
- 21 -

User Modelling and
Natural Language Interface Design

Jaime G. Carbonell
Carnegie-Mellon University

Abstract

The design of friendly, robust man-machine interfaces is of paramount importance as computers
become widely available to non-expert users. This paper examines the role of modeling the
capabilities and knowledge of the expected user population as an important step in the design
process. The development of robust natural language interfaces is advocated for casual or
inexperienced users. Design criteria for effective natural language communication with existing
software products and expert systems are proposed.

1. Introduction
As the widespread availability of computers for office, home, school and industry increases, so

does the need for human-oriented, friendly interfaces. Whereas not too long ago professional
programmers formed the bulk of the computer user community, more recently large numbers of
office workers, managers, students in diverse fields, and other "casual users" are becoming the
numerically-dominant segment of the user population. The micro-computer revolution has made
computing hardware universally available; now a similar revolution in software is needed to make
the computer universally usable. A significant part of the required software advances must take
place in the area of friendly, robust man-machine interfaces.

Many a user has had to contend with the intricacies and idiosyncrasies of operating system
interfaces, or the nightmare of a job-control language. Mostly, one just mimicked the incantations
of more experienced users, and, after many readings of ambiguous manuals and much trial and
error, one gradually became an expert user. Then, if a new system came on line, the entire
familiarization process had to be repeated. This painstaking process was accepted as necessary
by programmers and frequent users of packaged systems; it was a requisite investment whose
dividends were measured in terms of services provided by the computer. However, many
professionals in fields not requiring extensive use of the computer concluded that the
familiarization cost was greater than any potential benefits, and hence chose not to use the
computer. Thus, a primary factor restricting the utility and widespread acceptance of computers
is the difficulty that non-expert users encounter in mastering the intricacies of unnatural man-
machine interfaces. Clearly, it is imperative to design and implement interfaces to existing
software systems that do not require excessive training or familiarity in relation to the expected
frequency of usage by a particular user population. Equally clear is the fact that diverse users
place different demands upon the interface, have different knowledge of the underlying system,
and have different modes of interaction that enhance their comfort or productivity.

- 22 -

2. User Modelling
In order to ascertain the needs and abilities of a user vis a vis a particular interface design, it

often proves useful to model the user in a manner that predicts how well a particular interface
design will function. But, exactly what does a user model entail? There are two general classes of
user models:

2 .1 . Empirical Quantitative Models
The empirical models are abstract formalizations of a general class of users defined in terms of

the the design parameters of a user interface. For instance the KEYSTROKE model of Card, Moran
and Newell [6] falls under this category. Loosely stated, that model asserts that the number of
keystrokes is a determinant criterion of how productive a user can be at a not-very-demanding
task, such as searching for information or performing a well-defined text editing procedure. Of
course, this characterization is an oversimplification of the quantitative modeling technique, and
the reader is referred to [6] for a comprehensive discussion of an entire class of models of this
genre.

The quantitative models are based on empirical data compiled over many sessions with users
and encode quantitative relations between the individual primitive steps a user takes to perform
a potentially large task (given a fixed interface design) and the total time or accuracy of his
performance. Such models are used to improve upon a proposed design by predicting the time
required to perform a task, or its expected error rate with a given set of design parameters. Then,
these parameters are changed in a direction indicated by the model to minimize time or
performance errors. For instance, the ZOG system [11], a menu-selection frame-based interface
for rapid data access and update was subjected to this type of analysis.

To summarize, the empirical predictive models do not attempt to simulate the internal
reasoning or knowledge of the user, but rather correlate his or her external performance with
given design parameters in a quantitative fashion. In contrast, the analytical models discussed
below, attempt to simulate aspects of the users cognitive behavior in a more qualitative manner.

2.2. Analytical Cognitive Models
A major concern in Cognitive Science research is the simulation of human thought processes.

Therefore, it is oniy natural that simulation techniques be applied to the task of understanding
some of the user's relevant cognitive processes in order to better design and build effective
interfaces. Rather than measuring external quantifiable variables (such as number of keystrokes,
errors, or reaction times), cognitive modeling starts with a formal representation of the user's
knowledge of the underlying task. For instance, in designing a data-base query interface, the
cognitive modeller asks first and foremost the following types of questions:

• "How does the user's understanding of the information stored in the data base differ from
the manner in which it is encoded?"

• "Is the user aware of the types of information encoded? (facts?, relations?, processes?)"

• "Does the user know what operations are available to extract the information (e.g.,
relational algebra operators)?"

In order to answer these questions, one must study the user more closely. First, it is unlikely that
anyone's internal knowledge representation parallels the encoding of relational data bases.

- 23 -

Thus, part of the user's task is to perform this encoding conversion when data is extracted. And, a
useful measure consists of examining how easily and how accurately users are able to perform
the encoding transformation. Second, there are users who may need to browse through the data
base in order to ascertain the type of information encoded, whereas other users may well be more
knowledgeable or directed and may wish only to access specific facts. Third, it has been found
that it is extremely difficult for untrained users to become experts at generating formal queries,
but it is quite simple for them to state their query in natural language. Therefore, in this example,
the user interface must facilitate the translation of information from natural language to formal
query and from formal relational data base encoding back into natural language. Furthermore, a
mechanism must be provided for enabling a user to query the categories of information available
in a particular data base -- a mechanism analogous to a table of contents in a book.

In addition, a general analytical user model must address the following issues critical to the
interface design:

• The familiarity of the user with the functionality of the underlying system -- An new interface
to an operating system such as UNIX would be designed differently if it must accommodate
users who know nothing of operating systems in general (in fact constructing such an
interface would be an extremely difficult task requiring that the interface instruct the user
on basic principles of interacting with operating systems).

• The long-term commitment of the user - If the user is likely to use the system over a long
period of time, it may prove cost-effective for him to learn a precise, terse interaction
language. Whereas, if he is only an occasional or one-time user, an interface more akin to
natural language is in order, requiring no training.

• The range of sophistication among the user population - If experts and novices must share
a common interface, it should be designed to hide much of the complexity from the novice
but provide all the functionality required by the expert. Moreover, the interface capabilities
should grow gradually as the novice gains experience and becomes an expert.

• The user as an interface designer - If the user is likely to be experienced, the system should
provide a facility for personalizing and extending the interface. In natural language
interfaces this may take the form of allowing the user to input new dictionary entries or
grammatical structures. In a text editor such as EMACS, it can take the form of allowing the_
user to define his own key-board macros and additional commands. However, such
complexity is precisely the type of information that must remain hidden from the novice
user. Furthermore, the system should not encourage divergent user personalization in the
function performed by the underlying system, lest the actions of multiple users become
incompatible at a more fundamental level.

• Mixed-initiative capabilities -- A well-designed interface should enable the user to ask for
help ay any point in his interaction. The form of this help depends on the sophistication of
the user. An expert may only wish to be reminded of his options at a given point, and would
be annoyed and delayed by a lengthy explanation, whereas a novice may require examples
of the basic options (and may be confused by a lengthy enumeration and explanation of all
possibie options). Hence, in providing help, in formulating responses and in presenting
more of the complexities of the system, the interface must have some knowledge of the
level of expertise of the user.

The cognitive approach to modeling is the first step in deciding the overall structure of an
interface, whereas the quantitative approach attempts to optimize parameters within a certain
chosen design. Hence, both types of user modeling are necessary in designing convivial user
interfaces. Now, let us turn to additional design criteria relevant to user-friendly interfaces in

- 24 -

general, and natural language interfaces in particular.

3. User-Friendly Interfaces
The type of user-friendly interface we envision is targeted at the user who is either computer-

naive or at best unfamiliar with the particular system he needs to use. However, an understanding
of the underlying task the user sets out to perform is assumed. Thus, a statistician or an
economist who interacts with a statistical analysis package should know what operations to
perform on his data, but need not worry about subroutine calling sequences, details of the file
management subsystem, argument passing conventions, etc. Similarly, a secretary interacting
with an operating system interface should know its general function, but need not learn an
artificial stylized command language. For instance, the following dialog exemplifies a user-
friendly, natural language interface: (User input appears in italics, and the translation of the
natural language command into the system's formal command language appears in [square
brackets].)

What fort ran files do I have?
[Dir * . for<cr>]

GAUSS.FOR
GAUSS2.F0R
MATRIX.FOR

^Transfer GAUSS.FOR from my directory to the system library.
[Copy GAUSS.FOR <SUBSYS>GAUSS.FOR<cr>]
[Delete GAUSS.FOR<cr>]

ERROR: DIRECTORY ACCESS PRIVILEGES REQUIRED
'Copy' and 'Delete' commands not performed.

>print that file on the Diablo
'That file' = GAUSS.FOR? (Yes or No): yes
[Diablo<cr>]
[*GAUSS.FOR/print/notify<cr>]

<SMITH>GAUSS.FOR queued

>Has my file been printed yet?
[In fo diablo<cr>]

<JONES>LETTER.JAN
<SMITH>GAUSS.FOR

No, GAUSS.FOR is s t i l l on the Diablo queue.

>Cancel it.
'It' = Your command to print GAUSS.FOR on the Diablo?: yes
[Diablo<cr>]
[*GAUSS.FOR/cancel<cr>]

<SMITH>GAUSS.FOR canceled

The dialog above illustrates a cooperative natural-language interface that we have built with
present natural language processing technology (Using a variant of the DYPAR-II parser [5,9]).
The interface system can echo the command or command sequence that is executed as a result
of interpreting the natural language utterance. Thus, a novice user can be trained on the use of a
formal, more terse command language all the while he is performing useful tasks by
communicating in a subset of natural language. Additionally, one should note that natural

- 25 -

language allows for referential ambiguity and a system must be capable of handling such input in
a graceful manner. In the example illustrated above, the system asked for confirmation of its
referential hypotheses when there was room for ambiguity.

The interface exemplified above is indicative of the type of robust, task-oriented natural
language processing that can be developed with present-day technology. In addition to the
DYPAR-II project at Carnegie-Mellon University, we have two other experimental systems targeted
at developing similar interfaces. The COUSIN project (Cooperative USer INterface) provides a
uniform interface with the UNIX operating system, as well as the SPICE (Scientific Personal
Integrated Computing Environment) single-user computers. It is close to becoming operational,
but it exhibits rather limited natural-language communication. The MULTIPAR project [4,8]
addresses the problem of robust task-oriented natural language interfaces. The rest of our
discussion centers on the development of robust natural language communication as an
extremely useful tool for implementing flexible man-machine interfaces.

4. Criteria for a Friendly Natural Language Interface
In order for a natural language interface to be usable and friendly to non-expert users, as well

exhibit a degree of large-scale applicability, it should meet the following criteria:

• Syntactic coverage -- A parser not capable of syntactic segmentation of simple English
utterances is of little use in any application. Fortunately, computational aspects of syntactic
parsing are well understood. Moreover, the syntactic structure of commands, queries and
assertions that typify user interactions with a natural language interface is invariably simple.
Experience has shown that the much more complex syntax present in textual or other
written material is simply not found in task-oriented man-machine dialogs.

• Task-oriented semantic coverage - Each application domain for natural language
interfaces exhibits a well-defined semantic model. For instance, the commands given to an
operating system, or the set of permissible updates to a data-base file manager form a
bounded set of well understood operations. The natural language interface can exploit
these restrictive domain semantics creating a much more effective and robust system than
one can hope to create for unrestricted English.

• Flexibility in the presence of extra-grammaticality -- Experiments show that almost half of all
utterances typed at a natural language interface are grammatically deficient. Problems
range from misspelled words to ellipsed sentence fragments, missing punctuation,
interjections, and transposed words or phrases. The vast majority of these problems
present no problem to a human interpreter, and therefore ought to be tractable by an
automated analyzer.

• Semantic resilience - Knowledge of the underlying domain should be exploited to resolve
ambiguity. For instance the utterance "cancel it" in the preceding dialog is many-ways
ambiguous. In general, almost anything can be cancelled. In the operating-system domain,
only a restricted class of commands can be cancelled. Moreover, in the context of the
preceding utterances, it only makes sense to cancel the queued printing request. Making
this deduction requires knowledge of the domain as well as the structure of a dialog.

• User friendliness - Fulfilling the dual goals of providing maximal assistance to a naive user,
and being unobstrusive to a more experienced user is a difficult challenge. One possibility
is to enable the user to mix natural language commands with the terser system commands
as he learns them. Another avenue to resolve this issue is to present the user with default
options when ambiguity or other troubles arise -- saving the user from retyping the entire

- 26 -

input while retaining control over all actions generated by the interface.

• Transportability - An interface must be applicable to many different domains, in order to
justify the software development costs, and to provide uniform access to multiple software
facilities. This objective clashes with the semantic resilience goal, which requires that the
interface have access to an underlying semantic domain model. Here, we advocate the
representation of the semantic model as a data structure read in by the interface along with
the dictionary at load time. Thus, the parser, syntactic knowledge, dialog-structure
knowledge, and domain semantics are separate modules -- the latter being an
interchangeable data file. An interface need only understand commands to a given
subsystem at one time (plus an ability to switch subsystem and interface), therefore no
problems of unforeseen interactions across domains need arise.

5. Towards Robust, Multi-Strategy Parsing
Current work in computational linguistics indicates that it possible to design a friendly natural

language interface In accordance with the criteria listed above. The approach we have taken is
primarily a synthesis of previous natural language parsing techniques, together with a set of
"fail-soft" recovery heuristics. Whereas syntactic parsing methods (e.g. ATNs[13]) capture
linguistic regularities in a general manner, semantic grammars [10, 2] encode domain-specific
semantics, and expectation-based parsing [12,1] is quite useful for general semantic
disambiguation, no single technique is capable of handling all aspects of natural language
analysis. Moreover, experience has shown that the strengths of one technique overlap with the
shortcomings of other parsing techniques. Therefore, taking a pragmatic approach, we have
chosen to synthesize the best aspects of each technique into an integrated multi-strategy parser
-- MULTIPAR [9].

Although, MULTIPAR is still under development, its predecessors have taught us some useful
lessons -- and have themselves served as flexible natural language interfaces. Past systems
developed at CMU include:

1.FLEXP - A recursive pattern-matching flexible parser applied to an advanced message
system [7] demonstrated the need for combining bottom-up and top-down parsing
strategies when faced with input that deviates from a prescribed grammar.

2. CASPAR -- A case-frame parser demonstrated the power of domain semantics in parsing
both correct and extragrammatical input [9]. Moreover, selective treatment of constituents
on the basis of ease of recognition has proven a great help in realigning a parse when an
incomprehensible segment is encountered.

3. DYPAR - A three-strategy parser demonstrated the feasibility of combining more than one
parsing strategy into a unified system. Strategy selection occurs on the basis of the
expected form of embedded constituents. DYPAR is currently in use as natural language
interface to a simple semantic-network data base access and update, a factory scheduling
and simulation expert system, and a light-bulb manufacturing process data base and
simulation system. The field-testing of DYPAR has indicated a need for a more flexible
interface, one in which sophisticated ellipsis and anaphora resolution - as well as additional
focused recovery methods can be implemented. More recently, DYPAR-II has been
extended to serve as a natural language interface to the XSEL/R1 expert system at Digital
Equipment Corporation [5] This experience is instrumental in the current design of
MULTIPAR.

The type of natural language phenomena that one must handle in a robust flexible interface

- 21 -

include the following set:

• Spelling correction - About 40% of all user errors are careless misspellings. Context-free
spelling correctors can handle a large number of cases; however, more sophisticated
methods are required for human-like performance. For instance, the following sentence
was encountered in one of our studies: "Transfer the fortran flies to the accounts
directory." It is obvious that the person meant to type "files", but accidentally transposed
letters. However, "flies" is a correctly spelled word -- one present in the task-domain which
happened to be statistics on med-fly infestation. No self-respecting spelling correction
algorithm would then try to correct a correctly spelled word appropriate in the general
context. Clearly, we need context-sensitive spelling correction. The word "flies" is
semantically inappropriate in its specific location in the sentence. We must have a spelling
correction method capable of making this type of judgment.

• Definite noun phrases and anaphora -- The sample dialog in the previous section illustrated
both of these phenomena. When a user types "that file", or "my file", the system must
resolve the referent to a specific entity in the preceding dialog. The same problem occurs
(without explicit type restrictions) when the user types "it" or "that" as an anaphoric
referent. It is imperative for a user-friendly interface to resolve these referents. Merely
complaining to the user that he is not being specific enough is a non-operational solution.
We attempted such a solution, but only succeeded in creating frustrated and irate users.
For example, a user typed "Do I have a FOO.REL file?" And, after an affirmative
response, he typed "OK, now load it into core." The system complained that "it" could
not be resolved, whereupon after a long pause, the user typed "Do a load." Clearly the
latter sentence is more terse, and harder to interpret (Load what? Load it where?). It was
obvious to the user what file he was referring to; therefore it ought to have been obvious to
the system as well.

• Ellipsis and fragmentary input - It is often the case that people utter sentence fragments
which make sense only in the context of an on-going dialog. The same phenomenon occurs
in natural language interfaces. The vast majority of these fragments can be resolved by
reinstantiating the preceding utterance with the new fragment substituting for the
semantically corresponding constituent of the previous sentence. For instance, a typical
ellipsis occurs as follows:

Copy the fortran files to my directory.
Now the data files.

It is clear that "data files" substitutes for "fortran files" and a reexecution of the previous
command is called for. A case frame strategy with semantic constraints can handle this type
of ellipsis easily. However, more difficult forms of ellipsed commands occur, such as:

Copy the fortran files to my directory.
I meant to the accounts directory.

Here, the system must understand how to undo its previous command (e.g., deleting the
object case from the destination case of a "copy" undoes the effects of a copy") as well as
performing the prior ellipsis resolution.

• Fail-soft recovery Heuristics - When a fragment of a user's utterance is unparsable, the
interface system should not abandon hope. We are developing heuristics for bridging
difficult segments, realigning the parse in a bottom-up manner, and returning to the
troublesome part later with additional syntactic and semantic constraints from the rest of
the sentence. For instance, case-selection restrictions can be relaxed if other cases have
been correctly instantiated, and pattern matches can be made partial matches, as long as

- 28-

the set of possible constituents that could match has been reduced to a small set by the
surrounding context [3].

• Focused interaction - When recovery heuristics or semantics-based disambiguation fail, a
robust interface must interact with the user to produce appropriate clarifications. These
interactions should be focused on the source of the problem, and the system should
present alternatives or default choices in a concise manner.

In the MULTIPAR project we are striving to achieve these objectives. The fact that we are
developing a flexible control structure to enable different parsing strategies to be brought to bear
at appropriate times facilitates the introduction of ellipsis resolution, anaphora resolution, and
fail-soft recovery mechanisms.

6. Concluding Remark
In order for a natural language interface to be truly useful and accepted by a wide user

community it must be robust and tolerant of user errors - especially when the user does not
consider terse grammar and fragmentary input to be in error. Rather, users typically wish to type
as little as necessary to get their message across. Therefore, natural language interfaces must
accept anaphora, ellipsis and other means of abbreviating utterances. Moreover, a natural
language interface that is incapable of understanding simple, if ungrammatical utterances causes
a naive user do distrust the system as a whole. Hence our argument in favor of natural language
interfaces must be augmented with the proviso that the interfaces be substantially well designed
and robust enough to gain general acceptance. As our present work indicates, the basic
technology required to build flexible interfaces in semantically well-defined domains exists, but
must be refined and developed into working systems. The design constraints on the natural
language interfaces were developed by examining and modeling the capabilities and
performance of users, especially the novice users that constitute a rapidly expanding segment of
the user population.

7. References

1. Birnbaum, L. and Selfridge, M. Conceptual Analysis in Natural Language. In Inside Computer
Understanding, R. Schänk and C. Riesbeck, Eds., New Jersey: Erlbaum Assoc, 1980, pp.
318-353.

2. Burton, R. R. Semantic Grammar: An Engineering Technique for Constructing Natural
Language Understanding Systems. Tech. Rept. 3453, Bolt Beranek and Newman, 1975.

3. Carbonell, J. G. Towards a Self-Extending Parser. Proceedings of the 17th Meeting of the
Association for Computational Linguistics, ACL-79,1979, pp. 3-7.

4. Carbonell, J. G. and Hayes, P. J. Dynamic Strategy Selection in Flexible Parsing. ACL81proc,
ACL81.1981.

5. Carbonell, J. G., Boggs, W. M., Mauldin, M. L. and Anick, P. G. The XCALIBUR Project, A
Natural Language Interface to Expert Systems. Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, 1983. (Submitted)

- 29 -

6. Card, S. K., Moran, T. P. and Newell, A.. The Psychology of Human-Computer Interaction.
Erlbaum Assoc, Hillsdale, NJ, 1983.

7. Hayes, P. J. and Mouradiari, G. V. Flexible Parsing. Proceedings of the 18th Meeting of the
Association for Computational Linguistics, ACL80,1980, pp. 97-103.

8. Hayes, P. J., and Carbonell, J. G. Multi-Strategy Construction-Specific Parsing for Flexible
Data Base Query and Update. UCAIVIIproc, UCAI-81, August, 1981, pp. 432-439.

9. Hayes, P. J. and Carbonell, J. G. Multi-Strategy Parsing and it Role in Robust Man-Machine
Communication. Tech. Rept. CMU-CS-81 -118, Carnegie-Mellon University Computer Science
Department, May, 1981.

10. Hendrix, G. G., Sacerdoti, E. D. and Slocum, J. Developing a Natural Language Interface to
Complex Data. Tech. Rept. Artificial Intelligence Center., SRI International, 1976.

11. Newell, A., McCracken, D. L., and Akscyn, R. M. ZOG and the USS Carl Vinson. In Computer
Science Research Review, Carnegie-Mellon University, 1980-1981.

12. Riesbeck, C. and Schänk, R. C. Comprehension by Computer: Expectation-Based Analysis
of Sentences in Context. Tech. Rept. 78, Computer Science Department, Yale University, 1976.

13. Woods, W., Kaplan, R. and Nash-Webber, B. The Lunar Sciences Natural Language
Information System: Final Report. Tech. Rept. 2378, Bolt Beranek and Newman Report, 1972.

Add ress: Prof. Jaime G. Carbonell
Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213
U. S. A.

