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Abstract: Contrary to recent trends in database systems research focussing on scal-
ing out workloads on a cluster of commodity computers, this presentation will break
grounds for scale-up. We show that an elastic multi-tenancy solution can be achieved
by combining a many-core server with a low footprint main memory database system.
Total transactional throughput for TPC-C like order-entry transactions reaches up to 2
million transactions per second on a 32 core server while the number of tenants sharing
a single server can be varied from a few to hundreds of separate tenants without dimin-
ishing total throughput. Contrary to common belief, a scale-up solution provides high
flexibility for tenants with growing throughput needs and allows for simple sharing of
common resources between different tenants while minimizing hardware and comput-
ing overhead. We show that our approach can handle changes in tenant requirements
with minimal impact on other tenants on the server. Additionally, we prove that our
architecture provides sufficient per-tenant throughput to handle big tenants and scales
well with database size.

1 Introduction

Over the last years – perhaps fueled by observing the scale-out strategy of Google and

other web service providers – the database community has largely focused on scale out

using large numbers of low-cost commodity computers. An example of a provider offering

this kind of hardware infrastructure is Amazon’s cloud offering called EC2, which allows

customers to obtain resources in the form of predefined machine specifications – just as

if they rented a commodity computer hosted inside Amazon’s data center1. In the area

of database systems, cloud services typically offer two types of data stores: On the one

hand, a key-value store implementation for data with low consistency requirements, like

for instance click logs for a company’s website. On the other hand, a regular relational

database system hosted inside one of the predefined machines which can be rented by their

customers. Unfortunately, the latter implementation of a relational database in the cloud

is in stark contrast to the widespread idea of cloud computing. According to wikipedia,

1http://aws.amazon.com/ec2/

83



XXL

L
M

M
M

SSSSS

SSSSS

SSSSS

SSSSS

SSSSS

SSSSS

SSSSS
Hundredsof
sm

alltenants
side

byside
Tenantsof

differentsizes
on

one
m

achine

Extrem
e

case
of

one
large

tenanton
a

single
m

achine

Figure 1: A range of usage scenarios – no explicit reconfiguration is required to adapt the cloud
database server.

cloud computing provides a service – in this case a relational data store – instead of a server

hosting a DBMS. The latter idea of a database in the cloud leads to multiple drawbacks:

Scalability: Since computing resources specified by a fixed machine profile are rented

and used as a database server, no additional flexibility is offered over an actual computer

hosted in a data center. If migration to a different, more powerful machine profile is at all

possible, the process is not seamless and requires substantial user involvement which can

lead to user error2.

Sharing of resources: With many applications, data can be shared between multiple ten-

ants [ASJK11]. Using virtualization to share hardware between multiple tenants effec-

tively prohibits this kind of resource sharing.

Overhead: Virtualization as well as the high footprint of traditional database systems

incur substantial overhead. Without this additional layer between data and hardware, ex-

isting resources can be used more efficiently.

In this paper, we advocate combining multi-core server hardware with a low-footprint main

memory database system to create an elastic and low-cost multi-tenancy setup. Commod-

ity servers with 32 cores and main memory sizes of up to 1 Terabyte are widely available

today for less than $35,000 (c.f. Figure 2). Combined with a state of the art transactional

2An example of a user error when managing cloud resources in this context is described in http://bit.
ly/nZcX84
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Figure 2: A commodity server capable of a combined TPC-C like transaction throughput of up to 2
million transactions per second. Notice the keyboard on top of the machine for scale.

main memory database system like VoltDB [Vol10] or our prototype database system Hy-

Per [KN11], an overall throughput in the order of millions of transactions per second for

TPC-C like order-entry transactions can be achieved.

Instead of designing complex mechanisms to separate different tenants in one database

system, our approach relies on the operating system to map different tenants’ databases to

specific cores to achieve maximum throughput. This keeps the overhead of the database

system to a minimum and allows for features like different scheduling strategies and pri-

oritization implemented in the OS to be used without cost.

2 Technical Realization

We have developed the HyPer database system prototype [KN11] which reduces the mem-

ory footprint of traditional database systems to a minimum. Our prototype consumes less

than 100kb of memory for an empty database with the TPC-C schema and an additional

10MB of memory for the statically linked executable. Despite the low memory overhead

and small executable size, HyPer is capable of running OLTP transactions comparable to
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those found in the TPC-C at a rate of 100,000 transactions per seconds per thread. Addi-

tionally, HyPer is capable of executing long-running OLAP queries on an arbitrarily recent

snapshot without severely impacting transaction throughput as we showed in [KN11] and

demonstrated in [FKN11].

The high transaction throughput is achieved by reengineering a main memory database

system from scratch, removing superfluous components formerly required in disk-based

database systems and by using compilation over interpretation. Therefore, HyPer makes

extensive use of the operating system’s virtual memory management, removing the need

for a buffer manager and executes transactions serially as pioneered by H-Store [KKN+08],

thus eliminating the need for a lock manager. To further increase performance, HyPer com-

piles pre-canned transactions as well as OLAP queries to machine code using the LLVM

compiler infrastructure as illustrated in [Neu11]. All schema specific parts – like reading

an attribute from a tuple or finding a tuple using an index – are generated as relation spe-

cific machine code, whereas general fragments like for instance a join operator are written

in C++ and invoked from the generated code. Moreover, HyPer is fully ACID compliant,

as atomicity and isolation directly follow from employing single threaded execution for

transactions.

#Tenants Average TPS Overall TPS

1 80,729 81k

2 80,767 162k

4 81,060 324k

8 67,018 536k

16 58,605 938k

32 54,087 1731k

64 34,319 2197k

128 16,812 2152k

256 7,927 2029k

512 3,746 1919k

Table 1: Example configurations with a varying number of homogeneous tenants.

To support multiple tenants, multiple HyPer instances are launched, one for each tenant.

Because of the compact footprint of the DBMS, even several hundred instances run on the

server displayed in Figure 2 cause only a minimal memory overhead of less than 0.1%.

When an instance does not execute any transactions or queries, no background tasks or

batch processes are run, effectively reducing the CPU cycles required to run an idle in-

stance to zero. Allocating tenants to a specific processor or migrating them to another one

in case of a situation with unbalanced load is done by the operating system using the in-

tegrated scheduler. Resource sharing between different instances is achieved using shared

memory segments mapped into the virtual memory of multiple instances. That way, read-

only data can be shared with minimal implementation overhead. For data that needs to

be updated infrequently, regular mutual exclusions as provided by the operating system

ensure consistency in shared segments.
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Figure 3: HyPer main memory database system growing form 500MB to 950GB of data with almost
constant throughput.

Since resource distribution is dynamically controlled by the operating system, a tenant

with growing throughput or memory demands will receive more resources without any

explicit intervention. Table 1 shows average throughput and overall throughput for the

same benchmark with a varying number of homogeneous clients. First, it can be observed

that the overall throughput reaches a peak at 64 tenants which is the number of available

hardware threads. Second, the sustained total throughput does not significantly diminish

in an overload situation which is the case for 128, 256 and 512 tenants. Average through-

put halves with each doubling of the number of tenants, but total throughput stays the

same meaning that sharing a hardware context between multiple tenants does not incur

unacceptable overhead.

The peak performance for a single instance caused by single- threaded serialized transac-

tion execution as employed by current main memory database systems is not a limiting

factor here. A single threaded instance for a tenant can execute about 80,000 transactions

per second (c.f. Table s1) even when OLAP queries run simultaneously on a snapshot. A

back-of-the-envelope calculation shows, that even big retailers like Amazon – on average

– have orders of magnitude less orders than can be processed in 80,000 TPC-C transac-

tions: Amazon has a yearly revenue of about 15 billion Euros [KN11]. Assuming that an

individual order line is valued at 15 Euros and each order contains an average of 5 items,

the average number of orders is less than 7 per second – significantly less than the 80,000

order related transactions achievable in a single thread.

The transaction throughput can be sustained over time and does not degrade for customers

with a high amount of data. Figure 3 shows a single instance run at peak performance until
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the database reached a size of about 900 gigabytes of data. Note that this amount of data

can cover orders totaling about 10 billion items which were processed in less than 8 hours.

When the resource requirements of all tenants on a server outgrow the available resources,

tenants can be moved easily by leveraging the snapshot mechanism integrated in HyPer,

which can be applied to any main memory database system. A consistent snapshot of the

DBMS can be created with minimal overhead as described in [KN11], transferred to the

target server and be updated using the redo log. That way, migrating a tenant requires only

one visible interruption in the order of milliseconds for snapshot creation before clients

can start running transactions against the target server.

3 Preliminary results

Our evaluation showing the implementation of multi-tenancy on a many core server uses

our HyPer main memory database system. HyPer was originally engineered to show the

feasibility of executing both OLTP and OLAP on the same database state by using a virtual

memory snapshot (forked process) for the OLAP queries [KN11]. Because HyPer has

been built from scratch to specifically work in main memory, its computational as well

as memory footprint is small, making it an ideal candidate for the evaluation of a low

overhead multi-tenancy approach.

In order to show different multi-tenancy scenarios, we built a management component

which can automatically deploy groups of clients with different usage patterns in terms of

throughput, memory usage and change in resource consumption over time. We were able

to show the viability of different predefined scenarios with changing number of tenants

and workload characteristics. In Figure 4, the graphical interface of the management com-

ponent is shown. The scenario displayed is a server initially hosting 50 tenants with com-

parable throughput requirements. The fact that one tenants steadily increasing throughput

demands have no visible influence on other tenants on the same machine can be observed,

proving the high elasticity provided by our setup.

We were able to test the full spectrum of flexibility that a TB server provides: Sharing of

the resources by hundreds of small tenants, dedicating the entire server to a large Amazon-

style tenant as well as several scenarios in between.

The CH-benCHmark [CFG+11], a combination of the TPC-C transactional workload and

the queries specified in the TPC-H, will be used to simulate each tenants workload. The

workload can be parameterized to exhibit different characteristics, both in initial through-

put and memory consumption as well as their variance over time. This allows for simulat-

ing both, OLTP transactions as well OLAP queries executed using HyPer’s snapshotting

mechanism, therefore simulating the full repertoire of client needs.
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Figure 4: Screenshot displaying the management component of our approach. The diagram in the
top-right shows a live view of the transaction throughput of each tenant. Note that the constantly
rising transaction rate of the blue tenant does not influence the other 50 instances pictured in red.

4 Summary

Our presentation will show that there are elastic scaling solutions beyond massive de-

ployment of cheap low-end machines. The approach introduced in this paper allows high

transaction throughput by collocating many tenants on a multi-core server, allowing cost

to be split among tenants and common resources to shared. Our setup behaves predictable

even when workloads change drastically and allows a high degree of elasticity for many

small tenants with growing data management needs as well as big tenants having to process

ten-thousands of transactions.

The advantages of our approach are achieved by combining a multitude of factors:

• Our state of the art, small footprint main memory database system, HyPer. By com-

bining recent research results like serial execution without a a lock- or bufferman-

ager, transaction and query compilation in a database system specifically designed

for use in main memory, we constructed a low footprint high performance DBMS

that can be individually deployed for each tenant.

• By allowing the operating system to schedule each tenant separately, system re-

sources are used efficiently without explicitly managing all DBMS instances. Fur-

thermore, the architecture automatically benefits from improvements in the operat-

ing system, for instance adjustments due to changing hardware properties like - for

instance - non uniform memory access.
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• Simplified resource sharing like – for example – read-only database content or mem-

ory temporarily used for query execution by relinquishing strict separation in con-

trast to virtualized environments.

All in all, we could show how main memory will not only change the database systems

landscape in terms of processing speed but additionally in how solutions for well known

problems – like multi-tenancy – can be crafted.
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