rijndael benefits from the “splitting” of 64-bit registers and operations. The 8-parallel
memory lookup mechanism needed for DES can be adapted for Rijndael’s substitution
function, but needs to be extended to 8-bit address and 8-bit data.

Rijndael also requires some basic rotation functions; unlike DES and RC6 which rotate
bit-wise, Rijndael rotates byte-wise. This requires a slight modification of the already
introduced rotation mechanism.

The major issues with Rijndael are embedding the round key generation into the encryption
process? and to efficiently implement the column mixing operation.

Like RC6, also Rijndael is configurable in data and key size. The number of computation
rounds, however, is dependent on the selected data and key sizes. For AES, Rijndael has
been locked to a data size of 128 bits, key size can be either 128, 192, or 256 bits. Since
Rijndael became AES in 2001, these configurations are commonly known as AES-128,
AES-192, and AES-256.

Fetching the precomputed keys from memory as done in the AES reference implementa-
tion [DRO1], is not sensible for embedded systems and/or high-bandwidth applications:
depending on the configuration, between 40 and 56 32-bit round keys need to be precom-

2We decided to not pursue further investigation on RC6, especially how to embed round key generation, since
by then Rijndael had been selected as the AES algorithm.
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puted and fetched from memory. Neglecting the delay resulting from precomputation,
this not only requires up to 224 bytes of memory per secured data stream but also de-
mands a very high memory bandwidth: an entire computation would need up to 56 32-bit
lookups per processed data packet. Given the presence of 32-bit memory, securing a single
100Mbit connection would therefore require over 43 million memory accesses per second,
i.e. a memory bandwidth of 175MByte/s.

In [OBHO03] we show a mechanism to embed round key generation into the running com-
putation process. Doing so, it is no longer necessary to fetch precomputed round keys
from memory thus avoiding the problems mentioned above. The drawback of this solu-
tion is the need for supporting instructions performing cascaded XOR operations on single
register contents and specialized “mingle” instructions interweaving selected bytes of two
64-bit registers into a 64-bit result.

An additional impact of our approach is increased register pressure: because of the integra-
tion of the round key generation into the main computation process, our implementation
greatly benefits from the presence of additional registers. We decided to extend the use of
the memory I/O buffering registers: instead of transparently buffering memory transfers,
these registers become fully addressable by the arithmetic unit and serve as a dedicated
output (to memory) and an input/output (from memory or intermediate computation result)
register. By doing so, we solve the specific requirements of this algorithm while keeping
the core architecture mostly unchanged. As a side effect, we also require the register merge
operations to accept not only individual registers as input (i.e. merge top 32-bits of one
register with bottom 32-bits of another register) but also the two 32-bit halves of a single
register (resulting in a swap operation).

In the column mixing stage, the Rijndael state (please refer to [DRO1] for terminology) is
taken as one matrix and a set of factors as a second one to perform a matrix multiplica-
tion in GF(256). Each matrix consists of four rows holding 32-bits each where each row
dissects into four 8-bit values.

Addition in GF(256) thankfully maps to XOR and is therefore easy to implement; mul-
tiplication, however, is rather complex. The method proposed by the standard is to first
transform the factors into their “logarithms” (based on an irreducible polynom) using a
transformation table. These result values then get added (i.e. XORed) and the resulting
sum is re-transformed using an “anti-log” table acting as the reverse to the aforementioned
“logarithm” table. However, this approach is rather time consuming since a total of 64 mul-
tiplications is needed resulting in 192 table lookups per round or up to 2688 lookups per
entire computation. Following the above 100Mbit example results in a stunning 2.1GBit/s
of memory bandwith.

We follow a different approach: first, the multiplication is condensed down to a single
memory lookup instead of three consecutive ones by providing distinct tables for each
type of multiplication. Rijndael requires only a 6 different multiplication tables so the
increase in memory size compared to the log/antilog version is only a factor of 3.

Second, we reuse the 8-parallel lookup mechanism introduced with DES’s S-box permu-
tation. Also the Rijndael substitution function benefits from this mechanism, after being
extended to 8-bit address and data, as it enables fast transformation of the Rijndael state.
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In addition, such a unit can be used to speed up multiplication: given the fact that multipli-
cation in GF(256) is also just a table-based transformation with both, factors and results,
not exceeding 8 bits in size, we can perform 8 parallel multiplications using the 8-parallel
memory lookup mechanism. This, of course, requires a careful alignment (vector pack-
ing) of data both in registers and memory and the application of the aforementioned “32-bit
splitting” of the 64-bit architecture. A full discussion of this topic is presented in [OBHO3].

2.3 IDEA

IDEA [Sc96] was presented in 1991 and introduced a higher level of security. Where data
size remains 64 bit (like DES), key size was doubled to 128 bit. It was especially designed
for easy implementability on 16-bit architectures, thus all intermediate computation steps
are performed on 16-bit quantities.

In terms of parallelism, this algorithm showed some differences to the previous ones: fol-
lowing the IDEA data flow graph, also two strands can be identified at first sight. However,
tighter coupling of the individual computation flow leads to inherent sequentiality. Certain
computation stages, in term, would greatly benefit from a 4-wide arithmetic unit. Addi-
tionally, IDEA shows huge register pressure requiring not less than 8 registers.

Similar to RC6, key generation is highly dependent on modulo arithmetics (216, though);
unfortunately, also division is needed, which requires a dedicated modulo-2'6 multiplica-
tion/division unit. Where all computation is done 16-bit, round key generation requires a
128-bit rotation resulting in sequential steps when being mapped to any smaller data size.

2.4 MDS5 and SHA1

We chose MDS5 [Ri92] and SHAT1 [BP93, EJO1] to represent typical hashing algorithms be-
cause of their common use e.g. within IPsec. Although similar in concept, the algorithms
differ slightly in exploitable parallelism: with MDS5, inherent parallelism can be only ex-
ploited within the non-linear functions (NLF). With SHA1, ideally two fixed left-rotate
operations can be performed in parallel to the NLFs.

If not implemented as monolithic functions but based on single Boolean operations, these
NLFs show some exploitable parallelism. Two parallel computations are sufficient for
MD5, SHA1 would benefit from three parallel computations in addition to the aforemen-
tioned parallel shift operations. Unlike MD5, SHA1 also employs some sort of “round
key generation” (W[t]), i.e. it performs certain accumulating computations on the input
message chunk.

Both algorithms show a high need for multi-input functions, especially multi-input adders
and multi-input XOR functions. Memory-wise, MD5 requires a simple modulo-addressing
mode for “wrap-around” indexing into constant tables. SHA1 requires multiport memory
for W[t] generation.
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3 Algorithm Influence

In the previous section we discussed a set of cryptographic algorithms and their architec-
tural requirements. In this section we will now show how we processed that data to aquire
the appropriate architecture parameters.

3.1 Data Sizes

To determine, how each algorithm influences the architecture, we we first collected the
required data sizes by summing up all data size requirements into table 1.

Algorithm | 64 56 48 32 16 8 |

(3)DES + + o+ o+ = (¥
RC6 + - - + - -
Rijndael - - - + - +
IDEA - - - - + =
MD5 - - - + - +
SHA1 e

Table 1: Data sizes used by the algorithms

Most algorithms show a strong preference for 32-bit datatypes — with the exception of
DES, which seems to require an incredible amount of data type support, but the majority of
these mainly arises from intermediate permutation operations. I/O operations require only
64-, 32- and (see below) 8-bit operands. A minor preference for 8-bit datatypes arises from
the fact that transposition tables (S-Boxes, substitution tables, GF(256) multiplications) are
either 8-bit by nature or — in case of DES — can easily be mapped to this data type.

In any of these cases, the 8-bit data type is only required for table lookups which usually
take place as an 8-parallel lookup (resulting in a 64-bit memory access). Simple 8-bit
accesses, as needed for MD35, do not need to be explicitly supported: with slight memory
waste, 8-bit values can be laid out to 32-bit boundaries.

IDEA is the only algorithm specifically requiring 16-bit data types. Since IDEA’s core
operations are modulo-2'® anyway, there is no need for explicitly supporting that data
type. Also, by using precomputed round keys, the 128-it data type is not required.

As aresult of the algorithm analysis, the architecture should support only 64-bit and 32-bit
scalars and a special 8x8-bit packed vector format.
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3.2 Functional Units

Next, we listed the architectural requirements for each algorithm and weighted it against
possible reuse (i.e. if another algorithm might benefit from the named architectural feature)
and how big the impact on the algorithm performance is. This led to the weighting scheme
shown in table 2.

| Algorithm | Special Requirements Reuse Benefit |

(3)DES Permutation Functions - +
8-parallel lookup

RC6 Modulo Arithmetics
Extended Shifting Capabilites
Rijndael Additional Registers

Swap Operations
Fold-Operations

Bit-Mingle Operations

IDEA 128-bit Shifter -
Extended Modulo Arithmetics
Hashes Modulo Addressing +
>5-way Parallelism -
Boolean & Not Operation +

O + +|+ o+

++ +|+ + + |+ |+

+ 9

Table 2: Weigthing of Requirements

Recalling SHA1 data flow, the >5-way parallelism demanded by this algorithm is not
strictly necessary. Although SHAI1 certainly would benefit from multiple parallel units,
restricting the architecture to the parallelism scheme shared by all other algorithms is not
prohibitively limiting. Therefore, this requirement can already be safely denied for the
sake of a more streamlined architecture.

Other requirements were weighted considering current and future importance of individual
algorithms. This instantly led to the removal of any IDEA-specific requirements: because
of the great differences to the other investigated crypto algorithms and based on the fact
that IDEA is rarely used for real-time stream cipher but rather for securing email corre-
spondence on a per-message base (PGP), we did not consider any of the IDEA require-
ments for the proposed architecture.

With Rijndael becoming the Advanced Encryption Standard, there is also no need for
specific RC6 support. For this reason we dropped the modulo arithmetics from our archi-
tecture. The extended shifting capabilities, however, remain since they are also needed for
DES, AES/Rijndael, and the hashing algorithms.

Algorithm analysis revealed, that certain supporting functions are necessary for efficent
AES/Rijndael and DES implementation. The special functions required for AES/Rijndael
might be of some use to other algorithms, but the DES-specific permutation functions
can be only used for this one algorithm. Thus, we first decided to condense the DES-
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specific functions into one big parameterizable function which performs all necessary DES
operations, i.e. a series of permutations followed by an 8-parallel memory access.

Because of this, and the fact that no further interaction with other ALU resources is needed,
we removed this function from the ALU. Instead, we placed it right inside the memory unit
next to the data memory. This not only keeps the ALU free of too algorithm specific func-
tionality, but also enables this unit to perform latency-free single cycle memory accesses.

4 Resulting Architecture

We started with a basic architecture model: an ALU holding the register file and the nec-
essary arithmetic operations, the memory unit consisting of data memory and an address
generation unit. Targeting a clock rate of 400MHz, we decided to restrict memory access
strictly to special registers. Therefore, the memory address is provided by address regis-
ters. Data read from or written into the memory must pass buffer registers. This model
was adopted and extended to fulfill all needs of the cryptographic algorithms as described
in the previous chapter which we summarize as follows:

1. The architecture consists of two individual strands. Each strand contains an arithmetic
unit, a memory unit, and associated data memory. Limited value exchange/forwarding
between the strands is possible through a simple interlink mechanism.

2. Operand and data bus size are 64 bit. A “split—-mode” exists which enables use of 64-bit
resources as two 32-bit resources supporting 32-bit algorithms.

3. Unlike typical ALUs, our arithmetic unit dissects into the main ALU and a dedicated
XOR unit. The ALU follows a standard three-address architecture; the XOR unit, how-
ever, allows up to five inputs. By doing so, not only further fine-grain parallelism can
be exploited, but also can the XOR unit serve as a simple register copy unit, if needed.
The ALU’s register file holds four 64-bit registers which may act as eight virtual 32-bit
registers. In addition to instructions supporting the combination and extraction of 32-bit
halves into or from 64-bit registers, certain AES-supporting instructions which perform
more sophisticated select/merge operations were added.

4. The memory unit’s transfer/buffer registers may also be used as auxilliary ALU regis-
ters. Also, the memory unit holds the DES unit. The memory unit’s address generation
unit supports standard addressing modes and a special 8-parallel access for packed 8-bit
vectors. Standard modes can be combined with a modulo operation for easy 8-bit table
wraparound.

5 Summary

In this paper we presented our approach for developing a programmable crypto proces-
sor. We explained the need for specific crypto hardware in general and the benefits of
a programmable crypto architecture in particular. We then presented a set of algorithms
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and the reason why these were chosen; following this presentation we discussed the archi-
tectural needs of the selected algorithms. These findings were then weighted against the
current and projected future use to determine the architectural parameters and the resulting
architecture was sketched. Finally, we gave an application example: AES-128 was imple-
mented on our architecture making use of several architectural features resulting from the
algorithm analysis.
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