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Abstract: This paper reports ongoing work towards a dynamically reconfigurable 
System-on-Chip (SoC) platform for video signal processing. It consists of 
dedicated, statically and dynamically reconfigurable components, as well as an 
embedded RISC core and memory. Application-specific software libraries support 
control of dynamic reconfiguration of low level operations by high level 
instructions. Thus programmability is combined with high data throughput and low 
power consumption of hardwired circuits. Preliminary work presented here is 
focused on one selected application, video object segmentation. The architecture of 
a coprocessor for video object segmentation is presented, which exploits the basic 
concept of the dynamically reconfigurable SoC platform. A library of software 
functions for image processing was developed, too, which will be used as a starting 
point for the application-specific software parts of the platform.  

Keywords: Dynamically reconfigurable architectures, video object segmentation  

1. Introduction  

Future systems for information processing will require increasing flexibility, combined 
with high throughput and low power consumption. Especially visual information 
processing will impose high requirements in this field. A substantial part of all kind of 
information, which a human being consumes, consists of visual information. Therefore 
visual information processing will play an increasingly important part in future 
multimedia system. 

Current microprocessors are offering all the flexibility through programming, but data 
throughput is limited by the high number of cycles used for loading and decoding of 
instructions, as well as loading of data from memory and writing back results. These 
instructions are also contributing to power dissipation. ASICs (Application Specific 
Integrated Circuits) offer some advantages here, as all operations are implemented 
directly in hardware. This results in high throughput and low power dissipation, but does 
not provide the flexibility needed. FPGAs (Field Programmable Gate Arrays) can 
download any given ASIC or processor architecture into a configurable device. They 
normally contain configurable processing resources (e.g. look-up tables, logic, mux, 
Flip-Flops, arithmetic units) and configurable wire channels to allow any connection 
between processing elements. In addition they may contain distributed memory and bus 
systems. FPGAs are well established as ASIC-substitute for small volume and for fast 
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prototyping and verification during ASIC design. There is a trend towards partial, 
dynamical reconfiguration capabilities within FPGAs, known as „Multi context FPGA“.  

FPGAs do not compete with ASICs. The overhead for programmable connections in 
FPGAs results in longer wire lengths, lower speed, and higher power consumption when 
compared to ASICs fabricated in the same technology.  

Reconfigurable architectures with embedded processor cores, embedded FPGAs, and 
embedded memory are targeting to combine the programmability of microprocessors 
with the higher data throughput and lower power dissipation of FPGAs. Current FPGA 
devices, e.g. XILINX VIRTEX-II Pro [1] or ALTERA STRATIX [2] are offering 
multiple RISC cores, DSPs, high-speed I/O, and a number of special modules on-chip.  

There exist a large number of scientific publications on reconfigurable architectures, as 
well as on software design, targeting to hide all details of hardware architecture from the 
software developers. An overview can be found in [3], [4], [5], [6], [7]. The hardware 
configuration can be static, i.e. on compile-time, or dynamic, i.e. on run-time.  

Some commercial products are offering promising hardware architectures and highly 
specialized software development tools. The most well-known processor architectures 
with configurable instruction set include Tensilica/Xtensa [8] and ARC [9]. These 
architectures offer to implement application-specific instructions and to improve 
performance, but they do not reach throughput and power of dedicated ASICs and they 
do not offer dynamic reconfigurability. There is still some major potential to exploit with 
reconfigurable hardware.  

In the above mentioned overview publications [3] - [7], many application areas for 
reconfigurable architectures are mentioned, e.g. DSP, networking, multimedia, speech, 
video, cryptography, and rapid prototyping. The focus of this paper is on visual 
information processing, where a key technology is video object segmentation. An 
algorithm for video object segmentation should find boundaries of connected areas, 
which have been generated through projection of a 3-dimensional scene into a sequence 
of 2-dimensional images. In our 3-dimensional world, objects consist of spatially 
connected elements. All information on these spatial connections is lost during 
projection into two dimensions, as objects from various spatial depths are projected into 
the same plane and might occlude each other. An algorithm for video object 
segmentation, which does not work on stereo or multi-camera images, can use only 
information, which is present in the 2-dimensional scene, as there are luminance, color, 
texture, shape, and motion. An overview on various algorithms and first commercial 
products can be found on the web pages of the SCHEMA project [10].  

Algorithms for video object segmentation are using many different operations. They can 
be grouped into high level control operations and low level pixel manipulation. Control 
requires a high degree of flexibility and thus is good for processor implementation. Pixel 
manipulation on the other hand requires to apply the same operation on many many 
pixels, but also to change these operations during the segmentation process. So pixel 
manipulation seems good for implementation in a reconfigurable unit.  
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Instruction Count 100 %
Pixel Addressing 56.7 %
Pixel Processing 10.2 %
Data I/O 32.8 %
High Level 0.3 %

Tab. 1: Instruction count for segmentation  
of 5 frames of test sequence Akiyo (4:4:4 / QCIF) [12]  

 

Table 1 shows instructional load for a video object segmentation algorithm. Generally, 
the computational load of the high level algorithm is very low, less than 0.3% of the 
overall load. Comparing pixel addressing and pixel processing, it shows that the 
instruction count for pixel addressing is significantly higher than for pixel processing. 

The next part of the paper describes the basic ideas of the reconfigurable platform for 
video signal processing. Then a architecture for video object segmentation, called 
AddressEngine, is described, which will be used to exploit the concept of static and 
dynamic reconfiguration.  

2. Dynamically Reconfigurable Platform  

Our target platform (figure 1) consists of a reconfigurable hardware and a software 
library, where low level pixel operations are executed in a processing unit with high 
throughput and low power dissipation. This unit is dynamically reconfigurable to adapt 
on the process of segmentation. The software library offers all the functions and 
configurations for program development. High level control operations are implemented 
on the embedded processor.  

This platform will be used for studying reconfigurable architectures with dynamic partial 
reconfiguration capabilities. This will be exploited first for video object segmentation, 
later on for other applications as well.  

For video object segmentation the software developer can have all flexibility to write his 
software for high level control operations in C/C++, but for low level pixel operations 
pre-defined function calls shall be used. The hardware architecture allows configuring 
and mapping the low level operations, whereas high level operations are mapped on the 
embedded processor. Examples for planned functionalities are preprocessing before 
segmentation (e.g. filtering, format conversion), object shape processing (e.g. gradient, 
watershed), object tracking, and detection of new/hidden segments (e.g. for motion 
compensation), as well as video analysis (e.g. segment-based operations).  
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Fig. 1: Reconfigurable platform 

 

On the hardware side of the platform, dedicated implementation will be used for those 
components, which are common to all applications, i.e. embedded RISC, memory, data 
buses, controller for data and configuration. A hardwired implementation would be best 
for those parts, but for a prototype a statically configurable FPGA block could be used as 
well, even if the performance will be lower.  

Static reconfigurability will be used for application-specific components of the platform. 
Thus the platform can be reconfigured for the target application. For video object 
segmentation, pixel addressing will be implemented in a statically reconfigurable block. 
Dynamic reconfigurability will be used for changing operations within an application, 
e.g. for pixel processing in video object segmentation.  

The software part of the platform will contain all functions for its operation, e.g. loading 
and management of configuration data, monitoring and test, RTOS if applicable. Special 
focus will be on control of dynamically reconfigurable blocks, i.e. buffering and run-
time scheduling of configuration data downloads.  

The application layer consists of hardware and software as well. For video object 
segmentation, low level pixel operations may be implemented in hardware, whereas high 
level control may be implemented in software.  
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For a prototype demonstrator, the platform shall be implemented completely in a single 
FPGA. This allows investigation of buffering, allocation, and run-time scheduling of 
dynamic reconfiguration data within the FPGA. Partial static reconfiguration may be 
used to adapt the platform to different applications. For future applications, two 
alternatives might be feasible: (1) The FPGA prototype could be used directly with 
appropriate static configuration, or (2) an application-specific instance of the generic 
platform could be implemented, with statically configured parts implemented in standard 
cell technology. Thus, higher data throughput, lower power dissipation, and lower cost 
for high volume production could be achieved. The drawbacks are higher development 
costs and the device could be used just for one application.  

3. AddressEngine  

Based on the generic ideas of the reconfigurable platform, an architecture called 
AddressEngine was developed, which exploits statically reconfigurable implementation 
of pixel addressing schemes, dynamically reconfigurable implementation of pixel 
processing, and a software library to support the addressing schemes. Addressing 
schemes, pixel processing, and architecture of AddressEngine are described in the 
following paragraphs.  

3.1 Addressing Scheme  

Although there are various different segmentation algorithms, many of them consist of 
operations, which use only four ways to access the pixel data: Inter addressing, intra 
addressing, segment addressing, and segment indexed addressing (figure 2). These four 
types of addressing were implemented in the AddressLib [11].  

Inter addressing is the addressing mode where a result for each pixel position is 
calculated using data from two different frames. Its application may be computation of 
difference pictures or SAD (Sum of Absolute Differences).  

Intra addressing is used in situations where a result is calculated for each pixel as a 
function of the pixels original value and the values of its neighbors within the same 
image. This is typically used for FIR filter like operations, as gradient operators and 
morphological operators. The tool can be applied either in a recursive or in a non-
recursive way. Recursive means that the processing results of already processed pixels 
are used as input values; while non-recursive means that always the original values are 
used.  

Segment addressing is used if arbitrarily shaped segments have to be processed. In this 
kind of processing, a segment is determined by local neighborhood criteria. First, the 
pixel processing is done in the same way as for intra addressing. Second, all neighbor 
pixels which have not been processed before, are tested if they fulfill specified 
neighborhood criteria. If they do, they might be processed in one of the following steps 
of the algorithm. By operating this way, an expansion process takes place: Beginning 
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with a set of start pixels, all pixels of the segment are processed in order of geodesic 
distance. The control of the expansion process is done using a FIFO, or with a 
hierarchical FIFO to allow for adaptation of the expansion speed. The start pixels have to 
be previously determined, e.g. by regular scanning and testing of some start criteria. 
Segment addressing is extensively used by the watershed algorithm.  

Segment indexed addressing is an addressing method, which is used in parallel to one of 
the above addressing methods, when data associated to a segment is needed or generated 
during the pixel processing, e.g. segment identification numbers. This is done accessing 
an indexed table.  

 

 

 

 

 

Fig. 2: Pixel addressing schemes: Inter (left), intra (middle), and 
segment (right) addressing. Arrows indicate direction of pixel 

processing.  

 

The first two schemes are well known from frame based or block based video 
processing. The third addressing scheme is used for pixel addressing of arbitrarily 
shaped segments in a rectangular frame. The fourth scheme represents indexed table 
accesses and differs from the other schemes by not addressing pixel data.  

3.2 Pixel Processing  

Pixel-level operations, which are going to be implemented in the dynamically 
reconfigurable pixel processing unit, may be separated into basic sub-functions, such as 
add, sub, mult, grad, in order to achieve efficiency and flexibility. These sub-functions 
can be combined to form more complex operations, e.g. luminance/chrominance 
difference between neighboring pixels for homogeneity check, or morphological 
gradient operations, as illustrated in figure 3.  
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Fig. 3: Pixel processing: Combination of add/sub with morphological gradient  

3.3 Hardware Architecture  

A coprocessor architecture for accelerating image segmentation algorithms was 
developed [12]. As the previously described set of addressing schemes is common to 
most of the segmentation algorithms, these addressing schemes are implemented in a 
statically reconfigurable part of the coprocessor. The operations on pixel processing 
level need to be flexible, thus a configurable block was used for the processing part. A 
configurable processing unit offers some flexibility, but it does not need to load any 
instructions while processing certain operations. This behavior fits exactly the 
requirements of image segmentation: One arbitrary operation has to be applied to 
hundreds of thousands of pixels in a frame.  

With respect to general aspects of performance optimization on processing level, this 
architecture implements pipelined data load-process-store operations. On pixel level, just 
one processing unit was implemented. There is a potential for further parallelization of 
pixel processing, using parallel processing units, sharing the same FIFO, but this would 
require parallel external memories or on-chip memory, in order to avoid a bottleneck in 
loading of pixel data.  

Figure 4 shows the block level structure of the coprocessor. The statically reconfigurable 
address unit includes the memory interface, the scan controller, the pixel level controller, 
and the address generator. Beside this unit, the FIFO controller and FIFO memory are 
used by segment addressing. The input data is loaded from the external memory to the 
register matrix, which can store a 3x3 neighborhood of a pixel. The input data is then 
processed by the processing unit and the result is stored in the result register. The stored 
result is then moved to the external memory.  

3.4 Preliminary Synthesis Results  

The AddressEngine was modeled in VHDL and synthesized in 0.25 µm standard cell 
technology for area and timing estimation, as a FPGA platform was not available for 
these preliminary estimations. Table 2 shows area results for this preliminary synthesis. 
The performance for color segmentation was evaluated as well. Table 3 shows results of 
processing speed.  
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With this implementation of AddressEngine, around 49 frames/sec can be achieved for 
the complete color segmentation algorithm. This is more than 3x real time operation, 
leaving enough of time budget for implementation in FPGA.  

 

 

 

 

 

 

 

 

 

 

Fig. 4:  Block diagram of segmentation coprocessor  
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Unit [mm2] 

Processing Unit (a) 1.8 

Address Unit (a) 2.5 

Add’l Logic (b) 0.6 

Interconnects (b) 5.1 

Cache Memory (c)  
(122 kByte) 18.1 

Coordinates Memory 
(164 kByte) (c) 19.6 

Total 47.7 

Table 2: Area estimation for AddressEngine:  
(a) Synthesis Result, (b) Estimation, (c) Generated by RAM Compiler  
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Algorithm  

Watershed 8.56 ms (a) 

Gradient 2.03 ms (a) 

Erosion/Dilation 1.52 ms (a) 

Relaxation 3.60 ms (a) 

Iterative Color 
Segmentation 49.2 frames/s (b) 

Table 3: Processing speed of color segmentation algorithm  
for AddressEngine. (a) CIF, (b) QCIF  

 

3.5 Performance Estimation  

Preliminary simulations of the segmentation algorithm presented in [13], with QCIF 
images (176 x 144 pixels), have shown a computational load of 2.5 Million pixel 
operations per second and on-chip memory requirements of 70 kBytes. The operational 
load consists mainly of 5 parts: Labeling, label check, fragmentation check, watershed, 
and relaxation. For real-time operation with 15 frames/sec there is a time budget of 66 
msec per frame. An estimation for Pentium 4 with MMX and 2 GHz clock resulted in 10 
frames/sec - that is below real-time, even if the processor would execute just this one 
single task. On the reconfigurable platform, with an estimated execution time of 20 nsec 
per pixel and 50 MHz system clock, which seems feasible in today’s FPGAs, all 
operations could be executed within 50 msec, leaving 16 msec for reconfigurations of 
the pixel processing unit. To perform dynamic reconfiguration, the high level algorithm 
has to control the flow of configuration data within the architecture, using prefetch 
instructions and buffering concepts. The trade-off between area, execution time for pixel 
processing, and reconfiguration overhead still has to be investigated.  

4. Outlook  

The next step will be to implement the AddressEngine architecture in a FPGA. An 
algorithm for video object segmentation, which was developed using the AddressLib, 
will be taken as a test case for optimization of dataflow and reconfiguration process. 
Then support of a wider range of algorithms for video signal processing with more 
complex dynamically reconfigurable blocks will be investigated. Further goals include 
automatic recognition of available hardware configurations and substitution of software 
functions by corresponding hardware operations. In future work, the adaptation of the 
platform to other application areas, e.g. network protocol processing, will be evaluated.  
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