
Microarray Layout as Quadratic Assignment Problem

Sérgio A. de Carvalho Jr.1,2,3 and Sven Rahmann2,3

1 Graduiertenkolleg Bioinformatik,
2 International NRW Graduate School in Bioinformatics and Genome Research,

3 Algorithms and Statistics for Systems Biology group, Genome Informatics,
Technische Fakultät, Bielefeld University, D-33594 Bielefeld, Germany.

Abstract: The production of commercial DNA microarrays is based on a light-di-
rected chemical synthesis driven by a set of masks or micromirror arrays. Because of
the natural properties of light and the ever shrinking feature sizes, the arrangement of
the probes on the chip and the order in which their nucleotides are synthesized play
an important role on the quality of the final product. We propose a new model called
conflict index for evaluating microarray layouts, and we show that the probe placement
problem is an instance of the quadratic assignment problem (QAP), which opens up
the way for using QAP heuristics. We use an existing heuristic called GRASP to
design the layout of small artificial chips with promising results. We compare this
approach with the best known algorithm and describe how it can be combined with
other existing algorithms to design the latest million-probe microarrays.

1 Introduction

An oligonucleotide microarray is a piece of glass or plastic on which single-stranded
fragments of DNA, called probes, are affixed or synthesized. The chips produced by
Affymetrix, for instance, can contain more than one million spots (or features) as small
as 11 μm, with each spot accommodating several million copies of a probe. Probes are
typically 25 nucleotides long and are synthesized in parallel, on the chip, in a series of
repetitive steps. Each step appends the same nucleotide to probes of selected regions of
the chip. Selection occurs by exposure to light with the help of a photolithographic mask
that allows or obstructs the passage of light accordingly [3].

Formally, we have a set of probes P = {p1, p2, ...pn} that are produced by a series of
masks M = (m1, m2, ...mT ), where each mask mt induces the addition of a particular
nucleotide St ∈ {A, C, G, T} to a subset of P . The nucleotide deposition sequence S =
S1S2 . . .ST corresponding to the sequence of nucleotides added at each masking step is
therefore a supersequence of all p ∈ P [10].

In general, a probe can be embedded within S in several ways. An embedding of pk is
a T -tuple εk = (ek,1, ek,2, ...ek,T ) in which ek,t = 1 if probe pk receives nucleotide
St (at step t), or 0 otherwise (Figure 1). The deposition sequence is often taken as a
repeated permutation of the alphabet, mainly because of its regular structure and because
such sequences maximize the number of distinct subsequences.

11



2

3

4
5

6

7

8
9

1

S =

=
=
=
=
=
=
=
=
=

ε
ε
ε
ε
ε
ε
ε
ε
ε

1 1 1
1 1 1
1 1 1

1 1
1

1 1 1

1

1
1 1 1

1 1

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0

0 0 0 0 0
0
0
0
0
0

0
0

0 0 0

0 0 0 0 0 0
0 0 0

0 0 0

0 0 0
0

0
0

0
0

0 0

0
0

0 0

0

0 0

0 0

0

0
0

0
0

1 1 1

0
0

1 01

ACGTACGTACGT

0 0

T
TT

G
G

G
G

C

C

A

A
t = 1 t = 2 t = 3 t = 4

AATCGTTAC

TCC GAC GCC

GATCTGACT
21 3

4 65

7 8 9

Figure 1: Synthesis of a hypothetical 3×3 chip. Top left: chip layout and the 3 nt probe sequences.
Top right: deposition sequence and probe embeddings. Bottom: first four resulting masks.

We distinguish between synchronous and asynchronous embeddings. In the first case, each
probe has exactly one nucleotide synthesized in every cycle of the deposition sequence;
hence, 25 cycles or 100 steps are needed to synthesize probes of length 25. In the case of
asynchronous embeddings, probes can have any number of nucleotides synthesized in any
given cycle, allowing shorter deposition sequences. All Affymetrix chips that we know
of can be asynchronously synthesized in 74 steps (18.5 cycles), which is probably due to
careful probe selection.

Because of diffraction of light or internal reflection, untargeted spots can be accidentally
activated in a certain masking step, producing unpredicted probes that can compromise the
results of an experiment. This problem is more likely to occur near the borders between
masked and unmasked spots [3]; this observation has given rise to the term border conflict.

We are interested in finding an arrangement of the probes on the chip together with em-
beddings in such a way that the chances of unintended illumination during mask exposure
steps are minimized. The problem appears to be hard because of the exponential number
of possible arrangements, although we are not aware of an NP-hardness proof (and our
QAP formulation has several special properties). Optimal solutions are thus unlikely to be
found even for small chips and even if we assume that all probes have a single predefined
embedding.

If we consider all possible embeddings (up to several million for a typical Affymetrix
probe), the problem is even harder. For this reason, the problem has been traditionally
tackled in two phases. First, an initial embedding of the probes is fixed and an arrangement
of these embeddings on the chip with minimum border conflicts is sought. This is usually
referred to as the placement. Second, a post-placement optimization phase re-embeds the
probes considering their location on the chip, in such a way that the conflicts with the
neighboring spots are further reduced.

12



In the next section, we review the Border Length Minimization Problem [4], and define an
extended model for evaluating microarray layouts. In Section 3, we briefly review existing
placement strategies. In Section 4, we present a new formulation of the microarray place-
ment problem based on the quadratic assignment problem (QAP). The results of using a
QAP heuristic algorithm, called GRASP, to design small artificial chips are presented in
Section 5, where we compare its performance with the best known placement algorithm
and discuss how this approach can be used to design and improve larger microarrays.

2 Modeling

Border length. Hannenhalli and co-workers [4] were the first to give a formal definition
of the problem of unintended illumination in the production of microarrays. They for-
mulated the Border Length Minimization Problem, which aims at finding an arrangement
of the probes together with their embeddings in such a way that the number of border
conflicts during mask exposure steps is minimal.

The border length Bt of mask mt is defined as the number of borders shared by masked
and unmasked spots at masking step t. The total border length of a given arrangement is
the sum of border lengths over all masks. For example, the initial four masks shown in
Figure 1 have B1 = 4, B2 = 6, B3 = 6 and B4 = 4. The total border length of that
arrangement is 50 (masks 5 to 12 not shown).

Conflict Index. The border length of an individual mask measures the quality of that
mask. We are more interested in estimating the risk of synthesizing a faulty probe at a
given spot, that is, we need a per-probe measure instead of a per-mask measure. Addi-
tionally, the definition of border length does not take into account two important practical
considerations [6]: a) stray light might activate not only adjacent neighbors but also probes
that lie as far as three cells away from the targeted spot; b) imperfections produced in the
middle of a probe are more harmful than in its extremities.

This motivates the following definition of the conflict index C(p) of a probe p of length ,p

that is synthesized in T masking steps. First we define a distance-dependent weighting
function, δ(p, p�, t), that accounts for observation a) above:

δ(p, p�, t) :=
�

(d(p, p�))−2 if p� is unmasked at step t,
0 otherwise, (1)

where d(p, p�) is the Euclidean distance between the spots of p and p�. This form of
weighting function is the same as suggested in [6]. Note that δ is a “closeness” measure
between p and p� only if p� is not masked (and thus creates the potential of illumination at
p). To limit the number of neighbors that need to be considered, we restrict the support of
δ(p, p�, ·) to those p� �= p that are in a 7× 7 grid centered around p (see Figure 2 left).

We also define position-dependent weights to account for observation b):

ω(p, t) :=
�

c · exp (θ · λ(p, t)) if p is masked at step t,
0 otherwise, (2)

13



0.06 0.08 0.10 0.11 0.10 0.08 0.06
0.08 0.13 0.20 0.25 0.20 0.13 0.08
0.10 0.20 0.50 1.00 0.50 0.20 0.10
0.11 0.25 1.00 p 1.00 0.25 0.11
0.10 0.20 0.50 1.00 0.50 0.20 0.10
0.08 0.13 0.20 0.25 0.20 0.13 0.08
0.06 0.08 0.10 0.11 0.10 0.08 0.06

0

2

4

6

8

10

12

0 5 10 15 20 25

Figure 2: Ranges of values for both δ and ω on a typical Affymetrix chip where probes of length 25
are synthesized in 74 masking steps. Left: approximate values of the distance-dependent weighting
function δ(p, p�, t) for a spot containing probe p (shown in the center) and close neighbors p�, as-
suming that p� is unmasked. Right: position-dependent weights ω(p, t) on the y-axis for each value
of bp,t on the x-axis, assuming that p is masked at step t.

where c > 0 and θ > 0 are constants, and

λ(p, t) := 1 + min(bp,t, ,p − bp,t) (3)

is the distance, from the start or end of the final probe sequence, of the last base synthesized
before step t, i.e., bp,t denotes the number of nucleotides synthesized within p up to and
including step t, and ,p is the probe length (see Figure 2 right).

The motivation behind an exponentially increasing weighting function is that the proba-
bility of a successful stable hybridization of a probe with its target should increase expo-
nentially with the absolute value of its Gibbs free energy, which increases linearly with the
length of the longest perfect match between probe and target. The parameter θ controls
how steeply the exponential weighting function rises towards the middle of the probe. In
our experiments, we set θ := 5/,p and c := 1/ exp(θ).

We now define the conflict index of a probe p as

C(p) :=
T�

t=1

�
ω(p, t)

�
p�

δ(p, p�, t)


, (4)

where p� ranges over all probes that are at most three cells away from p. C(p) can be
interpreted as the fraction of faulty p-probes.

Note the following relation between conflict index and border length. Define δ(p, p�, t) :=
1 if p� is a direct neighbor of p and is unmasked at step t, and := 0 otherwise. Define
ω(p, t) := 1 if p is masked at step t, and := 0 otherwise. Then

�
p C(p) = 2

�T
t=1 Bt, as

each border conflict is counted twice, once for p� and once for p. Therefore, border length
and total conflict are equivalent for this particular choice of δ and ω. For our choice (1)
and (2), they are not equivalent but still correlated: a good layout has both low border
lengths and low conflict indices.

14



3 Review of Placement and Partitioning Algorithms

Placement Algorithms. All methods mentioned here assume fixed (synchronous, left-
most, or otherwise pre-computed) embeddings. Post-placement optimizations such as the
Chessboard [5] exist but separate the embedding problem from the placement problem.

The Border Length problem was first formally addressed in [4]. The article reports that the
first Affymetrix chips were designed using a heuristic for the traveling salesman problem
(TSP). The idea consists of building a weighted graph with nodes representing probes,
and edges containing the Hamming distance between the probe sequences. A TSP tour is
approximated, resulting in consecutive probes in the tour being likely similar. The TSP
tour is then threaded on the array in a row-by-row fashion. A different threading of the TSP
tour, called 1-threading, is suggested to achieve up to 20% reduction in border length [4].

A different strategy called Epitaxial placement [5] places a random probe in the center of
the array and continues to insert probes in spots adjacent to already filled spots. Priority
is given to spots with the largest numbers of filled neighbors. At each iteraction, it exam-
ines all non-filled spots and finds a non-assigned probe with minimum sum of Hamming
distances to the neighboring probes, employing a greedy heuristic to select the next spot
to be filled. A further 10% reduction in border conflict over TSP + 1-threading is claimed.

Both the Epitaxial algorithm and the TSP approach do not scale well to large chips. For
this reason, [6] proposes a simpler variant of the Epitaxial algorithm, called Row-epitaxial,
with two main differences: spots are filled in a pre-defined order, namely from top to
bottom, left to right, and only probes of a limited list of candidates are considered when
filling each spot. Experiments show that Row-epitaxial is the best large-scale placement
algorithm, achieving up to 9% reduction in border length over the TSP + 1-threading.

Partitioning Algorithms. The placement problem can be partitioned by dividing the set
of probes into smaller sub-sets, and assigning these sub-sets to sub-regions of the chip.
Each sub-region can then be treated as an independent chip or recursively partitioned. In
this way, algorithms with non-linear time or space complexities can be used to compute
the layout of larger chips that otherwise would not be feasible.

The first known partitioning algorithm is called Centroid-based Quadrisection [7]. It starts
by randomly selecting a probe c1 ∈ P . Then, it selects another probe c2 maximizing
h(c1, c2), the Hamming distance between their embeddings. Similarly, it selects c3 and
c4 maximizing the sum of Hamming distance between these four probes, which are called
centroids. All other probes p ∈ P are then compared to the centroids and assigned to
the sub-set Pk associated with ck that has minimum h(p, ck). The chip is divided into
four quadrants, each being assigned to a sub-set Pk. The procedure is repeated recursively
on each quadrant until a given recursion depth is reached. In the end, the Row-epitaxial
algorithm is used to produce the placement of the probes in each final sub-region.

We recently developed an approach that, for the first time, combines the partitioning of
the chip with the embedding of the probes [1]. Our algorithm, called Pivot Partitioning,
achieves up to 6% reduction in conflicts when compared to the best known algorithms.

15



4 Quadratic Assignment Problem

We now explore a different approach to the design of microarrays based on the quadratic
assignment problem (QAP), a classical combinatorial optimization that can be stated as
follows. Given n × n real-valued matrices F = (fij) ≥ 0 and D = (dkl) ≥ 0, find a
permutation π of {1, 2, . . . n} such that

n�
i=1

n�
j=1

fij · dπ(i)π(j) → min . (5)

The attribute quadratic stems from the fact that the target function can be written with n2

binary indicator variables xik ∈ {0, 1}, where xik := 1 if and only if k = π(i). The
objective (5) then becomes

�n
i=1

�n
j=1 fij ·

�n
k=1

�n
l=1 dkl ·xik ·xjl → min, such that�

k xik = 1 for all i,
�

i xik = 1 for all k and xik ∈ {0, 1} for all (i, k). The objective
function is a quadratic form in x.

The QAP has been used to model a variety of real-life problems. One of its major appli-
cations is to model the facility location problem where n facilities must be assigned to n
locations. In this scenario, F is called the flow matrix as fij represents the flow of mate-
rials from facility i to facility j. One unit of flow is assumed to have an associated cost
proportional to the distance between the facilities. Matrix D is called the distance matrix,
as dkl gives the distance between locations k and l. The optimal permutation π defines a
one-to-one assignment of facilities to locations with minimum cost.

QAP Formulation of Probe Placement. The probe placement problem can be seen as
an instance of the QAP, where we want to find a one-to-one correspondence between spots
and probes. In a realistic setting, we may have more spots available than probes to place.
Below we show that this does not cause problems as we can add enough “empty” probes
and define their weight functions appropriately.

Perhaps more severely, we assume that all probes have a single pre-defined embedding
in order to force a one-to-one relationship. A more elaborate formulation would consider
all possible embeddings of a probe, but then it becomes necessary to ensure that only
one embedding of a probe is assigned to a spot. This still leads to a quadratic integer
programming problem, albeit with slightly different side conditions.

Our goal is to design a microarray minimizing the sum of conflict indices over all probes k,
i.e.,

�
k C(k) → min.

The “flow” fij between spots i and j depends on their Euclidean distance d(i, j) on the
array; in accordance with the conflict index model, we set

fij :=
�

(d(i, j))−2 if spot j is “near” spot i,
0 otherwise. (6)

where “near” means that spot j is at most three cells away from i. Note that most of the
flow values on large arrays are zero. For Border Length Minimization, the case is even
simpler: We set fij := 1 if spots i and j are direct neighbors, and fij := 0 otherwise.

16



The “distance” dkl between probes k and l depends on the (weighted) Hamming distance
of their embeddings. To account for possible “empty” probes to fill up surplus spots, we
set dkl := 0 if k or l or both refer to an empty probe (i.e., empty probes never contribute
to the target function, we do not mind if nucleotides are erroneously synthesized on spots
assigned to empty probes). For real probes, we set

dkl :=
T�

t=1

dklt,

where dklt is the potential contribution of probe l’s embedding to the failure risk of probe
pk in the t-th synthesis step. According to the conflict index model,

dklt =
�

c · exp(θ · λ(pk, t)) if pk is masked and pl unmasked in step t,
0 otherwise.

In the special case of the Border Length Minimization Problem, where θ = 0 and c = 1/2,
we obtain that dkl +dlk = Hkl = Hlk, where Hkl denotes the Hamming distance between
the embeddings of probes pk and pl.

It now follows that for a given assignment π, we have, in the notation of Section 2,
fijdπ(i)π(j) =

�T
t=1 δ(pπ(i), pπ(j), t) · ω(pπ(i), t). The objective function (5) then be-

comes

�
i

�
j

fij · dπ(i)π(j) =
�

i

�
j

� T�
t=1

δ(pπ(i), pπ(j), t) · ω(pπ(i), t)



=
�

i

T�
t=1

�
ω(pπ(i), t) ·

�
j

δ(pπ(i), pπ(j), t)



=
�

i

C(π(i)) =
�

k

C(k),

and indeed equals the total conflict index with our definitions of F = (fij) and D = (dkl).
Note that it is technically possible to switch the definitions of F and D, i.e., to assign
probes to spots instead of spots to probes as we do now, without modifying the mathemat-
ical problem formulation. However, this would lead to high distance value for neighboring
spots and many zero distance values for independent spots, a somewhat counterintuitive
model. Also, QAP heuristics tend to find pairs of objects with large flow values and place
them close to each other, initially. Therefore, the way of modeling F and D may be
significant.

QAP Heuristics. We have shown how the microarray placement problem can be mod-
eled as a quadratic assignment problem. The QAP is known to be NP-hard and particularly
hard to solve in practice. Instances of size larger than n = 20 are generally considered
to be impossible to solve to optimality. Nevertheless, our formulation is of interest be-
cause we can now use existing QAP heuristics (see [2] for a survey) to design the layout
of microarrays minimizing either the sum of border lengths or conflict indices.

17



Table 1: Border length of random chips compared with the layouts produced by Row-epitaxial and
GRASP with path-relinking. Reductions in border length are reported in percentages compared to
the random layout.

Random Row-epitaxial GRASP with path-relinking
Chip Number of Border Border Reduction Time Border Reduction Time

dimension probes length length (%) (sec.) length (%) (sec.)
6 × 6 36 1 989.20 1 714.60 13.80 0.01 1 672.20 15.94 2.73
7 × 7 49 2 783.20 2 354.60 15.40 0.02 2 332.60 16.19 6.43
8 × 8 64 3 721.20 3 123.80 16.05 0.03 3 099.13 16.72 12.49
9 × 9 81 4 762.00 3 974.80 16.53 0.05 3 967.20 16.69 25.96

10 × 10 100 5 985.20 4 895.60 18.20 0.06 4 911.40 17.94 47.57
11 × 11 121 7 288.40 5 954.40 18.30 0.10 5 990.73 17.80 87.48
12 × 12 144 8 714.00 7 086.20 18.68 0.11 7 159.80 17.84 152.42

As an example, we used a general QAP heuristic known as GRASP [8] (Greedy Ran-
domized Adaptive Search Procedure), and an improved version called GRASP with path-
relinking [9]. GRASP is comprised of two phases: a construction phase where a random
feasible solution is built, and a local search phase where a local optimum in the neighbor-
hood of that solution is sought.

Initially, the elements of the distance and flow matrices are sorted in increasing and de-
creasing order, respectively. The first β elements of each are kept (where 0 < β < 1) and
their products are computed. A simultaneous assignment of a pair of facilities to a pair of
locations is selected at random among those with the α smallest costs, where 0 < α < 1.
A feasible solution is then built by making a series of greedy assignments.

The construction and local search phases are repeated for a given number of times. Each it-
eration is independent in the sense that a new solution is always built from scratch. GRASP
with path-relinking is an extension of the basic algorithm that uses an “elite set” to store
the best solutions found. It incorporates a third phase that chooses, at random, one elite
solution that is used to improve the solution produced at the end of the local search phase.

5 Results and Discussion

We present experimental results of using GRASP with path-relinking (GRASP-PR) for
designing the layout of small artificial chips, and compare them with the layouts produced
by Row-epitaxial. We used a C implementation of GRASP-PR provided by [9] with de-
fault parameters (32 iterations, α = 0.1, β = 0.5, and elite set of size 10) and our own
implementation of Row-epitaxial. The chips have 25-nt probes uniformly generated and
asynchronously embedded in a deposition sequence of length 74. The running times and
the border lengths of the resulting layouts are shown in Table 1 (all results are averages
over a set of ten chips).

Our results show that GRASP-PR produces layouts with lower border lengths than Row-
epitaxial on the smaller chips. On 6 x 6 chips, GRASP-PR outperforms Row-epitaxial
by 2.14 percentage points on average, when compared to the initial random layout. On
9 x 9 chips, however, this difference drops to 0.16 percentage point, while Row-epitaxial

18



Table 2: Average conflict indices of random chips compared with the layouts produced by Row-
epitaxial and GRASP with path-relinking.

Random Row-epitaxial GRASP with path-relinking
Chip Number of Avg. C. Avg. C. Reduction Time Avg. C. Reduction Time

dimension probes Index Index (%) (sec.) Index (%) (sec.)
6 × 6 36 524.28 495.15 5.56 0.05 467.08 10.91 3.68
7 × 7 49 558.25 521.90 6.51 0.07 489.32 12.35 8.84
8 × 8 64 590.51 551.84 6.55 0.09 515.69 12.67 19.48
9 × 9 81 613.25 568.62 7.28 0.11 533.79 12.96 38.83

10 × 10 100 628.50 576.49 8.28 0.11 539.69 14.13 73.09
11 × 11 121 642.72 588.91 8.37 0.12 551.41 14.21 145.67
12 × 12 144 656.86 598.21 8.93 0.12 561.21 14.56 249.19

generates better layouts on 11 x 11 or larger chips. In terms of running time, Row-epitaxial
is faster and shows little variation as the number of probes grows. In contrast, the time
required to compute a layout with GRASP-PR increases at a fast rate.

Table 2 shows improved results in terms of conflict indices. For these experiments, we
used the same implementation of GRASP-PR and a version of Row-epitaxial implemented
for conflict index minimization, which fills every spot with a probe minimizing the result-
ing conflict index on that spot. GRASP-PR consistently produces better layouts on all chip
dimensions, achieving up to 6.38% less conflicts on 10 x 10 chips, for example, when com-
pared to Row-epitaxial. In terms of running times, however, GRASP-PR is even slower
for the case of conflict index minimization. Reasons are two-fold. First, the definitions
of matrices F and D are more elaborate in the conflict index model. Second, the distance
matrix contains less zero entries, which seems to increase the running time of GRASP.

The gains in terms of conflict index of both approaches are clearly less than the gains in
terms of border length. This may be because the embeddings are fixed and the reduction of
conflicts is restricted to the relocation of the probes, which only accounts for one part of the
conflict index model. The fact that the distance matrix contains less zero entries, however,
might explain why GRASP-PR performs better in terms of conflict index minimization
when compared to Row-epitaxial.

Because of the large number of probes on industrial microarrays, it is not feasible to use
GRASP-PR (or any other QAP method) to design an entire microarray chip. However, we
showed that it is certainly possible to use it on small sub-regions of a chip, which opens up
the way for two interesting alternatives. First, our QAP approach could be used combined
with a partitioning strategy such as the Centroid-based Quadrisection or our new Pivot
Partitioning, to the design the smaller regions that result from the partitioning.

Second, an existing layout could be improved, iteratively, by relocating probes inside a de-
fined region of the chip, in a sliding-window fashion. Each iteration produces an instance
of a QAP whose size equals the size of the window. The QAP heuristics can be used to
check whether a different arrangement of the probes inside the window can reduce the
conflicts. For this approach to work, we also need to take into account the conflicts due to
the spots around the window. Otherwise, a new layout with less internal conflicts could be
achieved at the expense of an increase of conflicts on the borders of the window.

A simple way of preventing this problem is to solve a larger QAP instance consisting of the

19



spots inside the window as well as those around it. The spots outside the window obviously
must remain unchanged, and that can be done by fixing the corresponding elements of the
permutation π. Note that there is no need to compute fij if spots i and j are both outside
the window, nor dkl if probes k and l are assigned to spots outside the window.

Summary. We have identified the probe placement or microarray layout problem with
general distance-dependent and position-dependent weights as a (specially structured)
quadratic assignment problem. QAPs are notoriously hard to solve, and currently known
exact methods start to take prohibitively long already for slightly more than 20 objects,
i.e., we could barely solve the problem for 5 × 5 arrays. However, the literature on QAP
heuristics is rich, as many problems in operations research can be modeled as QAPs. Here
we used one such heuristic to identify the potential of the probe-placement-QAP-relation.

References

[1] de Carvalho Jr.,S., Rahmann,S. (2006) Improving the Layout of Oligonucleotide Microarrays:
Pivot Partitioning. In Workshop on Algorithms in Bioinformatics (WABI), LNBI, 4175. Springer.

[2] Çela,E. (1998) The Quadratic Assignment Problem: Theory and Algorithms. Kluwer, Mas-
sachessets, USA.

[3] Fodor,S., Read,J., Pirrung,M., Stryer,L., Lu,A. and Solas,D. (1991) Light-directed, spatially
addressable parallel chemical synthesis. Science, 251, 767–73.

[4] Hannenhalli,S., Hubell,E., Lipshutz,R. and Pevzner,P. (2002) Combinatorial algorithms for de-
sign of DNA arrays. Advances in Biochemical Engineering / Biotechnology, 77, 1–19.

[5] Kahng,A.B., Mandoiu,I.I., Pevzner,P.A., Reda,S. and Zelikovsky,A.Z. (2002) Border length
minimization in DNA array design. In Proceedings of the Second Workshop on Algorithms in
Bioinformatics.

[6] Kahng,A.B., Mandoiu,I., Pevzner,P., Reda,S. and Zelikovsky,A. (2003a) Engineering a scalable
placement heuristic for DNA probe arrays. In Proceedings of the Seventh Annual International
Conference on Computational Molecular Biology, 148–156.

[7] Kahng, A.B., Mandoiu,I., Reda,S., Xu,X. and Zelikovsky,A. (2003b), Evaluation of placement
techniques for DNA probe array layout. In Proceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design, 262–269.

[8] Li,Y., Pardalos,P.M. and Resende,M.G.C. (1994) A greedy randomized adaptive search proce-
dure for the quadratic assignment problem. In Pardalos,P. and Wolkowicz,H. (eds.), Quadratic
Assignment and Related Problems, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 16, 237–261.

[9] Oliveira,C.A.S., Pardalos,P.M. and Resende,M.G.C. (2004) GRASP with path-relinking for the
quadratic assignment problem. In Ribeiro,C.C. and Martins,S.L. (eds.), Efficient and Experi-
mental Algorithms, LNCS, 3059, 356–368, Springer-Verlag.

[10] Rahmann,S. (2003) The shortest common supersequence problem in a microarray produc-
tion setting. In Proceedings of the 2nd European Conference in Computational Biology (ECCB
2003), volume 19 Suppl. 2 of Bioinformatics, pages ii156–ii161.

20


