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A Conceptual Framework to Transform Coding Education in
Times of Generative AI

Stefan Bente1, Natasha Randall2, Dennis Wäckerle3

Abstract: In light of the rising ubiquity and accessibility of AI tools, software engineering curricula
must be adapted in response, particularly with regards to coding education. We propose an extension to
Bloom’s Revised Taxonomy, enhanced to a second dimension that represents the scope and complexity
of coding tasks. The path that a computer science study program typically follows can be mapped
onto these dimensions, and evaluated in the context of generative AI tool use, which falls into three
core stages. AI should be initially banned, then made an explicit part of coding education, and finally
becomes an implicit part of the coding practices of students.
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1 Introduction

The rise of accessible generative AI tools such as ChatGPT and GitHub Copilot - capable of
producing large amounts of text and code at the click of a button - has led to fears that students
will simply use AI to cheat on assignments, at the expense of learning [SKM23]. These fears
have been validated by research from Geng et al. suggesting that ChatGPT is capable of
passing university level programming courses [Ge23b] [Ma23]. On the other hand, Krüger
and Gref demonstrate how ChatGPT’s mathematical limitations can significantly reduce its
effectiveness in a computer science degree program [KG23], and a new study by Jimenez et
al. reveals how ChatGPT completely fails to handle real world software engineering tasks
[Ji23]. Nevertheless, many developers increasingly believe that traditional programming is
“headed for extinction” [We22].

A considered approach to generative AI in educational settings will therefore be key. But
how exactly should SE curricula be adapted, specifically with regards to coding education,
i.e. teaching programming skills? There are a number of recent publications on this topic
([Ab23], [Li23], [DB23], [Ja23], or [Ge23a], just to name a few). However, what is lacking
is an easy-to-understand mental model “where, when, and how” to integrate generative
AI into an SE curriculum. In section 2 we attempt to close this gap by proposing a simple
framework to assess coding education. We enhance Bloom’s Revised Taxonomy [AKB01]
to a second dimension, namely the “scope” of coding tasks, which encapsulates aspects
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relating to the complexity of a task. In section 3 we then validate this conceptual framework
by analysing the Computer Science Bachelor at TH Köln, with a study that examines the
extent to which ChatGPT is able to solve curricular assignments focusing on coding skills.

The combination of these two dimensions allows us to draw the “path” a computer science
study program typically follows. This path can be segmented into three stages regarding
how to embrace AI tools in coding, as described in section 4. Initially, we recommend
to ban AI in the very first stages of programming education, to allow students to develop
basic hands-on coding knowledge. In the second stage, we propose to make the use of
AI tools an explicit part of the coding education, to let students develop a sense for the
strengths and weaknesses of AI tools. Finally, in that last stage, AI tools should be an
implicit, unconstrained part of coding practice, even up to their availability in exams - just
the situation the students will face later in their professional context. Finally, we discuss
open issues and further research of our proposal in section 5.

2 A Conceptual Framework to Describe Coding Education

A fundamental concept underlying effective coding education is Active Learning [HRL20,
p. 23ff], which simplifies to the idea that true understanding comes through hands-on
experience. As novices gradually progress, they ascend to higher cognitive levels, such as
analyzing requirements and domains, and assessing existing code and technologies. Bloom’s
Revised Taxonomy [AKB01, p. 28f.] provides a framework for understanding such levels,
encompassing six distinct stages in a “somewhat hierarchical”4 framework, ranging from
lower-order thinking skills like remembering and understanding to higher-order skills such
as applying, analyzing, evaluating, and creating. It provides educators with a structure to
design learning activities and assessments that promote progressively deeper cognitive
engagement.

For beginners in coding, the journey typically begins with small code snippets, aligning
with the lower cognitive levels in Bloom’s Taxonomy: remembering, understanding, and
applying concepts. But how to progress from here? The reality as an IT professional means
dealing with large software systems, with up to millions of Lines of Code (LoC), and a
multitude of technologies, architecture styles, and code patterns. This is a long way from the
10-100 LoC coding tasks for novices. This journey requires two dimensions to be described
properly: On the one side, as students advance, they should be able to analyse requirements
to turn them into code (Bloom level 4), read, understand, and assess the quality of code
(level 5), and even think of new, innovative coding patterns or technologies (level 6). This
dimension of students’ learning journey through IT problem solving is well covered by the
Bloom taxonomy.

4 The question if the Revised Bloom’s Taxonomy forms a cumulative hierarchy has more to it than meets the eye.
The authors themselves give a differentiated “yes-and-no” answer that is worth reading [AKB01, p. 267f.].
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On the other side, students’ coding assignments should evolve to encompass the development
of full-fledged programs with 1000 - 10.000 LoC. Structural considerations like software
architecture become more and more relevant on the way: A combination of perfectly well
designed small code snippets may ultimately end up becoming a horrifying “big ball of
mud”, if such aspects are disregarded. This dimension of “learning to code” is not covered
by Bloom’s Revised Taxonomy5. We therefore propose a second dimension that we call
scope. Scope encompasses various aspects that collectively contribute to a task’s complexity,
including (but not limited to) size, number of classes, technology layers (like persistence
annotations for an ORM layer), architecture styles (layered architecture, hexagonal, ...), Clean
Code rules, code quality metrics (number of dependency cycles, cyclomatic complexity,
...), performance metrics, etc. For the sake of simplicity, within the context of this paper,
we assume that the average size of the solutions’ code base can serve as a valid indicator
for scope, and that larger coding exercises will (have to) cover these additional aspects to
provide a useful learning experience to students.6

Fig. 1: Coding Education as a 2-dim Matrix

Figure 1 depicts these two dimensions. The
coding-related modules of an SE curricu-
lum need to follow a structured path from
the bottom left corner (low cognitive level,
small code snippets) to intricate program-
ming challenges with “Evaluate” level and
large software systems in the top right cor-
ner. The stages that students traverse in
their curriculum appear as quadrants in a
2-dimensional matrix.

Initially, the students need to master the ba-
sics of coding, mainly by applying (Bloom
level 3) programming language syntax rules
to small tasks (bottom-left). In the second
stage, the students move on to unassisted coding (top-left), with the ability to analyze (level
4) requirements and domains, and evaluate (level 5) existing code for refactoring, to optimize
it for quality attributes like maintainability or performance. In the last stage (top-right),
students will slowly broaden the scope and use their skills to develop complex solutions.
The bottom-right quadrant has no educational value, as it would just mean applying the
same detailed instructions over and over to a very large task, without ever gaining a deeper
understanding.

The y-axis in figure 1 employs decimal values for Bloom levels, not discrete numbers. If a

5 Anderson and Krathwohl do actually propose a second dimension of their taxonomy, called the “knowledge
dimension” [AKB01, p. 28ff.]. It distinguishes between factual, conceptual, procedural, and meta-cognitive
knowledge. This is of course a relevant distinction, but doesn’t really help us here in describing how coding
exercises need to evolve through the curriculum.

6 This assumption will require further research, see also the outlook in section 5 of this paper.
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coding-related module’s practical e.g. consists of 20 assignments, we assessed the highest
required Bloom level for each of them, then calculated the average, resulting in a decimal
number. Likewise, the LoC is determined by averaging assignment LoC. Data points were
generated using either existing student solutions or newly created AI solutions. The exact
data is detailed in table 1. In addition, the range of values in the chart is deliberately
restricted between 2.5 and 5. The underlying assumption is that no module teaching coding
(or anything else, for that matter) will stay mainly on Bloom level 1 or 2 - this would mean
that students only learn by heart or explain concepts, but never actually apply any of the
competences they acquire. A Bloom level higher than 5, on the other hand, will be found
in the realm of a Bachelor thesis, but rarely (as an average over the whole semester) in a
regular course. The evaluation of a concrete study program, as described in the section 3,
supports this assumption.

ID Module Name Sem. Description Coding
ECTS

Avg.
Bloom

Avg.
LoC

AP1 Algorithms and
Programming I

1 Programming exercises
in C and Java

8 3.2 35

AP2 Algorithms and
Programming II

2 Programming exercises
and patterns in Kotlin

7 3.5 117

ALG Algorithmics 3 Algorithms (sorting,
graphs, ...)

1.7 4.0 263

DB1 Databases I 3 ERM and basic SQL 2.3 3.4 43
PoP Paradigms of

Programming
3 OO vs. functional vs.

logic programming
5 3.4 53

SE1 Software Engi-
neering I

3 Domain modelling in
Java and Spring

1.6 3.8 51

DB2 Databases II 4 Advanced SQL in client-
server systems

5 4.0 1507

SE2 Software Engi-
neering II

4 Complex system accord-
ing to DDD in Java

4.1 4.4 1937

AI Artificial Intelli-
gence

5 Practical AI application 5 4.7 653

CSP* Computer Sci-
ence Project

5 Practical programming
project

10* >=4.0* >=
5000*

PP* Practical
Project

6 Project intended as base
for BA thesis

15* >=5.0* >=
10000*

BA* Bachelor Thesis 6 Scientific thesis, some-
times on coding topics

12* >=5.0* >=
10000*

Tab. 1: (Potentially) Coding-related Modules in Computer Science Bachelor at TH Köln
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3 A Brief Case Study: Computer Science Bachelor at TH Köln

In sample a case study, we analyzed the Computer Science Bachelor program at TH Köln.
The coding-related parts of this program amount to 47 - 75 ECTS7.

Fig. 2: Positioning of Modules in 2-dim Bloom Matrix

We evaluated the manda-
tory coding-related
courses regarding their
average code size and
Bloom level; the results
are shown in table 1
(German module names
have been translated to
English). The numbers in
table 1 were obtained by
analyzing sample student
solutions, or reference
solutions provided by
the supervisors, where
available8. The modules
marked with an aster-
isk are only potentially
coding-related. Their
numbers represent an
“optimistic” value obtained by averaging selected samples with a high degree of coding.
Figure 2 shows the modules in table 1 positioned in the 2-dimensional Bloom grid
introduced in section 2, marked by their ID and semester in which they should take place
according to the study plan. The potentially coding-related modules are depicted as dotted
circles, to visualize the high degree of uncertainty.

3.1 ChatGPT and Current Assignments

To ascertain the impact of AI tools on coding exercises, we attempted to solve a subset of
the modules’ assignments in table 1 (AP1, PoP, and SE2) using ChatGPT 3.5 and 4.0. We
used an uneducated approach, meaning that only the tasks’ descriptions, outputs generated
by the compiler, test outputs, and bugs could be provided to ChatGPT. No other input or
manual coding was allowed.

7 Elective courses, Bachelor thesis, and various project formats can contain a varying amount of coding-related
content, hence the range.

8 The way LoC are counted is by looking at the context in which the exercise happens.
In AP1 and PoP, for instance, there is a new (relatively small) context in every exercise, therefore each context

is relatively small. In AP2 students sometimes have to extend the work from a previous exercise. In SE2, iteration
on the same code base is a core principle, therefore the LoC numbers are higher.
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The modules that we mainly focused on during this research were AP1 and SE2. AP1 is an
introductory module, teaching students the very fundamentals of programming in C and
Java. It is a mix of procedural and object-oriented assignments, completed throughout the
entire semester. All of these tasks are elementary, do not involve any complex maths or
logic, and most can be completed in a single file or class.

SE2 on the other hand, is a more advanced module teaching students how to develop larger
scale applications using Domain-Driven Design (DDD) and Spring Boot. SE2 has fewer
but larger exercises in Java, designed as milestones that all iterate on the same application.
The tasks are free-form, allowing the students to build the application in any way they
see fit, as long as it implements the necessary interfaces and complies with the regression
and architectural tests. These applications always span multiple classes which are in the
double digits, and thus have an entirely different scope than the coding exercises in the other
modules. The complexity and the free-form approach requires a higher level on the Bloom
Taxonomy, with most tasks being level 4 and some even reaching level 5.

It was immediately obvious that generative AI tools excel in generating programs small
in scope. AP1 (1st semester) could essentially be solved in its entirety with no input other
than the task description, within one hour. The same result was achieved with PoP (3rd
semester), where ChatGPT was able to solve the given problems mostly on the first try.

Looking at SE2, when attempting to solve the milestone 0 of the summer semester of 23,
which required the implementation of a simple B2B webshop, the entire milestone could
be solved using no human written code, despite the large scope. However, the AI started
struggling in the next milestone once architectural best practices started being enforced,
which the AI seemingly was unable to solve on its own, especially regarding resolving
cyclic dependencies. Furthermore, some of its default implementations were violating DDD
principles, which would cause the code to fail tests in later milestones.

Meanwhile, the AI could not solve milestone 0 of the summer semester of 21, where a
program should be implemented which simulates the movement of robots on a grid of
cells containing barriers between some cells. The AI was incapable of implementing the
necessary logic for the barriers, meaning that it was failing the automated tests, despite the
scope of the task being slightly smaller than the tasks of the summer semester of 23. While
this result seems surprising at first sight, it also confirms the AI tool’s well-known struggle
with maths and similar algorithmic challenges [Zh23].

Our observations match the results from numerous other studies on ChatGPT and curricular
coding assignments. “Our findings show that ChatGPT is effective for easy and popular
coding problems but is less reliable for harder and less popular problems” write Kuhail et al.
[Ku23]; [KG23], [DB23], and [Ge23a] come to a similar conclusion. Single file programs
with no additional challenges can easily be solved by students using an “uneducated”
approach with ChatGPT, i.e. without ever trying to understand the assignment. The
capabilities mentioned above are further enhanced when using widely known technologies
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and programming languages. With more complex assignments, in the top-right Develop
Complex solutions quadrant, ChatGPT can still be an extremely helpful tool, but nevertheless
requires some manual interventions. Students will have a hard time solving such assignments
with a purely uneducated approach.

4 Recommendations Regarding AI Tool Usage

Fig. 3: Three Stages for AI Usage in SE Curricula

Based on the capabilities of
AI tools, new ways of teaching
and learning must be developed.
Jacques [Ja23] states that “[...] at
the very least, we have a respon-
sibility to prepare our students
for this transition. Specifically, we
need to consider how to develop
good programmers while still ac-
knowledging and engaging with
these new tools for programming.”

Combining the conceptual grid
from section 2 and the results from
our case study in section 3 (and
many others), we propose three
stages in dealing with AI in SE
curricula. This is depicted in fig-
ure 3.

4.1 Stage 1 (Mastering the Basics of Coding): Don’t Use AI

In the first stage of learning to code, it seems advisable to ban the use of AI tools during
exercises, practicals, and exams. In this phase, students learn by simply applying syntax
definitions, and by following quite detailed instructions. AI tools like ChatGPT offer an all
too easy way out of this, as demonstrated in section 3.1. In addition, an unpublished research
paper [DOH22] from the 2022 “Coding Excellence” course in Master Digital Sciences
showed that beginners actually profit more from simpler programming tools, like syntactical
code completion - rather than full-fledged AI tools like ChatGPT, GitHub Copilot, Tabnine
etc., which are seemingly prone to creating a cognitive overload for novices.

Exams in coding-related courses should be digital and based on real-life development
environments, if possible (following the “Constructive Alignment” principle [Bi03]). If the
university has a large enough computer lab, then exams should take place there, as it is
relatively easy to block access to unwanted tools in such a controlled environment.
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4.2 Stage 2 (Unassisted Coding): Make AI Use Explicit

In this second stage of their “coding journey”, students have acquired the fundamental
knowledge about how to write code - from a computational thinking approach to problem
solving (at least for isolated tasks) to a basic familiarity with the syntax of one or two main
programming languages, and they are capable of developing small scale programs on their
own. This stage therefore focuses on deepening their understanding of the numerous aspects
associated with the coding lifecycle, like domain exploration, algorithms, data structures,
code patterns, quality attributes (e.g. through established rulesets like Clean Code), testing,
debugging, source code management, deployment, etc. In addition, many other functional
and non-functional properties, depending on the task at hand, might have to be checked, e.g.
algorithmic suitability, to avoid performance problems with large data sets.

ChatGPT (and comparable AI tools) are quite proficient as a “Swiss army knife” in complex
coding tasks - when used in an educated fashion. Their capabilities extend beyond single file
programs, to ones featuring multiple classes and methods. A strong feature of ChatGPT is its
ability to “scaffold” an application - the “hello world” creation, if you like - in an unfamiliar
language or framework, like e.g. Spring Boot. This effectively reduces the frustrations of
beginners to programming when learning new, complex technologies, since it can free them
from spending a couple of days just getting the syntax right.

When problems arise, ChatGPT has also proven to be quite capable of identifying bugs
and fixing them. This includes the ability to analyse stack traces - especially useful when
working with a framework like Spring Boot9. Furthermore, the refactoring of existing code
is also something that ChatGPT is quite proficient in. In one case, when asked to refactor an
existing class to use some specific Clean Code rules in an SE2 assignment, the AI’s results
were very close to perfection, only requiring some minor manual adjustments.

To ensure an educated use of AI tools, assignments in the “Unassisted Coding” phase need
to train students in AI Literacy. This is defined by Long and Magerko [LM20] as “a set
of competencies that enables individuals to critically evaluate AI technologies [...]”. The
authors then describe 16 core competencies associated with AI Literacy. For the focus area
of this paper (using AI in coding education), competency 5 (AI’s Strengths & Weaknesses)
is especially important.

The definition by Long and Magerko sums up the key goal for actively embracing AI tools
in SE curricula during this stage: “Identify problem types that AI excels at and problems
that are more challenging for AI. Use this information to determine when it is appropriate
to use AI and when to leverage human skills”. Regarding ChatGPT as a coding tool, this
means that students can read and understand the generated code, and assess if it really fits to
the task description given in the prompt. This competence fits to the “Unassisted Coding”

9 Spring Boot is the de-facto industry standard for Java-based client-server applications (and should therefore
be taught in SE curricula), but drives programming beginners mad with its infamous “stack traces from hell”
[Nu12].
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phase, where assignments need to include the Evaluate (5) Bloom level, to check code for
the aforementioned aspects and quality attributes.

This would also include training the students in recognizing ChatGPT’s known weaknesses.
As our case study (and other literature like [KG23]) shows, AI tools are (currently) error-
prone when solving maths and logic assignments. A further weakness is the tendency of AI
to add more complexity and to rewrite existing code in strange ways, when being asked to
iterate on it. This tendency leads to harder to understand and more complex code, without
any obvious advantages. Another weakness we observed is that working with AI and less
well-known technologies yields worse results, with the AI having a greater tendency to
“hallucinate” methods that don’t exist. Students need to actively use ChatGPT (and other AI
tools) to gain a clear understanding of both their potential and their weaknesses.

This goal can be achieved by making the use of ChatGPT an explicit part of the assignments.
There are manifold creative ways to include AI Literacy in the learning outcome of coding-
focused modules. [Ge23a]10, [DB23], and [Ja23] make proposals in that direction (see the
selection in table 2). Any interactions between ChatGPT and the student should also be
documented and reflected upon, as a mandatory part of the solution.

Method Source

Ask the students to let ChatGPT generate code, and then analyze and explain it [Ja23]
Let students implement a solution using an alternative approach to ChatGPT’s
solution

[Ja23]

Ask students for a different representation for ChatGPT’s solution, e.g. for a
given data structure

[Ja23]

Let the students use ChatGPT for self assessment of their code, and ask them to
reflect on ChatGPT’s improvement proposals

[DB23]

Let ChatGPT create coding tasks for students, and ask students to solve them [DB23] [Ge23a]
Ask ChatGPT to create a faulty solution to a given problem, and then ask the
students correct it

[Ge23a]

Let ChatGPT act as a teacher, explaining concepts and solutions [Ge23a]
Switch roles between students and teacher: Give a reference solution to the
students and instruct them to repeatedly prompt ChatGPT until it has generated a
valid solution

[Ge23a]

Tab. 2: Innovative ways in which ChatGPT and similar tools can be used in SE education

As in stage 1, exams in coding-related courses in the “Unassisted Coding” phase need to
be digital. They probably have to be two-phased: In phase one, access to ChatGPT needs
to be open, so that students can work on assignments with explicit instructions to use AI
tools, and document their interactions. In the second phase, with assignments focusing
on other competencies, access must be blocked, since the scope of coding tasks is still

10 This paper was written based on the results of the same teaching-research project as in this paper. The “DBS”
module described there is the successor of “DB2” covered in this paper, in a subsequent examination regulation
of the same study program.
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relatively small, and ChatGPT would allow for an “uneducated” solution. A digital exam in
a university’s computer lab would allow such a configuration switch with relative ease.

4.3 Stage 3 (Developing Complex Solutions): Use AI implicitly, without constraints

The third and final stage allows the students unrestricted access to AI tools. During this stage,
the scope of the tasks should be vast, to the point where using an “uneducated” approach
would not be viable. This could be either done in large-scale practicals such as the ones
in SE2 or DB2, or in large projects as found in the Computer Science Project (CSP), the
Practical Project (PP) or Bachelor Thesis (BA). At this point, it would be up to the students
to determine for which problems they would utilize the AI tools, as they should have learned
in the previous stage how and where these tools perform best.

Exams are a great challenge in this phase. They need to be digital - as in the previous
stages - and it would be natural to allow the students free access to AI tools during the
exam. However, current exams are tailored towards a very limited time frame and assume
no access to AI; these exams’ small scope would therefore make an “uneducated” approach
possible, and thus would fail to assess the students’ true skills and knowledge. To still
properly evaluate students when allowing them unrestricted use of AI tools, this scope needs
to be enhanced. Unfortunately, this entails many changes, compared to the current exam
design.

• With (far) larger assignments, manual corrections might not be viable anymore, due
to the sheer lack of (human supervisor) resources. The correction therefore needs
to be automized to some extent - quite a challenge when testing functional and
non-functional properties of written code.

• For fairness reasons, the students need to have free access to the same industry-
standard AI tools they use outside of exams. Most AI tools are not free. Some (like
GitHub Copilot) offer a free, or at least inexpensive, academic license. Others, like
ChatGPT 4.0, do not even (at the time this paper is written) offer such a licensing
model.

• An alternative would be to abort written exams altogether in this phase, and require
project submissions instead. This, however, would greatly increase the workload on
the supervisors, due to the large scope of the code they need to evaluate.

This situation requires further discussion and research. However, in the spirit of Constructive
Alignment [Bi03] as a guiding didactical principle, the exam needs to reflect the learning
outcome, which in turn should match the situation the students will face later in their
professional context. So it seems we just need to solve this, one way or another.

102 Stefan Bente, Natasha Randall, Dennis Wäckerle



ChatGPT Capabilities 11

5 Conclusion and Outlook

Based on our research findings, we recommend that SE curricula should be transformed,
following the three stages proposed in figure 3. Modules teaching the fundamentals of
programming should forbid AI tools entirely, while modules falling into stage 2 (unassisted
coding) and stage 3 (developing complex solutions) need adjustment. Special attention
should be given to the modules in stage 2, as these require the explicit usage of AI tools
and thus the most work. Modules in stage 3 need to have a vast scope. Therefore, they will
then be less affected by “uneducated” AI tool use. AI tools need to be available during the
students’ examinations.

One limitation of our proposed conceptual framework is the simplified use of LoC to
represent the scope dimension, as this does not fully represent the higher complexity of
more advanced exercises. It also does not account for the shortcomings and strengths of AI
tools as demonstrated with the SE2 practical in the summer semester of 2021 (see section
3.1). Further research should therefore explore other suitable attributes to represent scope. In
addition, further validation of the model is required; systematic studies of coding education
within other universities’ SE curricula, would help to verify its wider applicability and
generalisability.

It should also be further explored how ChatGPT and other such tools could be included in
creative ways within coding education - and the same applies to exam design in the age of
AI tools. Finally, university teachers, researchers, and their professional organizations need
to lobby for free educational licences of ChatGPT 4.0 and other industry standard AI tools.
This is required to provide a level playing field for all students.

Ultimately, we feel that the glass is half full, rather than half empty, and that AI tools will be
a great enrichment for Software Engineering education in general - if we manage to adapt
our curricula accordingly.
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