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Hardware-Sensitive Scan Operator Variants for Compiled
Selection Pipelines

David Broneske1, Andreas Meister1, Gunter Saake1

Abstract: The ever-increasing demand for performance on huge data sets forces database systems
to tweak the last bit of performance out of their operators. Especially query compiled plans allow
for several tuning opportunities that can be applied depending on the query plan and the underlying
data. Apart from classical query optimization opportunities, it includes to tune the code using code
optimizations for processor specifics, e.g., using Single Instruction Multiple Data processing or
predication. In this paper, we examine code optimizations that can be applied for compiled scan
pipelines that include aggregations, evaluate impact factors that influence the performance of the scan
pipelines, and derive guidelines that a query compiler should implement to choose the best variant for
a given query plan and workload.
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1 Introduction

With the advent of main-memory databases, where all necessary data to be processed fits into
memory, good performance of database operator code has become a key challenge [Ba13;
BHS14]. A superior method to produce fast, optimized code for database queries is query
compilation [Ne11]. In essence, a modern query compiler will split a query into several2
so-called pipelines that merge the code of a set of operators into a single loop.

Important ingredients for a pipeline are if-clauses, that represent selections. Inside the
if-clauses, there are further operators, such as projections and hash-table probes and, at last
inside the if-clause, code for pipeline breakers, such as aggregations or hash-table builds.
Having selections in the pipeline, the code becomes prone to branch mispredictions due to
the if-clause. In an earlier work, we already experimented with several optimizations of a
selection operator [BS14]. Among others, we evaluated the performance of a branching
scan against a branch-free (predicated) variant of the scan and also against a scan using the
concept of Single Instruction Multiple Data (SIMD). The result was, as shown in Figure 1.a,
that the predicated variant is overall the best choice. However, these experiments are limited
to single predicate selections materialized into a position list; whereas, query compilation
allows for several predicates merged into a pipeline including further code inside the loop,
for instance, for executing the aggregation. Both scenarios can be found in the TPC-H
queries [Tr14], e.g., in query Q1 and query Q6. Q1 consists of a selection on a single predicate
1 University of Magdeburg, Database and Software Engineering Group, Universitätsplatz 2, 39106 Magdeburg,
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Fig. 1: Response time for di�erent scan implementations on a TPC-H scale factor 10 Lineitem table.

with six aggregates inside the loop, while Q6 has three predicates and a single aggregate.
In Figure 1, we depict the runtime of both queries for varying selectivities. In contrast to
the single predicate, where the predicated variants are superior, for query Q1 the branching
variants are superior, because the overhead of predication that is added to the work inside
the loop is too heavy. Furthermore for query Q6, we can see that a SIMD scan is beneficial
compared to the normal scan for a range of selectivities when evaluating more than one
predicate. Hence, the work inside the loop body and the number of predicates are important
characteristics that have to be investigated to find the optimal scan implementation.

In this paper, we contribute a reasonable 3-dimensional evaluation of the impact of the
work inside the loop body, the impact of di�erent selectivities for two predicates, as well as
the impact of the number of predicates on the performance of a scan pipeline including
aggregations. As a result, we will derive guidelines when to use which scan implementation
variant to gain the optimal performance.

The remainder of the paper is structured as follows. In Section 2, we present possible code
optimizations from the literature that can be applied to a scan operator. Then, we evaluate
the resulting scan pipelines using three di�erent scenarios in Section 3. Finally, we present
related work in Section 4 and conclude in Section 5.

2 Variants for Predicate Evaluation

There are several ways to optimize a selection operator. In this section, we will review three
implementation strategies of single-predicate selections. Furthermore, when considering
more than one predicate, we also have to care about how to combine the predicates, which
adds the possibility for another variant to be considered for a query compiler. As a side note,
all these optimizations are also applicable for code that is not produced by a query compiler.
However, implementing one variant per predicate type, number of predicates, and aggregate
creates a huge implementation e�ort and will probably avoided in practice.
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2.1 Single-Predicate Variants

There are three implementation strategies for a single-predicate scan. They include to use an
if-clause, which results in a branching variant, to use predication, which results in a branch-
free variant, and to use SIMD to accelerate the predicate evaluation. Furthermore, a SIMD
can be implemented using an if-clause or predication, which adds another possible variant.
Notably, using a multi-threaded implementation is another optimization for scans. However,
multi-threading adds a constant speedup to the before-mentioned variants without changing
the overall performance di�erences between the three implementation strategies [BS14].

Branching Scan. The code that is generated for a branching scan is pretty simple. The
pipeline itself contains a loop iterating over the input to which the branching scan is adding
an if-clause with the predicate evaluation. Inside the if-clause, subsequent operators will
put their code. In our example in Listing 1, we show the branching scan for a less than
predicate and an aggregation on a specific column that is executed depending on the result
of the predicate evaluation. However, this implementation will only benefit from very high
selectivities (i.e., only a small amount of tuples match), because else the CPU incurs many
branch mispredictions causing considerable performance penalties [BS14; RBZ13].

1 for(int i = 0; i < input_size; ++i){
2 if(col[i] < pred)
3 agg+=agg_col[i];
4 }

List. 1: Branching scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < input_size; ++i){
2 agg+=agg_col[i]*(col[i] < pred);
3 }

List. 2: Predicated scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < simd_size; ++i){
2 mask= SIMD_COMP(simd_col[i],pred);
3 if(mask){
4 for (int j=0;j < SIMD_LENGTH;++j){
5 if((mask >> j) & 1)
6 agg+=agg_col[i];
7 }
8 }
9 }

List. 3: SIMD scan for less than predicate
adapted from [BS14].

Predicated Scan. The predicated scan omits an if-clause and will always write a result.
For this, we can use in C++ the return value of the comparison to manipulate the written
result [RBZ13; Ro04]. The comparison will produce 1, if the condition is true, and 0 if
the condition is false. This trick can help for creating an RID list [BS14], but also for
manipulating an aggregate computation. For this, you just multiply the aggregate with the
result of the predicate, which will mask the aggregate value if the condition is false. We
show the resulting code for a predicated aggregating scan in Listing 2.

SIMD Scan. Single Instruction Multiple Data is a technology that enables to execute one
instruction on several data items in parallel. Since most of the processor’s control logic
depends on the number of in-flight instructions and registers, but not on the size of the
registers, a theoretical speedup of factor n for a vector size of n elements is possible. However,
this is hardly achieved in practice. For instance, the SIMD scan cannot benefit from the full
potential, as it is impossible to do branching on a single data item in a SIMD fashion. To
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perform a selection on a single data item, a mask has to be extracted and depending on the
bits that are set, the branching is executed in a scalar fashion [ZR02]. We visualize the code
of the branching SIMD scan in Listing 3. The computation of the mask is done in Line 2,
that includes a SIMD macro for the predicate evaluation as well as a macro for extracting
the mask. Afterwards, the mask is checked for at least one match and from Line 4 to Line 7
the single bits of the mask are examined. In case of a match, the aggregation is executed.

Predicated SIMD Scan. Another option is to fully avoid branches in the SIMD scan. In
this variant, we use a bitwise AND between the result of the SIMD predicate evaluation and
the aggregate column to mask mismatching values of the aggregate column. To get the final
result, all entries of the SIMD register have to be summed up at last. Due to space reasons,
we refer the interested programmer to the code in our GIT repository3.

2.2 Multi-Predicate Variants

To evaluate multiple predicates, we just have to extend the above variants to evaluate not
one, but several predicates. However, how to combine the predicates in an if-clause opens
another tuning opportunity, because we can use a conditional AND or a bitwise AND. Notably,
these two variations only apply to the branching scan, because (1) the predicated omits
every branch and, thus, will only use the bitwise variant and (2) the SIMD variants only
support a bitwise AND as macro.

Conditional AND. The conditional AND (e.g., pred1 && pred2) between predicates will start
to evaluate the first predicate at first and only if it evaluates to true, the second predicate will
be evaluated. This is also often called a short-circuit evaluation, because the computation of
further predicates can be skipped, when the first predicate is already evaluated to false. So,
it yields a speedup, if the first predicate is very selective [Ro04]. However, each conditional
AND will produce a conditional branch in the execution and may lead to heavy branch
misprediction penalties.

Bitwise AND. The bitwise AND (e.g., pred1 & pred2) inside an if-clause will evaluate all
predicates, form the final result, and then execute the branch according to the result of the
predicate evaluation. In this way, branch misprediction penalties are reduced (except the
last one for the if-clause), but it misses the possibility to skip irrelevant predicates as the
conditional AND can do.

3 Performance Evaluation of Scan Variants

In this section, we are presenting the performance di�erences of our scan variants for the
three di�erent impact factors that can be derived from the motivational example in Figure 1.
The impact factors are the work done inside the loop, the selectivity di�erences between
several predicates, and also the number of predicates to be evaluated. The scans were
implemented in C++ and compiled with the GCC 5.1 All experiments are executed on an

3 http://git.iti.cs.ovgu.de/dbronesk/BTW-Pipeline-Variants

http://git.iti.cs.ovgu.de/dbronesk/BTW-Pipeline-Variants
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Intel Xeon E5-2630 v3 using a single thread. As a side note, parallelized variants would
show the same behavior as the single-threaded variants only with a meaningful speedup.
The scanned data is taken from the TPC-H Benchmark and uses the LineItem4 table of
scale factor 10. Our predicates are less then predicates evaluated on independent columns
of the table and predicate values are chosen from the data such that we meet the required
selectivities.
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Fig. 2: Variant response time under di�erent numbers of aggregates.

3.1 Single-Predicate Variants under Di�ering Workload Inside the Loop

For the evaluation of the impact of di�ering workload inside the loop, we emulate a pipeline
with a single predicate and varied the number of aggregates inside the loop. For each
aggregate, we have a separate field in the output object and we sum up a unique column
per aggregate. Notably, other aggregate functions will only add a di�erent overhead to
the execution, but the overall behavior of the variants will stay the same. For instance, the
aggregate function count() will issue minimal memory access cost (or none), because
the aggregate will probably be held in the CPU register and is only incremented. In
contrast, holistic aggregate functions (e.g., median) will at first gather all matching values,
which will create two memory accesses (for reading the input and for writing the output

4 The LineItem table of scale factor 10 contains 60 million tuples, such that a scan will touch 240 MB of data,
which exceeds cache sizes by far. Hence, a bigger scale factor would lead to the same performance behavior.
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array). Nevertheless, especially the SIMD predicated version is not applicable for grouped
aggregations, as it would use a scatter operation. Hence, this is open for future work.

Since we are only varying the workload inside the loop in this experiment, we only use the
four single-predicate variants: branching scan, predicated scan, SIMD scan, and predicated
SIMD scan. We visualize the response time of our variants for di�erent numbers of
aggregates in Figure 2.

Branching Variants. We can derive from the plots for the branching variants that the
selectivity factor has a big impact on the performance only if the number of aggregates
is small. The more aggregates we take, the more linear is the progression of the curve.
This means, that the overhead for a branch misprediction is hidden by other computations.
Overall, the branching scan outperforms the SIMD scan except for selectivity factors around
0, where SIMD has a performance benefit of 13 %.

Predicated Variants. The predicated variants show no impact of the selectivity factor, but a
high impact of the number of aggregates, which is consistent with our expectation. However,
we can see, that the predicated SIMD scan consistently outperforms the predicated scan by
a factor between 2 and 3.5.
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Fig. 3: Decision tree for several aggregates.

Overall Comparison. Comparing the
branching variants with the predicated vari-
ants, we can see that the selectivity factor
range, in which the predicated variants are
better than the branching variants, becomes
smaller the more aggregates have to be com-
puted. In particular, the branching SIMD scan
outperforms the SIMD predicated scan for
selectivity factors smaller than 0.05 for up to
five aggregates, while the threshold is at 0.1
for more than five aggregates (cf. Figure 3).

3.2 Multi-Predicate Variants for Di�ering Predicate Selectivities

In this experiment, we want to examine the impact of di�erent selectivities of two predicates
on the multi-predicate variants. The evaluated variants are: the branching scan using
conditional AND, the branching scan using bitwise AND, the predicated scan, the SIMD scan,
and the predicated SIMD scan. For a good comparison, we use a single aggregation inside
the loop, because it is a case, where the predicated variants should still show considerable
performance compared to the branching variants. This experiment is especially interesting
for the two new variants of the branching variant, because the conditional AND is sensitive
to the single selectivities, while the other branching variants are only sensitive to the
accumulated selectivity. Notably, a query optimizer would order the predicates on their
selectivity such that the first predicate would be the most selective. Hence, only the half of
the parameter space that we use in this experiment applies for real-world scenarios.
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Branching Variants. If we compare the branching variants, we can see that our expectations
were partially met. The conditional AND scan shows a high performance dependence on the
first predicate, while the SIMD branching scan shows a symmetric behavior w.r.t. the order
of the predicates (i.e., it does not matter whether P1 is more selective than P2, or the other
way around). However, the bitwise AND scan still shows a lazy evaluation, which is caused
by a bad compiler optimization. Still, if the first predicate has a selectivity factor around
0, the conditional AND scan outperforms the other two branching scans by up to factor 1.4.
However, if both predicates are very selective reaching a small combined selectivity factor
higher than 0.05, the SIMD scan outperforms the conditional AND scan.
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Fig. 4: Variant response time under di�erent selectivities of two predicates.

Predicated Variants. For the predicated variants, we can see that the selectivity factor
has no impact on the variant performance, as the resulting performance graph is a plane
parallel to the x-y plane. Comparing both predicated variants, the SIMD predicated scan
outperforms the predicated scan by a factor of 1.6 in all cases.
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Fig. 5: Decision tree for di�erent selectivities.

Overall Comparison. When comparing
branching and predicated variants, we can
see that if the predicate with the highest se-
lectivity has a selectivity factor higher than
0.05, the predicated SIMD scan performs bet-
ter than the branching scans (cf. Figure 5).
Else, one of the branching scans performs
best depending on the single selectivities.
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In summary, the decisions of a query compiler for real-world scenarios depend on the
selectivity of the predicate with the highest selectivity due to the predicate ordering during
query optimization. If the first predicate has a selectivity close to 0, the conditional AND
scan will be chosen by the query compiler. In any other case, the SIMD predicated scan will
be chosen.
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Fig. 6: Variant response time for di�erent numbers of predicates.

3.3 Multi-Predicate Variants for Di�ering Number of Predicates

In this experiment, we want to examine the impact of an increasing number of predicates
on the performance of our multi-predicate variants, especially looking at the di�erence
between SIMD and non-SIMD variants. For the experiment, we exclude the conditional AND
scan, because we cannot visualize the di�erent selectivities of more than two predicates. In
fact, we keep the accumulated selectivity factor ranges constant while stepwise adding more
predicates in order to increase the work of predicate evaluation. Similar to the experiment
before, we use a single aggregate as work inside the loop.

Branching Variants. Similar to the increase of work inside the loop, an increasing number
of predicates will also smoothen the curve of branching scans along the selectivity factor,
although this is more evident for the bitwise AND scan than for the SIMD scan. This is due to
the small overhead of the branch misprediction when compared to the overall response time.
Furthermore, when comparing the SIMD scan with the bitwise AND scan, we can see that
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the bitwise AND scan does not scale as good as the SIMD scan with an increasing number
of predicates and it can only partially outperform the SIMD scan for a small number of
predicates. In fact, for up to four predicates, the bitwise AND scan outperforms the SIMD
scan for selectivity factors in the range [0.1,0.65]. However for more than four predicates,
the SIMD scan constantly outperforms the bitwise AND scan, because it can reuse the results
inside the SIMD registers.

Predicated Variants. The predicated variants show no impact of the selectivity factor on
their performance. However, the number of predicates adds a constant factor to the response
time, which is higher for the predicated non-SIMD variant than for the predicated SIMD
variant. Similar to the branching variants, for a single predicate, the non-SIMD variant
performs better than the SIMD variant, while it is the other way around for more than one
predicate.

Overall Comparison. When comparing the branching and the predicated variants, we can
see that for selectivity factors close to 0, the branching variants outperform their predicated
counterparts. For selectivity factors close to 0, performance factors from 1.23 to 1.64 are
possible. However, for a selectivity factor between [0.05,0.95], the predicated variants reach
a benefit of up to factor of 2.1 in comparison to the best performing branching variant.
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Fig. 7: Decision tree for several predicates.

As shown in Figure 7, a query compiler should use a branching scan for accumulated
selectivity factors less than 0.05. In this case, the branching scan is chosen for less than 4
predicates while, otherwise, the SIMD scan is used. For other selectivity factors, the query
compiler should use a predicated variant – it should use a predicated SIMD variant for more
than one predicate and for one predicate, it should rely on a non-SIMD variant.

4 Related Work

Using SIMD to accelerate database operations, in particular selection conditions, has gained
much attention in research. The first idea of a SIMD scan, which is also our basis for
the SIMD scan, was proposed by Zhou and Ross [ZR02]. Later on, Polychroniou and
Ross extend the work to AVX by using bloom filters [PR14], Sitaridi and Ross to exploit
GPUs [SR13] and Polychroniou et al. to exploit Xeon Phis [PRR15]. Furthermore, Willhalm
et al. use compression and SIMD acceleration to speed up the scan for single [Wi09] and
complex [Wi13] predicates. All these improvements propose reasonable variants that could
be used in future work to extend the findings of this paper and could be merged into a cost
model for query compilers.



412 David Broneske, Andreas Meister, Gunter Saake

5 Conclusion

In our paper, we compare the performance of di�erent scan pipeline implementations w.r.t.
increasing work inside the loop, di�ering selectivities of two predicates, and increasing
numbers of predicates. Our evaluation has shown, that all parameters have a high impact on
the usage of the variants and a query compiler should take care of these parameters to select
the right variant in order to produce the best performing pipeline code. Nevertheless, exact
thresholds still depend on the used machine and have to be re-evaluated for every new CPU
architecture.
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