
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 29

Performance-Influence Models for Highly Configurable

Systems

Norbert Siegmund1, Alexander Grebhahn2, Sven Apel3, Christian Kästner4

1 Introduction

The original paper has been published in the proceedings of ESEC/FSE 2015 [SGAK15].

End-users, developers, and administrators are often overwhelmed with the possibilities

to configure a software system. In most systems today, including databases, Web servers,

video encoders, and compilers, hundreds of configuration options can be combined, each

potentially with distinct functionality and different effects on quality attributes. The sheer

size of the configuration space and complex constraints between configuration options

make it difficult to find a configuration that performs as desired, with the consequence that

many users stick to default configurations or only try changing an option here or there. This

way, the significant optimization potential already present in many of our modern software

systems remains untapped. Even domain experts and the developers themselves often do

not (fully) understand the performance influences of all configuration options and their

combined influence when options interact.

Our goal is to build performance-influence models (and models of other measurable quality

attributes, such as energy consumption) that describe how configuration options and their

interactions influence the performance of a system (e.g., throughput or execution time of

a benchmark). A distinctive feature of our approach is that we consider both binary and

numeric options and that we do not solely target prediction accuracy. Performance-influence

models are meant to ease understanding, debugging, and optimization of highly configurable

software systems. For example, a user may identify the best performing configuration from

the model and a developer may compare an inferred performance-influence model with her

own mental model to check whether the system behaves as expected.

2 Approach

Our approach is to infer a performance-influence model for a given configurable system in

a black-box manner, from a series of measurements of a set of sample configurations using

1 University of Passau, Germany
2 University of Passau, Germany
3 University of Passau, Germany
4 Carnegie Mellon University, USA

30 Norbert Siegmund et al.

machine learning. That is, we benchmark a given system multiple times in different config-

urations and learn the influence of individual configuration options and their interactions

from the differences between the measurements. Conceptually, a performance-influence

model is simply a function from a configuration c∈C to a performance measure Π : C →R,

where performance can be any measurable property that produces interval-scaled data. All

performance-influence models are of the following form:

Π(c) = β0 + ∑
i∈O

φi(c(i))+ ∑
i.. j∈O

Φi.. j(c(i)..c(j)) (1)

where β0 represents a minimum, constant base performance shared by all configurations,

as determined during learning; ∑i∈O φi(c(i)) represents the sum of the influences of all

individual options; ∑i.. j∈O Φi.. j(c(i)..c(j)) is the sum of the influences of all interactions

among all options. This structure allows us to easily see the influence of an individual

option or an interaction between options from the model.

Learning. We use stepwise linear regression to learn the function of a performance-influence

model from a sample set of measured configurations. To reduce the dimensionality problem

of handling a very large number of options and interactions, we use feature subset selection

to incrementally learn the model. The key challenge of using linear regression is to identify

the relevant terms to be used as independent variables; a term represents the (possibly non-

linear) influence of one or multiple configuration options. Conceptually, any combination of

options may cause a distinct performance interaction [SKK+12], which would render any

learning approach useless, as there is no common pattern. In practice, however, performance

behavior is usually more tractable in that only few interactions contribute substantially to

the overall performance. In our previous work, we found that relevant interactions do not

emerge randomly between configuration options, but form a hierarchy [SvRA13]. Thus, we

perform our learning hierarchically and incrementally: Starting with an empty model, our

algorithm selects one term in each iteration until improvements of model accuracy become

marginal or a threshold for expected accuracy is reached. The term to be added stems from a

number of candidate terms. The initial candidates are only the individual option influences,

which are then extended by candidates representing interactions between options that have

been found already to contribute to performance, and additional functions (e.g., logarithmic

or quadratic) representing the influence of numeric options.

Sampling. We divide the configuration space along binary and numeric configuration options

and apply structured sampling heuristics to them. For binary sampling, we use heuristics

developed in previous work that aim at selecting configurations such that we can learn

the influences of individual options and of pair-wise interactions. For sampling numeric

options, we use a number of experimental designs, including fractional factorial designs

and optimal designs. We found that the Plackett-Burman design provides a sweet spot

between measurement effort and accuracy of the learned model. The separately selected

configurations for binary and numeric options are combined using the cross product.

Experiments. Our approach is able to build reasonably accurate performance models of

configuration spaces of real-world systems, including compilers, multi-grid solvers, and

video encoders. In a series of experiments with configurable systems with up to 1031

Performance-Influence Models for Highly Configurable Systems 31

configurations, we found that few measurements are sufficient to build fairly accurate

models (19 % prediction error, on average). The performance-influence models learned

by our approach can explain the performance variation between configurations with a

few dozen terms describing the influence of individual options and another dozen terms

describing interactions. Finally, while accuracy is important, simple models are important,

too. Views on a performance-influence model can be used to isolate influences of individual

options and their interactions.

References

[SGAK15] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. Performance-
Influence Models for Highly Configurable Systems. In Proc. ESEC/FSE, pages 284–294.
ACM, 2015.

[SKK+12] Norbert Siegmund, Sergiy Kolesnikov, Christian Kästner, Sven Apel, Don Batory,
Marko Rosenmüller, and Gunter Saake. Predicting Performance via Automated Feature-
Interaction Detection. In Proc. ICSE, pages 167–177. IEEE, 2012.

[SvRA13] Norbert Siegmund, Alexander von Rhein, and Sven Apel. Family-Based Performance
Measurement. In Proc. GPCE, pages 95–104. ACM, 2013.

