Evolution of Business Process Models and Languages
Stefan Jablonski, Bernhard Volz, Sebastian Dornstauder

Chair for Applied Computer Science IV
University of Bayreuth
Universitétsstra3e 30
95447 Bayreuth, Germany
{stefan.jablonski,bernhard.volz,sebastian.dornstauder } @uni-bayreuth.de

Abstract: "The only constant is change" is an often cited phrase. We regard it as
predominant for the area of process based information systems. In this paper we
investigate how evolution of process based information systems can be supported
by a process modeling framework that easily can be adjusted to changing
requirements of an application domain. Our key contribution is the provision of a
system infrastructure that supports the adaptation of both process modeling
languages and process models to evolving application requirements. Our approach
is based on a multi level meta modeling framework.

1 Introduction

"The only constant is change" is a common quotation in literature when business process
management is characterized. Without anticipating the introduction of a modeling
hierarchy (Section 3), the phenomena of change can be classified according to the
process modeling level it occurs. Starting at the "lowest" level, running process instances
might have to be changed to react to a sudden shift in the application. Among others,
[Aa00], [E195] and [Ri04] are investigating this issue and suggest adequate solutions.
Stepping one level up, the process type (process model, process definition) might have to
be changed since it has become obvious that from now on a certain application will be
performed in a different way [Aa0O] [He99]. Nevertheless, it is possible to even step up
another level in a process modeling hierarchy. Change on this level means altering the
modeling language used to define process models. We focus this third interpretation of
change in this paper and investigate changes of process modeling languages (PMLs)
since this is the kind of change which is not sufficiently dealt with in research and
promises powerful means to implement process oriented information systems
adequately. Nevertheless, we also discuss changes of process models since this is close
to the change of a PML. Changing process instances is neglected because it is already
discussed broadly in [Ja06].

46

Why is the change of a PML an issue that is worth to be investigated? One can argue that
a PML should always remain untouched. However, we fully comply with the
interpretation of change as given in [Cl08]; there, change is related to diversity. The
authors of [ClO8] state that "life would be much easier if there was only one
programming language and one deployment platform". They notice that diverse domains
will be characterized by diverse customer requirements. This observation can seamlessly
be adopted in the business process management domain. Here, the programming
language is represented by the modeling language and the deployment platform
corresponds to the process execution infrastructure.

We fully subscribe to the argument of [C108] that the right (process modeling) languages
enable developers to be significantly more productive. Besides we agree with the
requirement that "we need the ability to rapidly design and integrate semantically rich
languages in a unified way". This means on the one hand that each domain may and
finally has to create its individual, specific language (domain specific language). On the
other hand it means that a common starting point for these language developments is
assumed. It is important to sustain — despite the diversity of domain specific languages —
a kind of comparability and compatibility between them. We finally agree that meta
modeling provides capabilities to achieve this.

We started with the discussion of change and ended up in domain specific process
modeling languages (DSPMLs). This is due to the fact that a DSPML is evolving from a
standard PML. Thus, from a technical perspective evolution means changing models
over time. Due to our specialized architecture being able to cope with evolution of a
PML means to be also capable to cope with the evolution of process models.

We present a meta modeling approach which supports the definition of DSPMLs. The
special feature of our approach is that domain specific languages are derived from a
common basic language which most probable will be a sort of standard language. All
language definitions will be based on a meta model. This strategy shows major
advantages.

e All derived domain specific languages share a common set of modeling constructs.
Thus, they remain compatible and comparable to a certain extent.

e The definition of a domain specific language can be done in a systematic way by
extending the meta model of such a language.

e Extensions made for one domain specific language could be inherited by other
domains, i.e. domain specific languages, if it is considered to be valuable for the
new domain as well. This feature supports reuse of modeling constructs greatly.

e Tools can be built that support different domain specific languages at the same time.
It is not necessary to build a special tool for each domain specific language.

The focus of this paper is on developing tools that support evolution of PMLs and

process models. As we have discussed before, domain specific languages play an

important role in that scenario. The foundation of a domain specific processes modeling
tool is discussed in Section 2. Section 3 then illustrates its basic part, a meta model stack.

Several use cases of evolution are analyzed in Section 4. Section 5 finally discusses
related work.

47

2 The Foundation of Perspective Oriented Process Modeling

Perspective Oriented Process Modeling (POPM) is presented in general in [Ja94] and
[JB96]. The runtime and visualization aspects of POPM are discussed in more detail in
[Ja06] and [JGO7], respectively. Since POPM itself is subject of an ongoing evolution,
POPM now combines a couple of matured modeling concepts in a new and synergetic
manner. These modeling concepts are introduced in the following.

2.1 Layered Meta Modeling

Meta modeling techniques are commonly used to describe the structure of models; thus
“Meta Model” is often defined as “model of a modeling language” (e.g. [Se03]). The
system under study in our case is a model, for instance a process model "Travel Claim
Reimbursement Process". A PML has to be used to describe this process, i.e. this process
model. We also use a model to describe such a PML; this model is indeed a meta model
defining the structure (syntax) of our PMLs within the POPM framework. According to
the Meta Object Facility (MOF, [OMGO06a]) this model then becomes part of a meta
model stack which consists of several, linearly ordered layers. Since MOF restricts
modelers to a specific set of features which is not sufficient for our purpose, our solution
is not strictly following the modeling rules of MOF.

In Fig. 1 (meta model stack of our POPM framework), actual process models are defined
on M1 (right boxes). A process model uses process definitions (and data definitions,
organization definitions etc.) which are all gathered in the “Type library” on M1 (left
box). It is noteworthy to mention that on M1 the concept “type/usage” is applied:
process types are defined (and put into the type library) and then are "used" in other
process models (e.g. as sub-processes) to define the latter. MO contains running instances
of process types formerly defined on M1 (right boxes).

All process definitions on M1 are defined in an application specific language which must
have previously been defined at M2. M2 contains the definition of an abstract process
meta model (APMM) that defines a set of general language features, e.g. a standard
language like BPMN. Basic concepts such as Processes, Data Flow or Control Flow are
defined in such an APMM. All domain specific language dialects can also be found on
M2 as a specialization of the APMM.

An abstract process meta meta model (APM?M) at M3 defines basic modeling
principles; for instance, it is defined that processes consist out of "bubbles and arcs"
(directed graph) or that nesting of modeling elements is allowed. This APM’M thus
defines the fundamental structure, i.e. the structural templates, for PMLs specified on the
lower level.

48

Logical Meta Model Stack

e ™ e N
| Lo
e N
M3 Abstract Process Meta Meta Model (APM2M)
) Definition of the abstract syntax of a general process modeling language
\ J
A
<<references>> 1
¥ p i \
it — Abstract Process Meta y- = —
) Model (APMM) Domain Specific Process Meta Model
3 M2 DSVIM
'8 Syntax of a general process ()
= _ modeling language Syntax of domain specific modeling language ")
= g <difstanceOf>> ~
] [€=—~~ <<references>> 1
Q = 1
s|| e (
oy .
2 2 | - Tvpelibrary Process Model
3 = Brpressed in a domain Describes a domain specific application
§) 5 spedific syntax
3 ~ X
<<references>> :
— MO Process Instance
Process which is currently executed
— \. J

Fig. 1. The meta model stack of POPM
Following the architecture of Fig. 1 (Logical Meta Model Stack) allows for

e exchanging the modeling paradigm (graph based process models) at M3,

e defining DSPMLs at M2 as specializations of a general modeling language
(APMM) and

e adapting process models at M1.

We believe that these capabilities provide a powerful basis for the evolution of PMLs
and process models.

49

2.2 Extended Powertypes

We have mentioned that the APM”M on M3 defines process models to be interpreted as
graphs; for a tool it is then often necessary not only to recognize each element of such a
graph together with its attributes (and operations) but also to know the capabilities
(features) of each element. For example, both "Process" and "Start-Interface" are nodes
of a process model graph. As in a graph each node can be connected with other nodes in
principle, also the Start-Interface could have an incoming Control Flow arc. Obviously
this needs to be prohibited since the Start-Interface denotes the beginning of a process
and thus should not receive any incoming flows at all. Thus a capability
“canHavelncomingControlFlows” can be defined at M3. Such a capability (e.g. to have
incoming flows) is defined as an attribute of the powertype. These values define which
capabilities of the second type of the pattern, the so-called partitioned type, should be
activated (they must be set to "true"). Furthermore only those attributes of the partitioned
type are inherited by new constructs whose capability attribute has been set to “true”.
Thus our extension does not only activate or deactivate a set of certain features but also
removes them physically from new constructs such that complex runtime checks dealing
with disabled features can be avoided. But the main benefit is that this pattern eases the
definition of completely new modeling constructs at M2 since the user can define which
features are supported by a new construct easily.

2.3 Logical and Linguistic Modeling

In [AKOS] an orthogonal classification approach is introduced; this approach contains
two meta stacks instead of only one which are orthogonal to each other (cf. Fig. 1,
Linguistic Meta Model Stack). One stack contains a meta model that describes how
models (of the application domain that have to be defined) can be stored (linguistic
model, e.g. “how is an attribute stored”). The other stack hosts the logical model which
is purely content related.

It is crucial for this architecture that each layer of the logical stack can be expressed in
the same linguistic model. As a result a modeling tool can be built that allows users to
modify all layers of the logical stack in the same way since all logical layers are
described by the same linguistic model. This is not the usual way modeling tools are
built. Conventional modeling tools do not support an explicit linguistic model and thus
can usually modify only one layer of a logical model hierarchy [AKOS5]. Therefore more
than one tool is required if both, PMLs and process models should be modified. As the
number of required modeling tools is directly proportional to the number of domain
specific languages, it is better to provide only modeling tool that supports many DSLs
along with the ability to modify process models defined in the corresponding DSLs.

Our goal is to implement a tool for the POPM framework that is capable of handling
evolution on the various levels of our meta modeling hierarchy. In this section we will

introduce the basic concepts for this tool implementation. Section 4 demonstrates how
evolution can be accommodated by the tool.

50

attachments NodeAttachment <— DataSource

*

aggregatedNodes dataSource |1 flows
6 -1 ¢ 4
source
Node oupdtforts, | por SourcE Aow
superNode
+typeId : String ® inMPurtsE ¢ sink
+usageId : String * 1
A A A
partitions partitions partitions
NodeKind PortKind HowKind
+hasIncomingPorts : Boolean +hasDataSource : Boolean +flowType : String
+hasOutgoingPorts : Boolean

+supportsSubclassing : Boolean
+supportsAggregation : Boolean
+supportsData : Boolean

Fig. 2. The APM”M - defining the fundamental modeling method

2.4 Abstract Process Meta Meta Model (APMZM)

As explained in Section 2, the APM>M is located at M3 and provides basic structures for
PMLs defined on M2, i.e. it prescribes the structure of all modeling elements of a PML.
The most common graphical notation for process models in POPM is the "bubbles &
arcs" notation whose meta meta model is depicted in Fig. 2 (standard UML notation). It
is important to differentiate between modeling and visualization in this context. In Fig. 2
only the (content related) structure of a PML — and respectively the process models
derived from it — is defined. Visualization is defined in an independent — but certainly
related and integrated — model (cf. [JGO7]).

A process model in POPM can be regarded as graph whereby processes are the nodes of
the graph. These nodes are represented by Node in the APM’M (Fig. 2). NodeKind
describes the characteristics (features) of a node where each characteristic corresponds to
one attribute of NodeKind. The Powertype pattern between Node and NodeKind is then
established with the “partitions” relationship; Node represents the partitioned type and
NodeKind is the powertype of the Powertype pattern. Features can be defined
(NodeKind) that individually determine the behavior of Node. The following featurs are
available: haslncomingPorts, hasOutgoingPorts, supportsData, supportsSubclassing,
supportsAggregation — their meaning and purpose can easily be derived from their
names. In summary, the features presented above determine whether elements of Node
can establish relationships of a certain kind (e.g. aggregatedNodes, superNode,
inputPorts) to other types of the APM*M.

51

2.5 Abstract Process Meta Model (APMM)
Fig. 3 shows the APMM of POPM; in this model the fundamental components of a

POPM-related process model are defined: process, connector, data container, control and
data flow, organization etc.

NodeAttachment

Ad-----
a
g
¥

,% Application |- -
Sopinterface - - - Logical Decision
e a';é"edor Bement ;

+hasOutgoingPorts
+supportsSubclassing
+supportsAggregation
+supportsData

[

false
false
false |
true |

1
M3 <<instanceOf>> ! <<instanceOf>> !
M2 ! ! ;
! ! : ! 1
1 1 | ! 1
Process F--1 ! r--- ControlAow H i
1 1
“hasIncomingPorts = true : 1 | o “ i : 1
+hasOutgoingPorts = true H : 1 +flowType = "Contro ' 1
+supportsSubclassing = true 1 \ ! 1 !
+supportsAggregation = true I \ L ____ 1 !
+supportsData = true 1 1 : ! :
' ! 1 : 1
1
1 1
SQartinterface - -4 Connector DataFlow 1 1
1
1 1
+hasIncomingPorts = false 1 +hasIncomingPorts = true R N 1 I
+hasOutgoingPorts = true | | +hasoutgoingPorts = true +flowlype = "Data 1 !
+supportssSubclassing = false I | +supportssubclassing = false 1
+supportsAggregation = false 1 +supportsAggregation = false 1 \
+supportsData = true | | +supportsbata = true ! \
1 1
1 1 :
1 ! 1
! 1
1
1
1
1
1

Fig. 3. The core of the Abstract Process Meta Model of POPM

In the APMM a process is an element in a graph that can be interconnected with other
nodes (haslncomingPorts = true, hasOutgoingPorts = true), can receive and produce
data (supportsData = true), can be defined in terms of an already existing process
(supportsSubclassing = true) and can be used as a container for other elements
(supportsAggregation = true). A process — and in general every element of M2 — is an
instance of a corresponding type — sometimes this is a Powertype — on M3. For instance,
Process is an instance of the powertype NodeKind and inherits all activated features
from the partitioned type Node. The types StartInterface and Stoplnterface) are also
instances of the powertype NodeKind but do not support the creation of hierarchies since
the corresponding feature attribute is not set (supportsAggregation = false); additionally,
a Startlnterface does not support incoming connections (haslncomingPorts = false);
analogously a StoplInterface does not allow outgoing connections (hasOutgoingPorts =

false).

52

2.6 Domain Specific Meta Models (DSMMs)

According to Fig. 1, DSMMs are specializations of the APMM. As with object oriented
programming languages, abstract types cannot be instantiated. Thus, a DSMM must first
provide specializations for each element of the APMM (abstract model) which can be
instantiated. Then, a DSMM can be enriched by additional modeling constructs which
determine its specific characteristics. Fig. 4 shows an example DSMM from the medical
realm. This figure also depicts how domain specific modeling elements can furthermore
be modified in order to capture specific characteristics. The attribute stepType for the
modeling element Medical Process is introduced to determine whether a given step is an
administrational task or a medical task; according to [FaO7] this is a fundamental
distinction. Also the tags requested in [LS07] can be implemented in this way.

Sart Control Data I . Data
| Process || Interface | | Cbnnedorl | FAow | | Fow | Application || O’ganlatlonl | Container
A N A A JAY A A
Decision APMM
Hement \\«)‘)/
Medical Medical Medical . . Medical
Sart Control Data A;"pidln QM?‘?:m Data
Interface How How L Container
| I |
Medical Sandard Medical
Process DecisionHement DecisionHement

+decision : Stringll
+definition : Process

+stepType : String +decision : String

Fig. 4. A DSMM from the medical realm

It is possible to introduce completely new modeling constructs on this level as well. In
Fig. 4, the so-called MedicalDecisionElement is presented. This modeling construct
represents a complex series of single decisions.

2.7 Modeling Processes on M1

At level M1 "normal" process modeling takes place. We assume that a DSMM is defined
on M2. Then real processes can be modeled on M1 and which are all derived from
MedicalProcess. Accordingly, input and output data for each process can be defined; the
same applies to organizations and operations. In Fig. 5c an example is shown. Regard,
all modeling elements must be defined first, before they can be used within a process
model. The process model consists of a start interface and two process steps namely
Anamnesis and Surgery. The symbols (document, red cross) inside the two steps are tags
that indicate whether a step is more of medical or administrational interest (this is
valuable information when the process model has to be analyzed). The tags correspond
to the attribute stepType defined in the Medical DSMM for MedicalProcess.

53

a) APMPM Port. |t Port Port Port Node
M3 - 'ﬁ' -) [e }'l—,

Data — —Datafow __ Data
b) AHVIM Container 1 Container 2
e _
Process1 Process2
(Mz) (Interfaee Control How

¢) Medical PatientFecord g = — = — = — —
DSVIM (Sart H i } sweery [

(M2) HipTEP

Fig. 5. Stepwise design of a process model

2.8 Stepwise design of a process model

In Fig. 5 the three decisive layers of a flexible modeling tool are clearly arranged. The
figure illustrates nicely how concepts are evolving from very abstract (APM*M), to more
concrete (APMM), to domain specific (DSMM). Some of the metamorphoses of
modeling elements are explained in detail. Through our integrated approach — models on
M3, M2 and M1 can be manipulated by the same tool — consistency is best guaranteed
on all layers of the meta modeling stack.

3 Evolution of process modeling languages and process models

We will now explain seven concrete use cases for evolution. These scenarios are sorted
according to their relevance and frequency of occurrence in practice based on our
experience gained in many industrial projects. The changes range over all levels of our
logical meta stack; Change I affects M1, Changes II, III and IV concern M2 and Change
V works on M3. A special role play Changes VI and VII; both affect layers not depicted
in our meta hierarchy. We included them for completeness, however.

3.1 Change I - Adapting an existing process model

Adapting a process model to changing application requirements is a very frequent task in
practice. Typical examples are the exchange of an application inside a process, the
change of the execution order or the introduction / deletion of work steps. This kind of
change is the normal use case for a modeling tool. It just has to be decided whether the
generated new process models are replacements, versions or variants of the original
process model. For process modelers this kind of change is uncritical.

54

3.2 Change II - Introducing new features for process modeling constructs
(tagging)

Often it is necessary to distinguish processes from each other. Therefore, special tags are
attached to processes and visualized in a suitable form [Fa07] [LSO7]. Speaking in terms
of our logical meta model stack this means that an attribute is added to the corresponding
modeling element in the DSMM for storing the tag. In Section 3 we have shown such an
extension: there the attribute stepType was added to the MedicalProcess type which was
not part of the standard modeling. Depending on the actual value of this attribute a
visualization algorithm can then for example display icons. The enactment of such a
change can easily be performed by a domain expert.

3.3 Change III - Introducing a new process modeling construct

Modeling constructs have to be changed due an evolution of the application domain. For
example, more powerful and semantically richer modeling constructs have to be created.
Process modeling constructs are located at M2, usually in a specific DSMM. A new
construct can either be defined “from scratch” or by redefining an already existing
construct of the DSMM or APMM.

In case the new construct is defined from scratch, the creation task is facilitated
enormously by the extended powertype concept. Merely a new construct must be defined
on M2. If it is a kind of a process node it can inherit functionality provided by Node; to
selectively inherit this functionality proper values for the feature attributes of the
powertype NodeKind must be set. Nevertheless, this modification of a modeling
language can be performed by any domain expert.

A new modeling construct can also be based on existing constructs like the medical
decider from the medical application domain (Section 3). It is based on the standard
decision construct of the APMM and summarizes a variety of single decisions into one
compound construct (Fig. 6).

(" .)
Glaucoma suspicion?
HRT 11.Disk <2.477? &
HRT Il.LRM < 1.4?
"Qart" > FDT.Time > 60s
FDT.Erorfields > 2
Results plausible? <23 S

AV

_ _J

Fig. 6. The Medical Decision Element

55

In contrast to the standard decision construct the Medical Decision Element comprises
many single decisions. Further, the output of the medical decision element is either
“Yes” or “No” instead of an arbitrary result of the standard decision element. The
introduction of this compact construct was one of the major factors why process
modeling was accepted as adequate means to illustrate the medical applications in the
Ophthalmological Clinics of the University of Erlangen [Ja05] where complex medical
decisions had to be modeled often. This project convincingly demonstrated that a
domain specific modeling language is not just "nice-to-have" but is crucial for the
acceptance of process management in general. This kind of change corresponds to the
introduction of macros in modeling languages.

3.4 Change IV — Adding a new perspective

Perspectives are in general defined at M2 — in the APMM for all domains as well as in
DSPMMs for a single one. Similar to modeling constructs, new perspectives can be
introduced in both. For example, it might become necessary to argue about process
execution times in detail. So, various kinds of time should be introduced: preparation
time, actual execution time, queue time and post processing time. A new perspective will
be defined as an instance of the type NodeAttachment which is part of the APM’M at
M3. A perspective comprises multiple new modeling constructs. The constructs of this
perspective can be associated with already existing modeling constructs like a process
step or a flow construct.

3.5 Change V — Enhancing / changing the modeling method

So far all changes of PMLs were applied to DSLs individually. In our approach it is also
possible to change the modeling method as such. This change happens on M3 and affects
all PMLs defined below. For instance, from now on we will prohibit control flows
between nodes. Referring to the APM?M in Fig. 5 this means to remove ports which are
not connected with data sources. Consequently all flow derived from this constellation
must be removed from all PMLs on M2 and also from all defined process models on M1.

Another use case for changing the modeling method is if the used paradigm of directed
cyclic graphs should be exchanged to something else, for instance petri nets. Also petri
nets are graphs but they do not have the distinction of nodes, node attachments and
flows. Instead they use states and transitions. Thus the presented model on M3 will not
fit anymore and must be exchanged against a meta model for petri nets.

3.6 Change VI - Applying new semantics for a modeling construct

Without going into detail this change should be introduced. The idea is to change
execution semantics for a process construct. For example, instead of interpreting a
control flow arrow between two process steps as a mandatory order it should from now
on be interpreted as recommended order. Details of the implementation of such kind of
evolution can be found in [JI08] and [Ja06].

56

3.7 Change VII — Adapting the graphical representation of a construct

We were already mentioning that all models so far are just presenting conceptual issues.
Visualization of process modeling constructs was excluded until now. In [JGO7] we
show how different kinds of visualizations can be associated with process modeling
constructs according to evolving application requirements.

4 Related Work

We now give an overview on existing technologies and systems (beside those already
introduced in Section 2) that aim at increasing the adaptability of information systems.
We will show that these are — per se — not appropriate for domain experts because they
require extensive programming skills or are not flexible enough.

Generative Programming [Cz00] and Software Factories [Gr99] are techniques for the
reuse of code as known from object-oriented or component-oriented programming.
Generative Programming aims at the generation of code out of a generic set of templates.
These templates along with a specification of the outcome are handed to a code
generator that automatically produces code. Because of the programming skills required
to produce valid and correct results, Generative Programming is unusable for end-users
or domain experts. Software Factories in contrast aim at reducing the costs (time,
resources etc.) during the development of an application. This it is again an approach
which is suitable for software developers but not for end-users or domain experts. Even
more harmful is that both approaches are meant to be applied during the development
phase of an application but not during runtime such that it is possible to introduce
changes but a re-compilation and a re-deployment is needed.

Beside these programming techniques also complete systems exist that empower the user
to build models such as the Microsoft Domain Specific Language Tools for Visual
Studio [Mi07], the Eclipse Modeling Framework (EMF) [Ec07] (with related
technologies for the generation of graphical editors) or MetaEdit+ [Ke96]. But nearly all
of them use only two layers (definition of user model and instances of these) in which
the type level defines the storage format for the user models. Beside this the modeling
freedom is restricted as the underlying meta models often is fixed. For example EMF
uses a subset of MOF and thus also inherits many restrictions from it — one is that it is
not possible to use powertypes. Also many solutions are not able to use a new modeling
language without generating a new modeling environment explicitly. Furthermore
concepts for supporting more than one view are less sophisticated — if existing at all. But
there are also some commonalities with these approaches from a technical point of view.
We can reuse frameworks for code generation and graphical modeling that have already
proven their strengths for meta modeling applications.

57

5 Conclusion

In this paper we were introducing our approach of a powerful process modeling
infrastructure that supports evolution of PMLs and process models. We showed that we
can leverage on some interesting concepts which unfold their real power after they were
combined to form this unified and comprehensive approach. We have then shown how
different evolution scenarios can be performed with the help of these concepts. Here the
important key-point is that all those change requests that are most common can be
performed without writing code. Thus domain experts are empowered to develop their
modeling language(s) and applications by themselves and thus keep adapting the whole
system perpetually to changing requirements. So as the overall system is able to handle
changes by itself and it can be permanently improved by domain experts, we believe that
this method supports sustainability greatly.

6 References

[Aa00] v.d. Aalst, W.; Jablonski, S.: Dealing with workflow change: identification of issues
and solutions. International Journal of Computer Systems Science & Engineering
(CSSE), Vol. 15 (2000), No. 5, 267 - 276

[AKO1] Atkinson, C.; Kiihne, T.: The Essence of Multilevel Metamodeling, 4th Int'l
Conference on the Unified Modeling Language, Toronto, Canada, 1-5, 10.2001

[AKO5] Atkinson, C.; Kiihne, T.: Concepts for Comparing Modeling Tool Architectures,
ACM/IEEE 8th Int’l Conference on Model Driven Engineering Languages and
Systems, MoDELS / UML 2005, October 2-7, Montego Bay, Jamaica, 2005

[BS08] Berghoff, W.M.; Schlichter, J.H.: Computer-Supported Cooperative Work:
Introduction to Distributed Applications. Springer-Verlag, 2000

[CI08] Clark, T.; Sammut, P.; Willians, J.: Applied Metamodelling — A Foundation For
Language Driven Development, 2nd Edition, CETEVA 2008, (visited: 2008-03-12)
http://www.ceteva.com/book.html

[Cz00] Czarnecki, K.; FEisenecker, U.: Generative Programming: method, tools and
applications. Addison-Wesley, 2000

[Ec07] The Eclipse Foundation: Eclipse Modeling Framework, (visited: 2007-03-29)
http://www.eclipse.org/modeling/emf/?project=emf

[E195] Ellis, C., K. Keddara and G. Rozenberg (1995): Dynamic Change within Workflow
Systems. In N. Comstock et al. (eds.): Proceedings of Conference on Organizational
Computing Systems (COOCS’95). New York: ACM, pp. 10-21.

[Fa07] Faerber, M.; Jablonski, S.; Schneider, T.: A Comprehensive Modeling Language for
Clinical Processes. 2nd European Conference on eHealth (ECEH’07), Oldenburg,
Germany, 10.2007

[Gr99] Greenfield, J.; Short, K.: Software Factories: assembling applications with patterns,
models, frameworks and tools. Wiley Publishing, 2004

[He99] Heinl, P.; Horn, S.; Jablonski, S.; Neeb, J.; Stein, K.; Teschke, M.: A comprehensive
approach to flexibility in workflow management systems. SIGSOFT Softw. Eng.
Notes, 24(2):79-88, 1999

58

[Ja%4]

[JB96]

[Ja05]

[JGO7]

[J108]

[Ja06]

[Ke96]

[LSO7]

[Me04]

[Mi07]

[OMGO06a]

[OMGO6b]

[OMGO6c]

[Od98]

[Pe05]

[Ri04]

[Se03]

Jablonski, S.: MOBILE: A Modular Workflow Model and Architecture. Proc.
International Working Conference on Dynamic Modeling and Information Systems,
Noordwijkerhout, NL, 1994

Jablonski, S.; Bussler, C.: Workflow Management — Modeling Concepts, Architecture
and Implementation. London: Int. Thomson Computer Press, 1996

Jablonski, S.; Lay, R.; Meiler, C.; Miiller, S.; Himmer, W.: Data Logistics as a Means
of Integration in Healthcare Applications. Proc. 2005 ACM Symposium on Applied
Computing (SAC) - Special Track on Computer Applications in Health Care, Santa
Fe, New Mexico, 03.2005

Jablonski, S.; Gotz, M.: Perspective Oriented Business Process Visualization. 3rd
International Workshop on Business Process Design (BPD) 5th International
Conference on Business Process Management (BPM 2007). Brisbane, 9.2007

Jablonski, S.; Igler, M.: Flexible Process Modeling and Execution based on
Declarative Programming. Technical Report, University of Bayreuth, 2008

Jablonski, S.; Miiller, S.; Faerber, M; Gotz, M.; Volz, B.; Dornstauder, S.: Integrated
Process Execution: A Generic Execution Infrastructure for Process Models. BPM
Demo Session, 4th Int’l Confer-———ence on Business Process Management (BPM
2006). Austria, Vienna, 9.2006.

Kelly, S.; Lyytinen, K.; Rossi, M.: MetaEdit+: A fully configurable multi-user and
multi-tool CASE and CAME environment. Proceedings of the 8th International
Conference CAISE’96, Springer-Verlag, 1996, pp. 1-21

Lu, R.; Sadiq, S.: On the Discovery of Preferred Work Practice Through Business
Process Variants, 26th Int’l Conference on Conceptual Modeling (ER 2007),
Auckland, New Zealand, 11.2007

Melnik, S.: Generic Model Management: concepts and algorithms. Springer, 2004

Microsoft: Domain-Specific Language Tools, (visited: 2007-03-29)
http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx

Object Management Group: Meta Object Facility Core Specification version 2.0,
2006-01-01

Object Management Group: Object Constraint Language Specification Version 2.0,
06-05-01

Object Management Group: Business Process Modeling Notation Specification, 2006-
02-01

Odell, J.: Advanced Object-Oriented Analysis and Design using UML. Cambridge
University Press, 1998

Petrov, I.: Meta-data, Meta-Modelling and Query Processing in Meta-data Repository
Systems. PhD thesis, Univ. of Erlangen-Niirnberg, Germany, 12.2005

Rinderle, S.; Reichert, M.; Dadam, P.: Correctness Criteria for Dynamic Changes in
Workflow Systems - A Survey. Data and Knowledge Engineering, Special Issue on
Advances in Business Process Management 50(1):9-34 (2004)

Seidewitz, E.: What models mean. IEEE Software 2003, 20(5): pp. 26-31

59

