
Implementation and Adaptation of the Pseudonymous PKI
for Ubiquitous Computing for Car-2-Car Communication

Stefan Kaufmann

IT-Designers Gruppe
STZ-Softwaretechnik

Im Entennest 2
73730 Esslingen

stefan.kaufmann@stz-softwaretechnik.de

Abstract: Car-2-Car communication requires the use of pseudonymous public keys
to ensure the vehicle’s privacy by making its messages unlinkable over a longer
period. The Pseudonymous PKI (PPKI) for Ubiquitous Computing by K. Zeng
[Ze06] offers peer-side pseudonym generation, non-repudiation and an efficient
revocation mechanism that excludes the revoked peers from the group of authorized
participants. In addition, this work provides a new authorisation scheme that
incorporates efficiently into the pseudonymous PKI, offers peer-side pseudonymous
credential generation and preserves the peer's privacy during the initial authorisation
obtainment from third party authentication authorities. The PKI scheme is also
supplemented with a particular non-pseudonymous variation for roadside units as
well as other adaptations based on Car-2-Car requirements. Finally, the signature
verification performance and message sizes are analysed. We argue that the PPKI
fulfils the security challenges of Car-2-Car communication and has advantages over
a classical PKI.

1 Introduction

Vehicular ad-hoc networks (VANETs), also known as Car-2-Car communication,
improve driver safety. Examples of new safety applications enabled by this technology are
the timely detection of a traffic jam, collision warnings of obscured vehicles or the
warnings about hazards on the road. Once a sufficient saturation of Car-2-Car-enabled
vehicles has been reached, road users can automatically warn each other and consequently
prevent various accidents. One of the main requirements for a successful rollout of this
technology is trustworthiness. Otherwise, if safety messages are not trustworthy,
consumers will never adopt this new technology. Beside well-functioning sensors,
communication devices and applications, security is a crucial requirement. The main
security challenges for the exchange of Car-2-Car messages are authenticity, integrity of
messages as well as non-repudiation and privacy.

The following states at first the security requirements for Car-2-Car Communication, the
current solution. Afterwards the PPKI Scheme and its adaptations, including a new

authorisation scheme, is explained. Finally, a signature sizes and performance are
compared with the current solution.

1.1 Classical Public Key Infrastructures

The present solution, to provide message security, is to implement a classical Public Key
Infrastructure (PKI). A certificate authority (CA) signs the public keys of the peers, who
then digitally sign their messages. A classical PKI solves all security challenges of Car-2-
Car communication apart from privacy. To achieve privacy, it is important to prevent the
possibility to link messages and peers over a longer time.

1.2 Pseudonymous Public Keys

With a classical PKI, each peer uses its private key to create message signatures. The CA-
signed public key will be additionally attached to this signature, which allows other peers
to perform a validation. However, the peer’s public key represents the main link between
all of its messages and, therefore, can be seen as a unique identifier.

The obvious solution is repeatingly to change the public key (and all other identifying
attributes). Total anonymity, however, is not desirable, since misbehaving nodes need to
be identified and potentially removed from the group of authorized peers (revocation).
Such keys are called Pseudonymous Public Keys (PPKs). They fulfil the challenge of non-
repudiation.

1.3 Car-2-Car Reference Architecture

The ETSI specifications 102 940 [ETSI1] and 102 941 [ETSI2] define an ITS security
reference model, consisting of different types of authorities and peers. The Enrolment
Authority (EA) is responsible for enabling peers to generally take part in the Car-2-Car
communication. The EA will be referred to as CA within this document. The Authorisation
Authority (AA) is responsible for authorising a peer “to use of particular application,
service, or privilege”. For example, the use of specific Car-2-Car safety messages should
be subject to those privileges. A Manufacturer is an authority that issues each peer a
canonical identifier. The Root CA issues certificates to all authorities that should take part
in the Car-2-Car communication.

1.4 Current Solution

A classical PKI implementation was chosen for the current Pilot PKI of the European Car-
2-Car Communication Consortium [ES12]. A vehicle in this infrastructure should receive
different types of certificates:

 A long-term certificate, which is only used to authenticate against other
authorities.

 A specific amount of short-term certificates which are used as pseudonyms for
authentic inter-vehicular communication. Those are issued from so-called
Pseudonym CAs. Each one is only valid for a given period.

 Authorisation Certificates (Credentials) from the AA. They are not available in
the current Pilot PKI. Since a credential “should be an unlinkable proof of
authentication to the canonical identifier”, an obvious solution is, that the peer
transfers all of its pseudonymous public keys to the AA, which assigns the
credentials to each of them.

When all pseudonymous public keys or authorisation credentials have expired, the peer
needs to interact again with the Pseudonym CA and AA to receive another set of keys and
credentials.

Peer revocation requires the revocation of the peer’s long-term certificate and the
prevention of the use of the pseudonymous keys, which can be achieved in two different
ways: Firstly, certificate revocation lists (CRLs) can be used, which need to include all the
peer’s non-expired pseudonymous public keys. The second option is to specify a
pseudonymous key update rate so that the peer runs out of certificates very soon.

1.5 Zeng’s Pseudonymous PKI (PPKI)

The Pseudonymous PKI for Ubiquitous Computing [Ze06] is a universal scheme for
authentic communication with the focus on both effective privacy and traceability in case
of misbehaviour. The scheme uses pairing-based cryptography to offer the following
features: It enables peer nodes to generate signed pseudonymous public keys (PPKs)
themselves, which can only be linked to a peer’s identity by the CA. The signature of the
PPKs can be validated using the global group public key (GPK). Revocation is
accomplished by the recalculation of the GPK, which then prohibits the revoked peer to
sign new pseudonymous keys. Since different versions of the PPKs cannot validate each
other, the peer with the lower version is forced to update its revocation list. The revocation
list is then used to calculate the keys according to the new version.

The following explains the cryptographic foundations of pairings, states the PPKI
protocols and examines if and how the PPKI can be adapted to Car-to-Car
Communication. Also, analysis of the signature sizes and validation performance will be
illustrated.

1.6 Pairing-Based Cryptography

Pairing-based cryptography is a rather new cryptosystem. The first pairing-based schemes
were developed around the year 2000 [BF00]. The most general form [Ly07] of a pairing
is a bilinear map e used for cryptographic applications is the following: eǣ ॳଵ ൈ ॳଶ ՜ ࣡

where ॳଵ, ॳଶ and ࣡ are groups of prime order ݌. It requires the following properties (using ݃ଵ א ॳଵ, ݃ଶ א ॳଶ) :

 bilinearity, such that ݁ሺ݃ଵ௔ǡ ݃ଶ௕ሻ ൌ ݁ሺ݃ଵǡ ݃ଶሻ௔௕ for all ܽ ǡ ܾ א Ժ
 nondegeneracy, such that ݁ሺ݃ଵǡ ݃ଶሻ ൌ ͳ for all ݃ ଵ if and only if ݃ ଶ ൌ ͳ or for

all for all ݃ ଶ if and only if ݃ ଵ ൌ ͳ

Using ݃ଵ א ॳଵ, ݃ଶ א ॳଶ, ݃ א ࣡ and ሺܽǡ ܾǡ ǡݔ ǡݕ ሻݖ א Ժ௣, following main cryptographic
hard problem-assumptions have been found in bilinear maps [Ly07]:

• Co-Computational Diffie-Hellman (co-CDH) Problem:
Given ݃ ଵǡ ݃ଶǡ ݃ଶ ௫, compute ݃ଵ ௫

• External Diffie-Hellman (XDH) Problem:
Given ݃ ଵǡ ݃ଶǡ ݃ǡ ݃ଵ௫ ǡ ݃ଶ ௬

 ܽ݊݀ ݃௭, decide whether xy ൌ z

• Q-Strong Diffie-Hellman (q-SDH) Problem:
Given (݃ ଵǡ ሾ݃ଶǡ ݃ଶ ௫ǡ ݃ଶଶ௫ǡ ǥ ǡ ݃ଶ௤௫ሿሻ, find ܿǡ ݃ଵଵȀሺ௫ା௖ሻ for any ܿ א Ժ௣

In addition, following theorems are relevant for the PPKI [Ze06]:

• BB Theorem based on the q-SDH Problem:
Given ݃ଵǡ ݃ଶǡ ܣ ൌ ݃ଶ௔, find ሺݐǡ ǡݐሻ such that ݁ሺݔ ܣ ή ݃ଶ ௫ሻ ൌ ݁ሺ݃ଵǡ ݃ଶሻ

• Zeng’s General Theorem based on the BB Theorem:
Given ݃ ଵǡ ݃ଶǡ ܣ ൌ ݃ଶ௔ and (݄ ଵǡ ݄ଶǡ ǥ ǡ ݄௞ሻ א ॳଶ, find ሺݐ௝ ǡ ௝ݐሻ such that ൫ݔ ǡ ܣ ή ݃ଶ௫൯ ൌ ݁ሺ ௝݄ ǡ ݃ଶሻ

Bilinear maps are based on elliptic curve cryptography (ECC). The Groups ॳଵ and ॳଶ in
the pairing eǣ ॳଵ ൈ ॳଶ ՜ ࣡ are subgroups of points on an elliptic curve over a field and ࣡ is a subgroup of a multiplicative group of a finite Field [GPS06].

For the implementation of a pairing, several algorithms exist. The first discovered ones
were the Weil and the Tate pairing [Ly07]; however, faster pairing algorithms were
developed [LLP08], [Ve10]. Today, the Optimal Ate pairing is one of the most efficent
solutions [BG10].

2 The PPKI Scheme

The following scheme was defined in a universal form [Ze06]. It will be explained
shortened and with slight modifications where the PPKI scheme was too generic for an
implementation. In particular, the PPKI scheme does not require a specific signature
algorithm; instead it uses a generic notation for a zero-knowledge proof of knowledge.

The present implementation (see below in section Implementation) uses the Schnorr
scheme [Sc89], since Zeng already illustrated its use. In addition, through the utilisation
of a self-feedback mode, the scheme makes this implementation very secure [CM09].
However, other signature algorithms can be chosen as well.

CA Initialisation
The CA will be initialised using the following procedure: 1. Generate a random private
key ܽ ோא Ժ௣. 2. Compute the public key ܣ ൌ ݃ଶ௔ א ॳଶ. 3. Generate the random elements ݄ଵǡ ݄ ோא ॳଶ. 4. Publish the public key ܲܭ௏௘௥ ൌ ሺ݌ǡ ॳଵǡ ॳଶǡ ࣡ǡ ݃ଵǡ ݃ଶǡ ݁ǡ ݄ଵǡ ݄ǡ ሻ and theܣ
current version ܸ݁ݎ, which starts at 1.

Peer Initialisation
The peer will be initialised using the following procedure: 1. Generate a random private-
key ݔ ோא Ժ௣. 2. Calculate the root public key ݕ ൌ ݄௫. 3. Create a peer identifier ܦܫ. This
should be provided ex-factory and the peer must not be able to change it afterwards. In
addition, a proof ݏூ஽ for the peer’s ownership of ID and public key must be generated.
This will be discussed later in the Car-2-Car adaptation.

Peer Registration
After the initialisation the peer can register with the CA: 1. Peer computes ݕᇱ ൌ ݃ଶ௫ and
sends ሺܦܫǡ ǡݕ ǡݕᇱሻ to the CA. 2. CA verifies that ݁ሺݕ ݃ଶሻ ൌ ݁ሺ݄ǡ ߦ ௜ௗ is correct. 3. CA generates a saltݏ Ԣሻ holds and that the proofݕ ோא Ժ௣ and computes ݖ ൌ ሻߦ௜ௗȁݏȁݕȁܦܫሺ݄ݏܽܪ
(| denotes concatenation). 4. CA computes ൫ݐ௚ ൌ ݃ଵଵȀሺ௔ା௭ሻǡ ௛ݐ ൌ ሺ݄ଵ ή ݄௫ሻଵȀሺ௔ା௭ሻ ൯. 5. CA
stores ሺܦܫǡ ǡݕ ௜ௗݏ ǡ ᇱǡݕ ሻ in a database, to enable the later tracing of PPKs. 6. CA sendsߦ
certificate ൫ݐ௚ǡ ௛ǡݐ ௚ǡݐ൯ to the peer. 7. Peer verifies the certificate by ensuring that ݁൫ݖ ܣ ή ݃ଶ௭൯ ൌ ݁ሺ݃ଵǡ ݃ଶሻ and ݁ሺݐ௛ǡ ܣ ή ݃ଶ ௭ሻ ൌ ݁ሺ݄ଵ ή ݄௫ ǡ ݄ଶሻ hold. 8. Peer computes ݒଵ ൌ ݁ሺ݃ଵ ή ݄ଵǡ ݃ଶሻ א ଶݒ , ࣡ ൌ ݁൫ݐ௚ ή ௛ǡݐ ݃ଶିଵ൯ א ࣡ and ݒଷ ൌ ݁ሺ݄ǡ ݃ଶሻ א ࣡. Since those
terms are required quite often, the storage of their results (ݒଵǡ ଶǡݒ ଷሻ brings someݒ
performance gain. 9. Finally, the peer stores the CA-certificate ൫ݐ௚ǡ ௛ǡݐ ൯ and theݖ
accelerators ሺݒଵǡ ଶǡݒ .ݎܸ݁ ଷሻ in accordance with the current versionݒ

Pseudonymous Public Key Generation and Verification
When required, a peer can generate a new pseudonymous public key (ܲܲܭ) using the
following procedure: 1. Chose a random integer ݎ ோא Ժ௣. 2. Compute the ܲܲܭ ൫ݐ ൌ ൫ݐ௚ ή ௛൯௥ݐ ǡ ௬ݐ ൌ ܲܲ ௫൯. 3. Generate theݐ ܲ Signature ܭ ௦௜௚ using the Schnorrܭܲ
Scheme: Firstly, chose three random Elements ݔଵ ோא Ժ௣, ݔଶ ோא Ժ௣ and ݔଷ ோא Ժ௣.
Secondly, compute ܴ஺ ൌ ଵݒ ௫భ ή ଵ௥ή௫మݒ ή ଷݒ ௫య א ࣡ǡ ܴ௑ ൌ ௫యିݐ ή ௬ݐ ௫భ א ॳଵ and the Hash ܿ௦ ൌ ሻݎሺܴ஺ȁܴ௑ȁܸ݄݁ݏܽܪ א Ժ௣. Thirdly, compute the three exponents ݏଵ ൌ ଵݔ െ ܿ௦ ή ݎ ଶݏ , Ժ௣א ൌ ଶݔ െ ܿ௦ ή ݖ א Ժ௣ and ݏଷ ൌ ଷݔ െ ܿ௦ ή ݎ ή ݔ א Ժ௣. Those four Elements represent
the signature: ܲܲܭ௦௜௚ ൌ ሺܿ௦, ݏଵǡ ଶǡݏ ௦௜௚ byܭܲܲ ଷሻ. 4. A verifying peer can validate theݏ
computing ܴ ᇱ஺ ൌ ଵݒ ௦భ ή ݁ሺݐǡ ݃ଶି௦మ ή ௖ೞሻܣ ή ଷݒ ௦య א ࣡, ܴᇱ௑ ൌ ௦యିݐ ή ௬ݐ ௦భ א ॳଵ, as well as ܿᇱ௦ ൌ ሺܴᇱ஺ȁܴᇱ௑ȁܸ݁ݎሻ א Ժ௣ and by verifying that ܿԢ௦ ൌ ܿ௦.

The random integer ݎ ோא Ժ௣ allows the generation of ݌ different PPKs. The verification
of a ܲ ,௦௜௚ requires three operations in ࣡, which represents the bottleneck in this protocolܭܲ
as shown later.

Message Signature Generation and Verification
The previously generated ܲܲܭ will be used to sign a message. This message has to contain
a timestamp, which is provided through the GeoNetworking protocol [ETSI3]. The
proving peer has to perform the following actions: 1. Compute the signature for the
message ݉ : Firstly, generate a random element ݔଵ௠ ோא Ժ௣Ǥ Secondly, compute the
message hash ܿ௦௠: ܴ௠ ൌ ௫భݐ א ॳଵ ܿ௦௠ ൌ ሺܴ௠ǡ݄ݏܽܪ ݉ሻ א Ժ௣. Thirdly, compute ݏ௠ ൌݔଵ௠ െ ܿ௦௠ ή א ݔ Ժ௣. Finally, those two elements form the signature ܵெ ൌ ሺܿ௦௠ ǡ .௠ሻݏ
2. A verifying peer can validate the message by computing ܿԢ௦௠: ܴԢ௠ ൌ ௦೘ݐ ή ௬௖ೞ೘ݐ א ॳଵ,
as well as ܿᇱ௦௠ ൌ ሺܴᇱ௠ǡ݄ݏܽܪ ݉ሻ א Ժ௣ and by verifying that ܿԢ௦௠ ൌ ܿ௦௠.

Tracing
When a misbehaving peer needs to be identified by linking one of its PPKs to its ܦܫ, the ܣܥ has to perform the following steps: 1. Iterate through all database entries, which were
created during the peer-registration process and check each ݕԢ௜ if ݁ሺݐǡ Ԣ௜ሻݕ ൌ ݁൫ݐ௬ ǡ ݃ଶ൯
using the ܲ ǡݐ൫ܭܲ ǡܦܫ௬൯. When a match is found, then all corresponding information ሺݐ ǡݕ ௜ௗݏ ǡ ᇱǡݕ ሻ is also discovered. 2. The tracing result now can be signed and publishedߦ
by the CA. However, it is important to keep the element ݕᇱ back, since this can be used to
find all ܲ .of this peer, which would constitute a privacy breach ݏܭܲ

Peer Revocation
When a peer was identified, it is possible to ban it from any further Car-2-Car
communication. Therefore, the CA has to create a new version of its public key:
1. Recompute the hash ݖƸ ൌ పௗෞݏොȁݕ෢ȁܦܫ൫݄ݏܽܪ ȁߦመ൯ using the database entry of the identified

peer. 2. Compute its new public key ݃෤ଵ ൌ ݃ଵଵȀሺ௔ା௭Ƹሻ ෤݃ଶ ൌ ݃ଶଵȀሺ௔ା௭Ƹሻ ܣሚ ൌ ݃ଶ ή ෤݃ଶି௭Ƹ .
3. Increment ܸ ௏௘௥ܭܲ and publish the new ݎ݁ ൌ ൫݌ǡ ॳଵǡ ॳଶǡ ࣡ǡ ෤݃ଵǡ ෤݃ଶǡ ݁ǡ ݄ଵǡ ݄ǡ -ሚ൯. 4. Pubܣ
lish the revocation data ሺܸ݁ݎǡ ෤݃ଵǡ ෤݃ଶǡ Ƹሻݖ

Since communication between peers using different versions of the public key is
impossible, each peer needs to update its copy of the CA’s public key as well as its CA-
certificate using the revocation data: 1. Compute ܣሚ ൌ ݃ଶ ή ෤݃ଶି௭Ƹ א ॳଶ. 2. Generate the

new part of its CA-certificate ݐ௚ ൌ ൫ ෤݃ଵȀݐ௚൯ଵȀሺ௭ି௭Ƹሻ ॳଵ. 3. Verify the validity of the א
revocation data using the same procedure as during the registration process, by checking
if ݁ሺݐ௛ǡ ܣ ή ݃ଶ௭ሻ ൌ ݁ሺ݄ଵ ή ݄௫ ǡ ݃ଶሻ holds. 4. Store the new ܲܭ௩௘௥ ൌ ൫݌ǡ ॳଵǡ ॳଶǡ ࣡ǡ ෤݃ଵǡ ෤݃ଶǡ݁ǡ ݄ଵǡ ݄ǡ ଵݒ ሚ൯ and the revocation data. 6. Update the acceleratorsܣ ൌ ݁ሺ ෤݃ଵ ή ݄ଵǡ ෤݃ଶሻ א ଶݒ , ࣡ ൌ ݁൫ݐǁ௚ ή ௛ǡݐ ෤݃ଶିଵ൯ א ࣡ and ݒଷ ൌ ݁ሺ݄ǡ ෤݃ଶሻ א ࣡. 7. Store the new CA-certificate ൫ݐ௚ǡ ௛ǡݐ ଵǡݒ൯ and the updated accelerators ሺݖ ଶǡݒ ܸ݁ ଷ ሻ in accordance toݒ It can be seen .ݎ
that a revoked peer is unable to update the certificate, since ݖ ൌ Ƹ and consequently aݖ
division by zero would occur. Now this peer is unable to take part in the communication
as a sender or verifying peer.

3 PPKI Adaptation for Car-2-Car Communication

The following explains the design of a hierarchical PKI architecture using the PPKI, the
integration of an ܣܣ, which issues pseudonymous authorisation certificates and an
efficient non-pseudonymous solution for roadside units (RSUs).

3.1 Hierarchical PKI

As already suggested by other PKI schemes for VANETs [Pa08], the high number of
countries in Europe results in a substantial regulatory and administrative effort, which
makes it necessary to divide CAs into regional authorities. If it will be possible to unite all
European countries under one single CA, then this concept might be unnecessary.
However, regional domains also imply regional and therefore smaller certificate
revocation lists.

As previously demanded by the ETSI specification, a Root CA is required to establish trust
between different regional CA and AA authorities. The Root CA uses a standard ECC-
based signature scheme to sign the public keys of the authorities. The creation of signature ݏ for the message ݉ using the signee’s private key x and the known generator ݃ will be
stated as ݏ ൌ ௚ǡ௫ሺ݉ሻ. An exemplary scheme is the Schnorr Signature [Sc89], which݊݃݅ݏ
will be used here in the following form: 1. Generate a random element ݇ ோא Ժ௣.
2. Compute ܴ ௦ ൌ ݃௞ א ࣡ and the hash ܿ௦ ൌ ሺܴ௦ȁ݉ሻ݄ݏܽܪ א Ժ௣. 3. Compute the element ݏ ൌ ݔ ή ܿ௦ ൅ א ݇ Ժ௣ using private key 4 .ݔ. A verifying peer or authority can validate ݏ
by computing ܴ ௦ ൌ ݃ଵ௦ ή ሺ݃௫ሻି௖ೞ א ࣡, as well as ܿ Ԣ௦ ൌ ሺܴ௦ȁ݉ሻ݄ݏܽܪ א Ժ௣ and by

verifying that ܿ ǯ௦=ܿ௦.
To reduce the signature length, a hierarchical PKI architecture without chaining is chosen
for the design. This requires the Root CA to sign the public keys of all involved authorities: ݐݎ݁ܥݐ݋݋ݎ஺೔ ൌ ௜ሻ. Also, the Root CA specifies the ECC parameters and theܣ௚ǡ௥ሺ݊݃݅ݏ
generator ݃ , which are used for all non-pseudonymous signatures (e.g. manufacturer
signatures).

To enable peers to register at any regional CA it is important to provide a standardised
credential that proves them as valid Car-2-Car peers. According to the Car-2-Car reference
architecture, a Manufacturer Authority sets the peer’s canonical identifier ܦܫ. This will be
enhanced with the issuance of a proof of ownership of the public key and the ܦܫ. The
manufacturer creates ݏூ஽ǡ௜ ൌ ൛݊݃݅ݏ௚ǡ௠ሺݕ௜ȁܦܫ௜ሻǡ ܯ ൌ ݃௠ǡ ܦܫ ெൟ for the peer’sݐݎ݁ܥݐ݋݋ݎ
and public key. The peer has a private and public key dedicated to the Root CA. This set
is later used to sign and verif the peer’s public keys belonging to a regional CA, which is
called the regional public key signature. A requirement for this signatures is, that the ECC
parameters and the generator ݃ are valid for the entire PKI. Having this ݏ௜ௗ, the ܣܥ can
validate the peer and then issue a certificate for pseudonymous communication within the ܣܥ’s managed region. A peer only needs to register once at a ܣܥ. It then stores the
necessary information to easily switch the keys when passing different administrative

regions. In case of a revocation, the ݏூ஽ needs to be sent to all ݏܣܥ where the peer will be
either locally revoked or excluded from future registrations.

3.2 Authorisation and Credentials

Based on the fundamental work of Verheul [Ve01], the following new pseudonymous
credential scheme could be integrated into the PPKI: To retain the anonymity of the peer,
the AA issues a blind signature for the requester’s ܣܥ public key. An ܣܣ is always assigned
to one ܣܥ, since it builds upon the ܣܥ’s public key, to enable efficient pseudonymous
certificate proofs by the peer. On the other hand, this means for a peer that changes to
another a regional CA, that it also has to interact with a corresponding ܣܣ to generate new
certificates. The credential information ܦܧܴܥ contains the Credential String ܵܥ, which
denotes the specific authorisation and optionally an expiration date, the blinded signature ݏ௖௕, and the ܣܣ’s certified public key. A message with one credential now contains the
elements:

M=ሺܿݐ݊݁ݐ݊݋ǡ ܵெ ǡ ǡܭܲܲ ௦௜௚ܭܲܲ ǡ ሻܦܧܴܥ

The ܣܣ uses its local ܣܥ’s public key and is set up the following way: 1. Generate private
key ܾ ܤ ோ Ժ௣ and the public keyא ൌ ݃ଶ௕ 2. Interact with the ܣܥ ݐ݋݋ݎ to get a signature for
B: ݏ஻.

A peer can acquire a credential and its signature from an 1 :ܣܣ. Peer performs a self-
blinding on its ܣܥ public key ුݕ ൌ ௙ݕ , ݄ෘଵ ൌ ݄ଵ௙ , ුݕᇱ ൌ ݃ଶ௙௫ and ݄ෘԢ ൌ ݃ଶ௙ using ݂ ோא Ժ௣. 2.
Peer sends to the ܣܣ the following: ුݕǡ ෘ݄ଵǡ Ԣǡݕු ෘ݄ Ԣ, its current ܲ ܲ and ܭܲ ௦௜௚, as well asܭܲ
the requested credential information ܵܥ and a proof of the right of obtainment of the
requested credential ݏ௖. The proof ݏ௖ can, for instance, be bound to this particular ܲܲܣܣ .3 .ܭ checks the peer’s request, by verifying the PPK using ܲܲܭ௦௜௚, the proof ݏ௖ and the
blinded public key by checking that ݁ሺݐǡ ᇱሻݕු ൌ ݁൫ݐ௬ǡ ෘ݄ Ԣ൯ , ݁൫ ෘ݄ଵǡ ᇱ൯ݕු ൌ ݁൫ුݕǡ ෘ݄ Ԣ൯ and ݁൫݄ଵǡ ෘ݄ Ԣ൯ ൌ ݁൫ ෘ݄ଵǡ ݃ଶ൯ hold. 4. ܣܣ then creates the blind signature using ܿ௥ ൌ ,ሻܵܥሺ݄ݏ݄ܽ

as well as ݏƼ௖ ൌ ൫ ෘ݄ଵ ή ൯ଵȀሺ௕ା௖ೝሻݕු
 and returns (CS, ݏƼ௖ ǡ ǡܤ ஻ሻ to the peer. 5. Peer obtains theݏ

real signature ݏ௖ ൌ ௖ݏ ,Ƽ௖ଵȀ௙ and stores (CSݏ ǡ ǡܤ .஻ሻݏ

The ܲ ܲ and ܭܲ ௦௜௚ generation process will be enhanced with following steps: 1. Peerܭܲ
performs self-blinding to its certificate signature using the same random integer ݎ as used
for the ܲ ௖௕ݏ :creation ܭܲ ൌ ௖ݏ ௥. The pseudonymous credential is composed of ܦܧܴܥ ൌሺܵܥǡ ௖௕ݏ ǡ ǡܤ ܲ ௖௕ to theݏ ஻ሻ. 2. Peer adds an additional proof of the validity ofݏ ௦௜௚ǣܭܲ
Firstly, calculate ܴ௖ ൌ ସ௫భݒ ή ଷݒ ௫య א ࣡ by using the new accelerator ݒସ ൌ ሺ݄ଵǡ ݃ଶሻ and use
it as additional information for the hash: ܿ௦ ൌ ȁܴ௖ሻݎሺܴ஺ȁܴ௑ȁܸ݄݁ݏܽܪ א Ժ௣. The new
signature ܲ ௦௜௚ܭܲ ൌ ሺܿ௦ǡ ଵǡݏ ଶǡݏ ଷሻ has still the same amount of elements, yet is also usedݏ

as a link between ݏ௖௕, ܤ and the ܿ௥ ൌ ሻ. 2. A verifying peer has to perform theܵܥሺ݄ݏܽܪ
following additional steps during the validation: Firstly, Check if ܤ is already a trusted ܣܣ
public key and if not, validate ܤ using ݏ஻. Secondly, generate ܿ௥ ൌ ሻܵܥሺ݄ݏ݄ܽ א Ժ௣.
Thirdly, compute ܴ Ԣ௖ ൌ ସ௦భݒ ή ଷݒ ௦య ή ݁ሺݏ௖௕ ǡ ܣ ή ݃ଶ௖ೝሻ א ࣡. Finally, calculate the hash using

ܴԢ௖ as an additional concatenated hash input value ܿԢ௦ ൌ ȁܴԢ௖ሻݎሺܴԢ஺ȁܴԢ௑ȁܸ݄݁ݏܽܪ א Ժ௣.
By checking that ܿ௦ ൌ ܿԢ௦, the verifying peer can now trust the ܲܲ and the credential ܭ
information ܦܧܴܥ.

The proof was derived the following way: ൫ݏ௖௕ଵȀ௥൯௕ା௖ೝ ൌ ݄ଵ݄௫ ݏ௖௕௕ା௖ೝ ൌ ሺ݄ଵ݄௫ሻ௥ ݁ሺݏ௖௕ ǡ ݃ଶ௕ା௖ೝሻ ൌ ݁ሺ݄ଵ݄௫ ǡ ݃ଶሻ௥ ݁ሺݏ௖௕ ǡ ܤ ή ݃ଶ௖ೝሻ ൌ ݁ሺ݄ଵǡ ݃ଶሻ௥ ή ݁ሺ݄ǡ ݃ଶሻ௥௫

The credential signature is not directly traceable, however, since it is bound to the peer’s
private key, which is proven using the ܲܲܭ௦௜௚, the owner of a credential can always be
found out by the ܣܥ. The proposed solution of the integration of a credential signature
proof into the ܲ .௦௜௚ proof is the most efficient when the credentials are always the sameܭܲ
When another credential is attached to a message, the verifying peer has to revalidate the
whole ܲܲܭ௦௜௚, since the proof has changed. In cases where different credentials are
required, it can be more efficient to separate the proofs. The proof of the ܲ ௦௜௚ would beܭܲ
the original one and the proof of the credential would consist of ܴ௑ and ܴ ஼, so that ܿ௖ ൌ ሺܴ௑ȁܴ௖ሻ א Ժ௣. ܴ௑ is required to assure that the certificate is bound to the peer’s
private key ݔ. The proof of this certificate would consist of ሺܿ௖ ǡ ଵǡݏ ଷሻݏ א Ժ௣. Both
solutions also support the concatenation of multiple credentials. For each credential
signature a separate ܴ஼ has to be computed and concatenated to the hash input. For
instance, for ݊ credentials ܿ௦ ൌ ሺܴ஺ȁܴ௑ȁܸ݁ݎȁܴ௖ଵȁܴ௖ଶȁ ǥ ȁܴ௖௡ሻ א Ժ௣.

3.3 RSU Authentication and Authorisation

The GSIS scheme [LSH07], contains with its RSU authentication and authorisation
scheme an efficient non-pseudonymous PKI enhancement. Since RSUs have no privacy
requirements, PPKs are not necessary, and a more efficient scheme can be used.
Conveniently, the GSIS RSU authentication can be adapted to the PPKI. However, this
implementation uses the scheme only to sign the RSU's public key. Like regular peers,
RSUs use efficient ECC based signatures for messages. The GSIS scheme uses an
identity-based signature, in which the hash of the RSU's ID together with a credential
string serves ܵܥ as a public key. In this adaption, the credential string and the RSU's public
key is also signed by the CA. The CA not only signs the RSU ID and an optional credential
string, but also the RSU's public key.

RSU Initialisation and Registration
For identity-based signatures, it is necessary that the RSU certificate key is created at the
CA: 1. RSU creates its private key ݔ א ॳଵ and its public key ݕ ൌ ݄௫ for message
signatures. 2. RSU generates a proof ݏ௜ௗ for ownership of its identifier ܦܫ, and a valid
binding of its root public key ݔǡ ௜ௗ andݏ CA verifies .3 .ܵܥ and the credential string ܦܫ
creates the unique RSU identifier ݖ ൌ ሻܵܥȁݕȁܦܫሺ݄ݏܽܪ א Ժ௣ 4. CA creates the RSU's

certificate key: ݐ௥ ൌ ݃ଵଵȀሺ௔ା௛ೃೄೆሻ using the CA's private key ܽ . 5. RSU calculates
accelerator ݒ ൌ ݁ሺ݃ଵǡ ݃ଶሻ א ࣡. 6. RSU stores ݐ,ݖ,ݕ,ݔ௥ and ݒ.

RSU Public Key Signature Generation and Verification
In contrast to normal peers, this signature only needs to be recalculated after a version
update. 1. RSU creates the signature using the following procedure: Firstly, create random
element ݔ௥ ோא Ժ௣. Secondly, compute the hash ܿ௥ ൌ ሻݎሺܴ௥ȁܸ݄݁ݏܽܪ א Ժ௣ using ܴ௥ ൌ ௫ೝݒ א ࣡. Finally, compute certificate element ݏ௥ ൌ ௥ݐ ௫ೝା௖ೝ א ॳଵ. 2. A verifier can
validate the signature ܲܭ௦௜௚ ൌ ሺܿ௥ ǡ ௥ݏ ǡ ǡݕ ᇱݖ ሻ by computingݎܸ݁ ൌ ሻ, ܴ௥ᇱݕȁܵܥȁܦܫሺ݄ݏܽܪ ൌ ݁ሺݏ௥ ǡ ݃ଶ ௭ᇱ ή ሻܣ ή ௖ೝିݒ א ࣡, ܿ ௥ᇱ ൌ ሺܴ௥ᇱ݄ݏܽܪ ȁܸ݁ݎሻ and by verifying that ܿ௥ ൌ ܿ௥Ԣ.

RSU Message Signature Generation and Verification
RSU message signatures are created using the same procedure as for regular peers using
the RSU's private key ݔ the public ݕ and the generator ݄.

RSU Revocation
It is very important that RSU can be revoked using the same method as used for peer
revocation. Otherwise two revocation lists have to be used and the advantage of the update
method would be lost. For that reason, the unique identifier ݖ of an RSU is compatible to
that of a peer. The CA can use the same revocation procedures and publish a new
revocation data ሺܸ݁ݎǡ ෤݃ଵǡ ෤݃ଶǡ .Ƹሻ to the revocation listݖ
The RSU uses the same version update protocol as a peer, but instead of ݐ௚෥ it calculates
its new private key ݐ௥෥ ൌ ሺݒ෤Ȁݐ௥ሻଵȀሺ௭ି௭Ƹሻ with the new accelerator ݒ෤ ൌ ݁ሺ ෤݃ଵǡ ෤݃ଶሻ. It can be
seen again, that a revoked RSU cannot perform the calculation of ݐ௥෥ .

4 Analysis

The two central questions for the utilisability of the PPKI are: how much the signature
sizes of the PPKI differ from a classical PKI scheme and whether the PPKI has a sufficient
performance. Both depend on the selected key lenghts. As explained above, the groups ॳଵ
and ॳଶ are subgroups of an elliptic curve over finite fields, the third group ࣡, however, is
a subgroup of a finite field. Hence, two cryptographic key lengths are relevant: Firstly, for
the size of ݌ for elliptic curve based cryptography and secondly, the size of the field ݌௞
for the multiplicative subgroup ࣡. To provide security until the year 2030, key lengths for
p of 224 bit and for ݌௞ of ʹͶ͵ʹ bit are recommended, according to ECRYPT II [Sm11].
This requires the implementation of Barreto-Naehrig elliptic curves [BN06], with the
parameter ݇ ൌ ͳʹ, which results in a length of ʹ͸ͺͺ bit for ݌௞.

4.1 Signature and Credential Size

A peer's message signature package consists of the message signature itself, the PPK, the
PPK signature and the version identifier. Table 1 shows how the signature size is deter-
mined. Due to point compression for elliptic curves, elements of ॳଵ can be reduced to the
x-value plus an indicator bit for the y-value. An ECC-based solution would consist of two

elements for the message signature, one element for the peer's public key and two elements
for the public key signature. This size would be ͷ ή ሻ, which is 1120 bit using a key݌ଶሺ݃݋݈
size of 224 bit. The PPKI's signature is 66 % larger than an ECC-based one. The non-
pseudonymous RSU signature, as shown in Table 2, has about the same size as a regular
ECC-based one. The difference depends on the size of the version identifier and the
credential string. The RSU-ID is already part of the Car-2-Car protocol. Table 3 shows the
determination of the authorisation certificate. It is easy to see that the AA public key ܤ ॳଵ is very large compared to the other elements, although due to six-to-one pointא
compression of Baretto-Naehrig curves [BN06] it is only double the size instead of twelve
times. The other sizes are comparable to an ECC-based solution. Since the public keys of
authorities do not change very often, a possible solution to avoid this problem is to
distribute public keys separately. The credential then would only need to refer to the
required key using a small identifier.

Table 1: Components and sizes of the PPKI peer signature

Signature Parts Elements Relative Size Example for ݌ ؙ ʹʹͶ
and ݎ݁ݒ ؙ ͵ʹ (bit)

Message
Signature

ܿ௦௠ א Ժ௣ ݏ௦௠ א Ժ௣

logଶ ሺ݌ሻ logଶ ሺ݌ሻ

224

224

Pseudonymous
Public Key

ݐ א ॳଵ ݐ௬ א ॳଵ

logଶሺ݌ሻ ൅ ͳ logଶሺ݌ሻ ൅ ͳ

225

225

Pseudonymous
Public Key
Signature

ܿ௦ א Ժ௣ ݏଵ א Ժ௣ ݏଶ א Ժ௣ ݏଷ א Ժ௣

logଶ ሺ݌ሻ logଶሺ݌ሻ logଶ ሺ݌ሻ logଶ ሺ݌ሻ

224

224

224

224

Version ݎ݁ݒ logଶ ሺݎ݁ݒሻ 32

 ͺ logଶሺ݌ሻ ൅ logଶሺݎ݁ݒሻ ൅ ʹ 1826

Table 2: Components and sizes of the PPKI RSU signature

Signature Parts Elements Relative Size Example for ݌ ؙ ʹʹͶ, ݎ݁ݒ ؙ ͵ʹ and CS ؙ ͸Ͷ
(bit)

Message
Signature

ܿ௦௠ א Ժ௣ ݏ௦௠ א Ժ௣

logଶ ሺ݌ሻ logଶ ሺ݌ሻ

224

224

Public Key ݕ א ॳଵ logଶሺ݌ሻ ൅ ͳ 225

Public Key
Signature

ܿ௥ א Ժ௣ ݏ௥ א Ժ௣

logଶሺ݌ሻ logଶሺ݌ሻ

224

224

Version
Cred. String

 ܵܥ ݎ݁ݒ

logଶ ሺݎ݁ݒሻ ݈݃݋ଶሺܵܥሻ

32

64

 ͺ logଶሺ݌ሻ ൅ logଶሺݎ݁ݒሻ ൅ ʹ 1217

Table 3: Components and sizes of the PPKI credential

Signature Parts Elements Relative Size Example for ݌ ؙ ʹʹͶ
and CS ؙ ͸Ͷ (bit)

Cred. String and
Signature

௖௕ݏ ሻ 64ܵܥlogଶ ሺ ܵܥ א ॳଵ logଶሺ݌ሻ ൅ ͳ 225

AA Public Key
with Root CA’s
Signature

ܤ א ॳଶ logଶሺ݌ଶሻ ൅ ͳ 449 ܿ௥௕ א Ժ௣ logଶ ሺ݌ሻ 224 ݏ௥௕ א Ժ௣ logଶ ሺ݌ሻ 224

 logଶሺܵܥሻ ൅ ͷ logଶሺ݌ሻ ൅ ʹ 1186

4.2 Performance

The main performance constraints in this protocol are the operations in ࣡ and the pairing ݁.
Since signing and validating are the operations most often performed on the peer side, they
will be subject to this benchmark. Compared to the validation process, the signature
process misses one pairing operation. This means that the validation process is
computationally more expensive than the signature creation. Hence, the sign operation can
be neglected, especially since it is only rarely used. Message signature operations are
performed in ॳଵ and are equal to a common ECC-based Schnorr implementation. The
time required for a message signature validation serves as a reference for the PPK
signature performance. The same applies to the authorisation credential verification. Since
no other suitable pseudonymous authorisation scheme was found, the only comparable
solution is short-term ECC-based certificates, similar to the short-term public keys. Again,
the message verification time is taken as a reference. The benchmark was performed on a
2.7 GHz Intel i7 CPU As Table 4 shows, the validation times and ratios using a 254-bit on
Berito-Nehrig curve using a performant Optimal Ate pairing library [BG10]. Since
automotive implementations will not use PC CPUs but cost and energy efficient
processors or application-specific integrated circuits (ASICs), the ratios of the different
verification processes are more important than the measured times.

Table 4: Performance Comparison of PPKI Operations on Berito-Nehrig curve with ݌ ؙ ʹʹͶ bit
Operation Time / ms ratio
Message Verification 0.426 ͳ
PPK Verification 3.956 9.27
RSU PK Verification 2.052 4.82
Cred. Verification 3.004 7.05

The result shows that the PPK signature verification is about ten times slower than the
message verification process. The slowdown usually affects only the first message of a
new peer, because only at this point a PPK verification is required. Subsequently, until the
next PPK change, only message signatures need to be validated. Nevertheless, this is a
situation requiring further investigation: since a PPK change is only reasonable when all
peers within a certain range perform it at the same time, the performance can become
critical. It may help to specify the maximum size of the group of peers which execute the
PPK change. The RSU public key verification is twice as fast as the PPK verification.

A pseudonymous authorisation credential verification is seven times slower than short
term ECC based certificates, however still faster than a PPK verification. Safety relevant
messages that contain an authorisation credential require both to be verified: the PPK and
the authorisation credential. Together it would take 6.96 ms for the verification, which is
eight times more than two ECC-based verifications.

5 Conclusion

In this work, it could be shown that the PPKI does indeed meet the challenges of Car-2-
Car communication. Message authenticity, integrity, and non-repudiation are fulfilled
equally. It is possible to set up a hierarchical PKI architecture with regional CAs and
multiple AAs.

The new developed pseudonymous authorisation scheme allows to integrate trusted
authorisation authorities into the PPKI. They enable peers to use special safety messages
or commercial services like tolling, information or entertainment services. Similarly to the
PPKI authorisation it allows peer side pseudonymous credential generation with about the
same performance requirements. Without such a solution, the amount of pseudonymous
authentication credentials for multiple services can become enormous, and the issuing
process would be computational expensive, since each pseudonymous public key requires
a unique authentication credential. On-demand issuing services [AGL13] may be
practically applicable for some commercial services, however they would be much more
complex then the PPKI solution. An important privacy feature of the new pseudonymous
authorisation scheme is the optionally “blinded” registration process that prevents the
authorisation authorities to link the issued credentials to a peer. If a customer pays a tolling
authority for a one-year certifi cate, the authority does not need to know the peer's identity.
The privacy of this process can be compared to the process of buying a tolling vignette.

In contrast to the classical PKI, the PPKI allows the peers to change their pseudonym at
any required frequency. In addition, classical PKI solutions require an Internet connection
to distribute pseudonyms and authorisation certificates and maybe also to provide CRLs.
After the initial registration at a ܣܥ and ܣܣ, a PPKI peer can rely only on Car-2-Car
communication. This makes the solution robust and user-friendly. Also, the revocation
process is straightforward: peers are forced to distribute and import revocation data,
otherwise they can no longer take part in the communication.

Nevertheless, those features come with additional computational costs for key and
credential validation. A PPKI hardware solution will probably be more expensive,
especially since a pairing implementation is more complicated than a plain ECC based
one. A quantitative determination of costs and benefits cannot be made since costs could
be reduced by mass production of ASICs. Although the system in the car becomes more
sophisticated, it carries out tasks that would otherwise be located on the infrastructure side.
From a qualitative point of view, the PPKI scales better, the communication overhead is
reduced and administrative processes become easier to manage.

References

[AGL13] Alexiou, N.; Gisdakis, S.; Laganà, M.; Papadimitratos, P.: Towards a secure and privacy-
 preserving multi-service vehicular architecture: WOWMOM 2013, IEEE
[BN06] Barreto P.; Naehrig M.: Pairing-Friendly Elliptic Curves of Prime Order: Selected Areas

in Cryptography - SAC 2005; Lecture Notes in Computer Science: Springer, 2006
[BF00] Boneh D.; Franklin M.: Identity-Based Encryption from the Weil Pairing: Advances in

Cryptology, Springer Berlin Heidelberg, 2001
[BG10] Beuchat, J.; Gonzáles-días, J.; Mitsunari, S.; Okamoto, E.; Rodríguez-henríquez F.;

Teruya, T.: High-speed Software Implementation of the Optimal Ate Pairing over Barreto-
Naehrig Curves: Proceedings of the 4th International Conference on Pairing-based
Cryptography, Pairing'10, Springer-Verlag Berlin, Heidelberg 2010

[CM09] Cao Z.; Markowitch O.: Security Difference between DSA and Schnorr's Signature:
Networks Security, Wireless Communications and Trusted Computing: IEEE, 2009

[ES12] Escrypt: Efficient Public Key Infrastructure (PKI) Solutions for Embedded Systems:
Website Report: https://www.escrypt.com/company/single-news/detail/efficient-public-
key-infrastructure-pki-solutions-for-embedded-systems/

[ETSI1] ETSI Specification 102 940: Intelligent Transport Systems; Security; ITS communications
security architecture and security management: European Telecommunications Standards
Institute, 2012

[ETSI2] ETSI Specification 102 941: Intelligent Transport Systems; Security; Trust and Privacy
 Management: European Telecommunications Standards Institute, 2013

[ETSI3] ETSI Specification 102 636-4-1: Intelligent Transport Systems; Vehicular
communications; GeoNetworking; Part 4: Geographical addressing and forwarding for
point-to-point and point-to-multipoint communications; Sub-part 1 Media-Independent
Functionality: European Telecommunications Standards Institute, 2011

[GPS06] Galbraith S.; Paterson K.; Smart N.: Pairings for Cryptographers: Cryptology ePrint
Archive, Report 2006/165, 2006

[JPBC] Angelo De Caro: The Java Pairing-Based Cryptography Library: Università degli Studi di
Salerno

[LLP08] Lee E.; Lee H.; Park C.: Efficient and generalized pairing computation on abelian
varieties: Cryptology ePrint Archive, Report 2008/040, 2008.

[LSH07] Lin, X.; Sun, X.; Ho, P.; Shen, X.; GSIS: A Secure and Privacy-Preserving Protocol for
Vehicular Communications: IEEE Transactions on Vehicular Technology, 56, 2007

[Ly07] Lynn, B: On the implementation of pairing-based cryptosystems: Stanford University,
2007

[Sm11] Smart, N.: ECRYPT II Yearly Report on Algorithms and Keysizes: European Network of
Excellence in Cryptology II, 2011

[Pa08] Papadimitratos, P. et al: Secure vehicular communication systems: design and
architecture: IEEE Communications Magazine, Vol 46, Issue 11: IEEE Press, Piscataway:
2008, pp 100-109

[Sc89] Schnorr C.: Efficient Identification and Signatures for Smart Cards, Advances in
 Cryptology, Springer Berlin Heidelberg, 1989
[Ve01] Verheul, E.: Self-Blindable Credential Certificates from the Weil Pairing: ASIACRYPT

'01, Proceedings of the 7th International Conference on the Theory and Application of
Cryptology and Information Security: Advances in Cryptology, Springer-Verlag London
2001; pp. 533-551

[Ve10] Vercauteren F.: Optimal Pairings: IEEE Transactions on Information Theory: 2010;
pp 455-461

[Ze06] Zeng, K.: Pseudonymous PKI for Ubiquitous Computing: EuroPKI 2006, LNCS 4043.
Springer-Verlag Berlin Heidelberg 2006; pp. 207-222

